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1 Introduction

In the Spring of 2011, I taught Math 1540 at Brown. This is the second
semester of our undergraduate algebra sequence. As a portion of the class,
I taught about elliptic curves, using Silverman and Tate’s rational points on
elliptic curves as a text. In particular, I wanted to verify all the claims made
in the book about Weierstrass uniformization. I wrote these notes so that
someone with essentially no background in complex analysis could see all the
main results after about 30 pages of not-too-hard reading. The notes are
divided into 3 sections:

• A primer on complex analysis: This explains all the results in
complex analysis you need to know in order to understand Weierstrass
Uniformization and why it works.

• Weierstrass Uniformization: This explains how one starts with a
lattice Λ in the plane and produces a bihilomorphic group isomorphism
from C/Λ to some elliptic curve in Weierstrass form.

• Global Properties: This explains why, up to projective equivalence,
every elliptic curve in Weierstrass form is obtained from the Weierstrass
Uniformization construction. This part is somewhat sketchy, and wades
into the deeper waters of moduli space.

While I made a decent effort to proof-read the notes, I did not try to
polish them to the extent that they could appear in a book. In particular,
I didn’t worry too much about things like the fine points of grammar and
punctuation. Nonetheless, I hope that all the math is essentially correct.

1



2 A Primer on Complex Analysis

2.1 A Resume of Results

Let U be an open set in C, the complex plane. Let f : U → C be a
continuous map. We say that f has a complex derivative at z ∈ U if the
quotient

f ′(z) = lim
h→0

f(z + h)− f(z)

h

exists and is finite. Note that h is allowed to be a complex number. f is said
to be complex analytic (or CA for short) in U if f ′(z) exists for all z ∈ U and
the function z → f ′(z) varies continuously in U . Here is everything you need
to know from complex analysis to understand Weierstrass uniformization.

1. Bounded Implies Constant: Suppose f : C → C is is CA and
bounded, then f is constant.

2. Removable Singularities: Let U be an open set and let b ∈ U be a
point. Suppose that f : U − {b} → C is CA and f is bounded in a
neighborhood of b. Then f extends to all of U and is CA on U .

3. Non-Vanishing: Suppose that f is CA in a neighborhood of a ∈ C,
and not identically 0. Then there is somem such that f(z+a) = zmg(z)
where g is CA in a neighborhood of 0 and g(0) 6= 0.

4. Local Homeomorphism: Let f : U → C be a CA map. If f ′(a) 6= 0
then there is some open disk ∆ about a such that f : ∆ → f(∆) is a
homeomorphism.

In general, a homeomorphism f : X → Y is a bijection f : X → Y such
that f and f−1 are both continuous. Here X and Y are spaces in which
continuity makes sense, e.g., metric spaces or topological spaces.

2.2 Cauchy–Riemann Equations

We can think of a CA function f as a map from R
2 to R

2 by writing

f(x+ iy) = u(x+ iy) + iv(x+ iy).
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To say that the complex derivative of f exists is the same as saying that f is
differentiable and df |p (the differential at p) is the composition of a rotation
and a dilation. That is

[

ux uy

vx vy

]

=
[

r cos(θ) r sin(θ)
−r sin(θ) r cos(θ)

]

, r ∈ R, θ ∈ [0, 2π).

Equating terms, we get

ux = vy; uy = −vx. (1)

These are called the Cauchy–Riemann equations .

2.3 Complex Line Integrals

Suppose γ is a smooth oriented arc in C and f is a complex valued function
defined in a neighborhood of γ. We define a complex line integral along γ as
follows. Letting g : [a, b] → γ be a smooth parametrization of γ that respects
the orientation of γ, we define

∫

γ
f dz =

∫ b

a
f(g(t))

dg

dt
dt. (2)

From the change of variables formula for integration, the answer only depends
on the orientation and not the parametrization. Were we to switch the
orientation, the value of the line integral would switch signs.

If we have a finite union γ = {γj} of smooth oriented arcs, we define
∫

γ
f dz =

∑

j

∫

γj
f.

Theorem 2.1 (Cauchy) Let γ be a loop made from finitely many smooth
arcs. Suppose that f is CA in a neighborhood of the domain bounded by γ.
Then

∫

γ f dz = 0.

Proof: Let f = u + iv. Letting dx and dy be the usual line elements, we
can write

∫

∂D
f dz =

∫

∂D
(u+ iv)(dx+ idy) =

∫

∂D
(udx− vdy) + i

∫

∂D
(vdx+ udy).

By Green’s theorem, the integral on the right-hand side equals
∫

D
(uy + vx)dxdy + i

∫

D
(ux − vy)dxdy.

Both pieces vanish, due to the Cauchy–Riemann equations. ♠
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2.4 The Cauchy Integral Formula

Here is the main technical tool we will use.

Theorem 2.2 (Cauchy Integral Formula) Let γ be loop oriented coun-
terclockwise around the domain D that it bounds. Let a ∈ D − γ. Suppose
that f is CA in a neighborhood U of D. Then

f(a) =
1

2πi

∫

γ

f(z)

z − a
dz. (3)

Proof: We translate the whole picture and consider without loss of generality
the case when a = 0. The function g(z) = f(z)/z is CA in U − {0}. Let β
be the circular polygon shown in Figure 1.

0

Figure 1.

We have ∫

β
g dz = 0 (4)

by Cauchy’s Theorem. We allow the two oppositely oriented vertical seg-
ments in β to approach each other. In the limit, the contributions from the
two vertical segments cancel out, and equation (4) yields

∫

γ
g(z)dz =

∫

λ
g(z)dz. (5)

Here λ is a counterclockwise circle centered at 0. But
∫

λ
g(z)dz ≈ f(0)

∫

λ

dz

z
= 2πif(0). (6)

The approximation becomes exact as the radius of λ shrinks to 0. ♠
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2.5 Bounded Functions

Suppose that f : C → C is a CA bounded function. We will show that
f ′(a) = 0 for all a ∈ C.

Using the Cauchy Integral Formula, we compute

lim
h→0

f(a+ h)− f(a)

h
= lim

h→0

1

2πih

(
∫

γ

f(z)

z − a− h
dz −

∫

γ

f(z)

z − a
dz

)

=

lim
h→0

1

2πi

∫

γ

f(z)

(z − a)(z − a− h)
dz =

1

2πi

∫

γ

f(z)

(z − a)2
dz. (7)

Equation 7 tells us that

f ′(a) =
1

2πi

∫

γ

f(z)

(z − a)2
dz. (8)

Let N be the radius of γ. The length of γ is 2πN . The numerator in Equation
8 is at most C. The denominator is at least |N − a|2. Hence,

|f ′(a)| ≤ CN

|N − a|2 . (9)

Letting N tend to ∞, we see that |f ′(a)| = 0. But a is arbitrary. Hence
f ′(a) = 0 for all a ∈ C.

2.6 Removable Singularities

Here we will prove the following result:

Theorem 2.3 Let U be an open set that contains a point b. Suppose that f
is CA and bounded on U − {b}. Then f(b) can be (uniquely) defined so that
f is CA in U .

Proof: Let γ and β and λ be the loops used to prove the Cauchy Integral
Formula. So, λ is a small loop surrounding b and γ is a big loop surrounding
b. Let |λ| denote the radius of λ. Let D be the open domain bounded by γ.
We define g : D → C by the integral

g(a) =
1

2πi

∫

γ

f(z)

z − a
dz.
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The same derivation used for Equation 7 shows that g is CA on all of D. We
will show that f(a) = g(a) for all a ∈ D − {b}. Once we know this, we set
f(b) = g(b) and we are done.

Now suppose that a 6= b. Since f(z) is bounded in a neighborhood of b
we have

lim
|λ|→0

∫

λ

f(z)

z − a
dz = 0.

But, by the Cauchy Integral Formula,

f(a) =
1

2πi

∫

β

f(z)

z − a
dz

no matter which choice of λ we make. Therefore

f(a) = lim
|λ|→0

1

2πi

∫

β

f(z)

z − a
dz =

1

2πi

∫

γ

f(z)

z − a
dz = g(a).

So f(a) = g(a) for all a ∈ D − {b}. ♠

2.7 The Maximum Principle

Let f be a complex analytic function in a connected open set U . Here we
will show that f cannot take on its maximum value at a point in U unless
f is constant. We will assume that f takes on a maximum at some point
a ∈ U , and we will derive a contradiction. If f has an interior maximum,
we can compose f with translations and dilations and arrange the following
properties.

• |f(0)| = 1.

• U contains the unit disk.

• |F (z)| ≤ 1 for all |z| = 1.

• |F (z)| < 1 for some z such that |z| = 1.

Let γ be the unit circle. By the Cauchy Integral Formula we have

1 = |f(0)| = 1

2π

∣

∣

∣

∣

∫

γ

f(z)

z

∣

∣

∣

∣

≤∗ 1

2π

∫

γ
|f(z)|dz < 1.

This is a contradiction. The starred inequality is essentially the triangle
inequality.
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2.8 Non-Vanishing

Lemma 2.4 Suppose, for all n, that the function f(z)/zn is well defined at 0
and complex analytic in a neighborhood of the unit disk. Then f is identically
0 on the unit disk.

Proof: Let gn(z) = f(z)/zn. Let M be the maximum of f on the unit
disk. Note that |gn(z)| = |f(z)| for |z| = 1. But the maximum principle,
|gn(z)| ≤ M for all z in the unit disk. Hence |f(z)| ≤ M |z|n. If |z| < 1, then

lim
n→∞

M |z|n = 0.

Hence |f(z)| = 0 if |z| < 1. By continuity, |f(z)| = 0 if |z| ≤ 1. ♠

Now we prove Item 3. We want to see that f(a + z) = zng(a) for some
CA function g such that g(a) 6= 0. We can translate the picture so that
a = 0. Then we can dilate the picture so that f is defined and CA in a
neighborhood of the closed unit disk ∆. If f(0) 6= 0, then we are done. If
f(0) = 0, then the existence of f ′(0) guarantees that the function f(z)/z is
bounded on ∆ − {0}. But then f(z)/z is CA in ∆. Hence f(z) = zg1(z),
where g1(z) is CA in ∆.

If g1(a) 6= 0 we are done. Otherwise, by the same argument, we can write
f(z) = z2g2(z). And so on. The only way Item 3 could fail is that there is a
sequence of CA functions {gn} such that f(z) = zngn(z) for all n. But then
f satisfies the hypotheses of Lemma 2.4. Hence f vanishes identically in the
unit disk. This is a contradiction.

2.9 Local Homeomorphism

Now we prove Item 4. Let f : U → C be a CA function. We call f normalized
if f is defined at 0 and f(0) = 0 and f ′(0) = 1.

Lemma 2.5 When f is normalized, we have a small disk ∆ centered at 0
and an estimate

∣

∣

∣

∣

(f(a)− f(b))− (a− b)
∣

∣

∣

∣

≤ |a− b|
10

, (10)

which holds for all a, b ∈ ∆.
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Proof: f ′ exists and is continuous. Hence, there is some small neighborhood
∆ about 0 with the property that

|f ′(z)− 1| < 10−100 (11)

for all z ∈ ∆. If γ is any curve in ∆, then the velocity of γ at z and the
velocity of f(γ) at f(z) are nearly the same, by Equation 11. To get our
result, we compare the straight unit speed line segment γ connecting a to
b with the nearly straight, nearly unit speed, curve f(γ) connecting f(a) to
f(b). ♠

In what follows, we always take ∆ to be as in Lemma 2.5 when we are
talking about normalized functions.

Lemma 2.6 Suppose f is normalized. Then f is one to one on ∆ and f−1

is continuous on f(∆).

Proof: The fact that f is one to one follows immediately from Equation 10.
Equation 10 also gives us the bound |f(a)− f(b)| > |a− b|/2 for all a, b ∈ ∆.
But then we have f−1(a)− f−1(b)| < 2|a− b| for all a, b ∈ f(∆). This bound
obviously does the job. ♠

The next result has many different kinds of proofs, but none of the proofs
is really easy. We’ll give a geometrical proof. As you read this proof, you
should think about a bad game of golf: The player hits the ball towards the
hole but misses slightly. The next put comes closer, etc. In the limit, the
ball goes in the hole.

Lemma 2.7 Suppose f is normalized Then f(∆) contains a neighborhood
of 0.

Proof: Let r be the radius of ∆. Suppose α ∈ C satisfies |α| < r/10. Let
a0 = α. We have

|a0| < r/10; |α− f(a0)| < r/100.

The second bound comes from Equation 10. In general, suppose that

|an| < r/10 + r/100 + ...+ r/10n < r; |f(an)− α| < r/10n+1,
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we define
an+1 = an + α− f(an).

Note that
|an+1| < r/10 + r/100 + ...+ r/10n+1 < r.

Hence an, an+1 ∈ ∆. Equation 10 then gives

|f(an+1)− α| = |(f(an+1)− f(an))− (an+1 − an)| ≤

|an+1 − an|
10

=
|f(an)− α|

10
< r/10n+2.

So, we can define a1, a2, ... inductively. By construction |α − f(an)| → 0 as
n → ∞. By continuity f(a) = α where a = lim an. ♠

Lemma 2.8 Suppose that f : U → C is CA and f ′(a) 6= 0 for some a ∈ U .
Then

• f is one to one in a neighborhood ∆ of a.

• f(∆) contains an open neighborhood of f(a).

• f−1 : f(∆) → ∆ is continuous.

Proof: We can scale f so that a = 0 and f is normalized. This scaling
does not change the conclusions of the lemma. This result now follows from
everything we have proved about normalized functions. ♠

We are almost to the point of proving the first part of Item 4. Here is
the last step.

Lemma 2.9 Suppose that f : U → C is CA and f ′(a) 6= 0 for some a ∈ U .
Then, for all sufficiently small open sets V containing a, the set f(V ) is
open.

Proof: V just has to be small enough so that f ′(b) 6= 0 for all b ∈ V . But
then the previous result shows that f(V ) contains an open set that contains
f(b), for all b ∈ V . This proves that f(V ) is open. ♠
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3 Weierstrass Uniformization

3.1 Lattices

Say that 2 complex numbers α and β are independent of α/β is not real. For
instance 1 and i are independent.

A lattice in C is a set of points of the form

Λ = {mα + nβ m, n ∈ Z}, (12)

where α and β are independent numbers. The set of points in Λ forms a grid
of parallelograms. The classic case is when α = 1 and β = i. In this case
Λ = Z[i], the Gaussian integers.

The quotient C/Λ has several nice properties.

1. C/Λ is homeomorphic to a torus – namely, a single parallelogram with
its sides identified.

2. C/Λ abelian group under addition, since both C and Λ are abelian
groups under addition.

A map f : Λ → C is called Λ-periodic if f(λ + z) = f(z) for all z ∈ C

and all λ ∈ Λ. In this case, f induces a map from C/Λ into C. This new
map is usually also denoted by f . We can also talk about Λ-periodicity when
f is not defined at all points of C. In the case of interest, we will be able to
interpret f as a map from C to C ∪∞.

3.2 The Weierstrass Function

Let Λ be any lattice. Informally, the function we are interested in is

∑

λ∈Λ

1

(z − λ)2
(13)

The nice thing about this “function” is that it is clearly Λ-periodic. The bad
thing is that the series above does not converge, so the “function” does not
exist.

The Weierstrass function is the function that the expression in Equation
13 wants to be. Here is the definition.

P (z) =
1

z2
+

∑

λ 6=0

(

1

(z − λ)2
− 1

λ2

)

=
1

z2
+

∑

λ 6=0

2zλ− z2

λ2(z − λ2)
. (14)
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To study the convergence of this series, choose z 6∈ Λ. For all λ sufficiently
large, we have the estimate

∣

∣

∣

∣

z2 − 2zλ

λ2(z − λ2)

∣

∣

∣

∣

<
Cz

|λ|3 . (15)

Here Cz is a constant that depends on z in a way that we don’t care about.
The series in Equation 14 does converge because the corresponding series

∑

λ 6=0

1

|λ|3

converges.
The Weierstrass function P (z) is defined for all z ∈ C−Λ. As z → λ ∈ Λ,

the quantity |P (z)| tends to ∞. One says that P (z) has poles at points of Λ.

3.3 Differentiability

In this subsection we’ll prove that the function P is complex analytic on
C − Λ and that

P ′(z) =
∑

λ∈Λ

−2

(z − λ)3
, ∀z ∈ C − Λ. (16)

This is the standard proof that term-by-term differentiation works.
For any N we can write P = PN +RN , where

PN(z) =
1

z2
+

∑

0<|λ|<N

(

1

(z − λ)2
− 1

λ2

)

. (17)

and RN is the remainder. In other words, PN is defined just like P , except
we only sum over the lattice points inside the disk of radius N .

Since PN just involves a finite number of terms, we have

dPN/dz = lim
h→0

PN(z + h)− PN(h)

h
=

∑

|λ|<N

−2

(z − λ)3
(18)

Note that the case λ = 0 is included in the sum.
To understand what happens to the remainder, we write

RN =
∑

|λ≥N

fλ(z); fλ(z) =
1

(z − λ)2
− 1

λ2
. (19)
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We have
fλ(z + h)− fλ(z)

h
=

2λ− h− 2z

(z − λ)2(z − λ− h)2
. (20)

For now on, we suppose |h| < 1. Also, we fix z. Once |λ| is large ebough we
have

∣

∣

∣

∣

fλ(z + h)− fλ(z)

h

∣

∣

∣

∣

<
Cz

|z − λ|3 . (21)

Again, the constant Cz depends on z in a way that we don’t care about. For
any ǫ1 > 0 we can choose N large enough so that

∣

∣

∣

∣

RN(z + h)−RN(z)

h

∣

∣

∣

∣

< Cz

∑

|λ≥N

1

|z − λ|3 < ǫ1. (22)

From Equation 22 we have

∣

∣

∣

∣

P (z + h)− P (z)

h
−

∑

λ

−2

(z − λ)3

∣

∣

∣

∣

≤

ǫ1 +
∣

∣

∣

∣

PN(z + h)− PN(z)

h
−

∑

λ

−2

(z − λ)3

∣

∣

∣

∣

≤

ǫ1 + ǫ2 +
∣

∣

∣

∣

PN(z + h)− PN(z)

h
−

∑

|λ|<N

−2

(z − λ)3

∣

∣

∣

∣

≤

ǫ1 + ǫ2 + ǫ3 (23)

The terms ǫ1 and ǫ2 tend to 0 as N → ∞, and the term ǫ3, which comes
from Equation 18, tends to 0 as h → 0. This proves that

lim
h→0

∣

∣

∣

∣

P (z + h)− P (z)

h
−

∑

λ

−2

(z − λ)3

∣

∣

∣

∣

= 0. (24)

3.4 The Differential Equation

In this subsection we’ll establish the differential equation

(P ′)2 = 4P 3 + g2P + g3. (25)

A function f is called even if f(−z) = f(z) for all z. Also, f is called odd
if f(−z) = −f(z) for all z.

Lemma 3.1 P is even and Λ-periodic.
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Proof: Since 1/z2 is even, it suffices to prove that Q(z) = P (z) − 1/z2 is
even. Since P ′ is odd, so is Q′. Also, Q(0) = 0. Since Q′ is odd and Q(0) = 0,
we get that Q is even. Hence P is even.

Now we show periodicity. Let λ ∈ Λ be any point. Let Q(z) = P (z+λ)−
P (z). From Equation 16 we see that P ′(z) is clearly Λ-periodic. Therefore
Q′(z) = 0. Hence Q(z) = Cλ, a constant that perhaps depends on λ. We
just have to show that Cλ = 0. But

Cλ = P (−λ/2 + λ)− P (−λ/2) = P (λ/2)− P (−λ/2) = 0,

since P is even. ♠

Lemma 3.2 In a neighborhood of 0 we have

P (z) =
1

z2
+ z2m1(z); P ′(z) =

−2

z3
+ zm2(z).

Here m1 and m2 are CA in a neighborhood of 0.

Proof: Let Q(z) = P (z)− 1/z2. Q(z) is even and Q(0) = 0. Since Q(0) = 0
and Q is CA, the quotient Q(z)/z is bounded in a neighborhood of 0. So,
we can write Q(z) = zR(z) where R(z) is CA in a neighborhood of 0. Note
that R(z) is odd. Hence R(0) = 0. The same argument now shows that
R(z) = zm1(z). Hence Q(z) = z2m1(z). This gives the first equation. The
second equation comes from differentiating the first one. ♠

Lemma 3.2 tells us that

A(z) = 4P 3 − g2P − g3 − (P ′)2 =
m3(z) + g2

z2
+ g3 +m4(z), (26)

where m3 and m4 are CA in a neighborhood of 0. We choose g2 so that
m3(0) + g2 = 0. We choose g3 so that A vanishes at some point.

Lemma 3.3 A(z) is bounded in a neighborhood of 0.

Proof: Consider the function q(z) = m3(z) + q2. Is suffices to prove that
q(z)/z2 is bounded in a neighborhood of 0. The function q(z) is even and
q(0) = 0. The same argument as in Lemma 3.2 shows that q(z) = z2s(z),
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where s(z) is CA in a neighborhood of 0. This does it. ♠

The function A(z) is Λ-periodic. Hence A(z) is bounded in a neighbor-
hood of each lattice point. On the other hand, A(z) is CA in C−Λ. So, A is
bounded in the complement of any neighborhood of Λ. Hence A is bounded.
All the singularities of A are removable, so A extends to a bounded CA func-
tion on C. But then A is constant. Our choice of g3 gives A = 0. This
establishes Equation 25.

Remark: With a bit of effort, one can trace through the proof below and
prove that

g2 =
∑

λ 6=0

−60

λ4
; g3 =

∑

λ 6=0

−140

λ6
. (27)

3.5 Map to the Elliptic Curve

Let E be the elliptic curve

y2 = 4x3 + g2x+ g3. (28)

We will assume that this elliptic curve is nonsingular, meaning that

4g32 + 27g23 6= 0.

In fact, all choices of Λ have this property, but this is a bit of a digression to
prove.

There is a map from C into E, given by

Ψ(z) = (P (z), P ′(z)). (29)

Equation 25 tells us that this map actually lands in E. When z ∈ Λ, we
define Ψ(z) = [0 : 1 : 0], the infinite point.

Since Ψ is Λ-periodic, Ψ induces a map (with the same name)

Ψ : C/Λ → E. (30)

The map Ψ is called the Weierstrass uniformizing map.
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3.6 Branch Points

As a prelude to understanding the map Ψ, we need some information about
the derivatives of P . A branch point of P is a point z such that P ′(z) = 0.
In this subsection we characterize the branch points. Let 1

2
Λ denote the set

of points of the form λ/2 where λ ∈ Λ. Let Λ′ = 1
2
Λ− Λ. We will prove:

• P ′(z) = 0 if z ∈ Λ′.

• P ′(z) = 0 only if z ∈ Λ′.

• P ′′(z) 6= 0 if z ∈ Λ′.

Suppose that z ∈ Λ′. Then

P (z + h) = P (z + h− 2z) = P (−z + h) = P (z − h). (31)

The first equality comes from the fact that 2z ∈ Λ and that P is Λ-periodic.
The last equality comes from the fact that Λ is even. Since P ′ is continuous,

2P ′(z) = lim
h→0

P (z + h)− P (z − h)

h
= 0.

It is convenient to define Q = P ′. Suppose that Q(a) = 0. We can write
Q(a + z) = zmg(z), where g(0) 6= 0 and m is some integer. We define m to
be the multiplicity of a. This notion of multiplicity coincides with the notion
of the multiplicity of a root of a polynomial. If both Q(a) and Q′(a) are 0
then a has multiplicity greater than 1. So, either of the remaining claims
above fails, the equation Q = 0 has at least 4 solutions in C/Λ, counting
multiplicity.

The multiplicity has the following topological interpretation. Suppose
that C is a loop that surrounds a and no other roots of Q. Then the multi-
plicity of a counts the number of times Q(C) winds around 0. More generally,
if C is a loop that surrounds the roots a1, ..., ak of Q, then the sum of multi-
plicities of a1, ..., ak counts the number of times Q(C) winds around 0. The
multi-root case can be deduced from the single root case by considering pic-
tures of the kind shown in Figure 1. The idea is that the winding number of
the outer loop, the loop we care about, is the same as the winding number
of the inner loop, and the winding number of the inner loop is the sum of
the winding numbers of the 3 small loops surrounding the individual roots.
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Figure 1.

For any u ∈ C we define N(u) to be the number of solutions to the
equation Q(z) − u = 0, counting multiplicity. We suppose that N(0) ≥ 4.
By Equation 16, we have

Q(z) =
1

z3
+ g(z),

where g(z) is CA in a neighborhood of 0. From this equation we see that
Q(z) − u = 0 only has solutions near lattice points when |u| is large, and
moreover that N(u) = 3 when |u| is large.

It follows from the topological interpretation of multiplicity that the func-
tion u → N(u) varies continuously. On the other hand, this function is
integer-valued. Hence, it is impossible for N(0) > 3. This is a contradiction.
This completes our proofs of the claims.

3.7 Regularity of the Map

In this subsection we will show that Ψ is a regular map. This is to say
that Ψ′ never vanishes. First, suppose that z ∈ C − Λ. We have Ψ′(z) =
(P ′(z), P ′′(z)). Note that P ′(z) and P ′′(z) are not both zero, by the result
in §3.6.

It remains to consider the case when z ∈ Λ. Since Ψ is Λ-periodic, it
suffices to consider the case z = 0. The secret in this case is to change
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coordinates to that we are still dealing with a map into C
2. We can’t use

the usual copy of C2 sitting inside P 2(C), so we will use one of the other
copies. We have Ψ(0) = [0 : 1 : 0]. To analyze the derivative, we consider the
picture in the plane C

2 consisting of points y = 1. For points z ∈ C near 0,

Ψ(z) = [P (z), P ′(z) : 1] = [P (z)/P ′(z) : 1 : 1/P ′(z)].

Consider the first coordinate, g(z) = P (z)/P ′(z). From Lemma 3.2, the
function g(z) is bounded in a neighborhood of 0. Also, limz→0 |g(z)| = 0. So,
we can write g(z) = zh(z). If h(0) = 0 then g(z) = z2m(z), where m(z) is
CA in a neighborhood of 0. This contradicts Lemma 3.2. So, h(0) 6= 0. But
then g′(0) 6= 0. Hence Ψ′(0) 6= 0.

3.8 Surjectivity of the Map

Now we’ll show that Ψ : C/Λ → E is onto. Be warned that this subsection
requires a bit of background in real analysis. The main result we will use
is that a nonempty subset of E, which is both open and closed, must be all
of E. This follows from the fact that E is connected. Obviously Ψ(C/Λ) is
nonempty. So, we just need to show that this set is open and closed.

Closed: This follows from the fact that C/Λ is compact, and Ψ is con-
tinuous. The continuous image of a compact set is always closed. Here is a
more elementary argument, which explains the meaning of “compactness”.
Choose some point w that lies in the closure of Ψ(C/Λ). By definition, there
is a sequence {zi} in C/Λ such that Ψ(zi) converges to w. Since C/Λ is com-
pact, we can pass to a subsequence so that {zi} is a convergent subsequence.
Let z = lim zi. By continuity Ψ(z) = w. Hence w ∈ Ψ(C/Λ). Since w was
an arbitrary point in the closure of Ψ(C/Λ), we see that Ψ(C/Λ) contains
its closure. Hence Ψ(C/Λ) is closed.

Open: Let a ∈ C. Let L be the tangent line to E at a. Let π be the
projection map from E onto L. Since E is a nonsingular elliptic curve, π is
a local homeomorphism from a neighborhood of Ψ(a) in E to an open set in
L.

Consider the auxilliary map

π ◦Ψ : C → L.
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This is a C.A. map from C to L, and L is just a copy of C. The map π ◦Ψ is
C.A. Since Ψ is regular, the derivative of π ◦Ψ does not vanish at a. Hence,
π ◦Ψ is a local homeomorphism. Hence π ◦Ψ maps an open neighborhood U
of a in C onto an open neighborhood of π ◦Ψ(a) in L. Given what we have
already said about π, we see that Ψ(U) is an open set in E which contains
Ψ(a). This shows that every point of Ψ(C) is contained in an open subset
of Ψ(C). Hence Ψ(C) is open in E.

Remark: We actually didn’t need to know that Ψ is a regular map. It
always happens that the image of an open set under a non-trivial CA map
is open.

3.9 Injectivity of the Map

Here we will show that Ψ is injective. Let X ⊂ C/Λ denote those points
where Ψ is not injective. That is, each a ∈ X is such that there is some
distinct b ∈ X such that Ψ(a) 6= Ψ(b). Note that [0] 6∈ X since [0] is the only
point of C/Λ which Ψ maps to the line at infinity. So, X is not all of C/Λ.
We will show that X is both open and closed. Since C/Λ is connected, this
shows that X is empty!

Closed: Suppose a lies in the closure of X. Let {an} be a sequence in
X converging to a. Let {bn} be a sequence so that Ψ(an) = Ψ(bn). Pass-
ing to a subsequence, we can assume that bn → b. By continuity, we have
Ψ(a) = Ψ(b). We just have to prove that a 6= b. Since Ψ is regular, Ψ is a
homeomorphism from a neighborhood U of a into E. The restriction of Ψ
to U is injective. But an ∈ U for n large. Hence bn 6∈ U for n large. Hence
b 6∈ U . Hence a 6= b. This proves that a ∈ X. Hence X is closed.

Open: Suppose that a ∈ X. Let b ∈ X be such that Ψ(a) = Ψ(b) and
a 6= b. Since Ψ is regular, there are small disks Ua and Ub about a and b
such that Ψ(Ua) and Ψ(Ub) are both open sets containing the common point
w = Ψ(a) = Ψ(b). We can take Ua and Ub so small that they are disjoint,
and we can shrink Ua to be so small that Ψ(Ua) ⊂ Ψ(Ub). But then Ua ⊂ X.
Hence X contains an open set which contains a. Since a was an arbitrary
point of X, this shows that X is open.
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3.10 Crash Course on Riemann Surfaces

It only remains to show that Ψ is a group isomorphism. Before we do this, we
need to make a little digression. We would like to say when a map f : E → E
is complex analytic. This doesn’t quite make sense, because E is not really
C. However, E is nonsingular, and there is a projection from E to each of
its tangent planes. We will use these projections to talk about CA maps of
E. Essentially, we are treating E as a Riemann surface, but we are doing
to do it without making a big fuss about a formal definition of a Riemann
surface.

Given a ∈ E let πa : E → L be the projection from E to the tangent line
at a. We have already considered these maps. Suppose that φ : E → E is a
map of E and b = φ(a). We say that f is CA at a if

πb ◦ f ◦ π−1
a (32)

is CA in a neighborhood of πa(a). The map π−1
a makes sense at least in a

neighborhood of πa(a).

Lemma 3.4 f : E → E is CA if and only if Ψ−1 ◦ f ◦ Ψ is a CA map of
C/Λ.

Proof: The point is that the coordinates of Ψ are CA maps. So, this is just
an exercise in the chain rule. ♠

Here is the main example of interest to us. Let TA : E → E denote
addition by A. That is TA(P ) = A+ P for all P ∈ E.

Lemma 3.5 TA is a CA map of E.

Proof: Recall that there are rational functions describing the group law on
E. Hence, the coordinates of TA are rational functions. The compositions
in Equation 32 are rational functions on C. (Here we are thinking of the
tangent lines as copies of C.) Hence, the compositions in Equation 32 are
all CA. So, by definition TA is CA. ♠
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3.11 Group Isomorphism

Now we will show that Ψ : C/Λ → E is a group isomorphism. We want to
show that Ψ(a + b) = Ψ(a) + Ψ(b) for any a, b ∈ C/Λ. Let A = Ψ(a) and
B = Ψ(b). Let TA : E → E denote addition by A. This is a CA map of E.
Define

τA = Ψ−1 ◦ TA ◦Ψ (33)

Lemma 3.6 τA is a translation.

Proof: TA is a CA map of E. At the same time, TA is a homeomorphism
with no fixed points. Hence τA is a CA homeomorphism of C/Λ with no
fixed points. Let τ = τA. We have the quotient map π : C → C/Λ. Let
g = π ◦ τ : C → C/Λ. The derivative g′ makes sense as a map from C → C.
Since g′ is continuous and Λ-periodic, there is some M such that |g′| < M .
But then g′ is both bounded and CA. Hence g′ is constant. Hence τ ′ is con-
stant. Since τ preserves the area of C/Λ, we must have |τ ′| = 1. If τ had
any rotational component, it would have a fixed point. Hence τ ′ = 1. This
implies that τ is a translation. ♠

We have

τA(0) = Ψ−1 ◦ TA ◦Ψ(0) = Ψ−1 ◦ TA([0 : 1 : 0]) = Ψ−1(A) = a. (34)

Likewise τB(0) = b. Since τA is a translation and τA(0) = a,

τA(b) = a+ b. (35)

But then
τA ◦ τB(0) = τA(b) = a+ b. (36)

On the other hand.

τA ◦ τB(0) = (Ψ−1 ◦ TA ◦Ψ) ◦ (Ψ−1 ◦ TB ◦Ψ)(0) =

Ψ−1 ◦ TA ◦ TB ◦Ψ(0) =

Ψ−1 ◦ TA ◦ TB([0 : 1 : 0]) = Ψ−1(A+B).

In short
a+ b = τA ◦ τB(0) = Ψ−1(A+B) (37)

Applying Ψ, we see that Ψ(a+ b) = Ψ(a) + Ψ(b), as claimed.
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4 Global Properties

The goal of this chapter is to explain why any elliptic curve over C has a
Weierstrass uniformization, up to projective transformations. These notes
are sketchy and they wade into topics that are beyond the scope of the class
– moduli spaces, extremal length, and conformal metrics.

4.1 Outline

The construction of the Weierstrass uniformizing map gives us a map from
the set of all lattices to the set of Weierstrass elliptic curves. The idea is to
define these sets precisely and analyze what the map does to them. Here is
an outline of the notes.

• We will explain what Invariance of Domain means. I like to think
of Invariance of Domain as a continuous version of the Pidgeonhole
principle. It says that, under the right circumstances, a continuous,
injective, and proper map is surjective. (Properness is defined below.)

• We will define a space Y of certain representatives of Weierstrass elliptic
curves. Every Weierstrass elliptic curve will be equivalent to one of our
representatives up to projective transformations. The space Y is known
as the moduli space of elliptic curves .

• We will define a space X of certain representatives of lattices. Every
lattice will be equivalent to a lattice in X up to scaling. The space X
is known as the moduli space of lattices .

• We will show that the Weierstrass uniformization constructs a well-
defined map f : X → Y that is both continuous and surjective. Invari-
ance of Domain reduces the question of whether f is surjective to the
question of whether f is proper.

• We will define the concepts of extremal length and conformal metrics
and sketch some technical lemmas about them.

• Using the concepts of extremal length and conformal metrics, we will
prove that f is proper. Invariance of Domain allows us to conclude
that f is surjective, and in fact a homeomorphism.
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4.2 Invariance of Domain

Say that an unbounded sequence in R
k is a sequence {xn} such ‖xn‖ → ∞.

A map f : Rk → R
k is called proper if it carries unbounded sequences to

unbounded sequences. That is, if {xn} is unbounded then so is {f(xn)}.
Lemma 4.1 (Invariance of Domain) Suppose that f : Rk → R

k is con-
tinuous, injective, and proper. Then f is a homeomorphism.

A proof of this result can be found in any book on algebraic topology,
including Allen Hatcher’s online book. All we need is the case k = 2. For
convenience, we will prove this case under an additional hypothesis. When
the time comes, we will verify that the extra hypothesis holds. Let Cr(u)
denote the circle of radius r centered at u ∈ R

2.

Lemma 4.2 Suppose that f : R2 → R
2 is continuous, injective, and proper.

Suppose additionally that there is some point u ∈ R
2 such that f(Cr(u))

winds a nonzero number of times around f(u) for all sufficiently small r.
Then f is a homeomorphism.

Proof: We translate so that u = 0 and f(0) = 0. Let p ∈ R
2 be any point.

Consider the image Dr = f(Cr). Since f is injective, Dr does not contain 0
for r > 0. By hypothesis, Dr winds a nonzero number of times around 0, for
r small enough. But then Dr winds a nonzero number of times around the
origin for all r, because the winding number is a continuous function of r, and
also integer valued. If Dr winds 0 times around p, then Dr winds a different
number of times around p than it does around 0. But then Dr must intersect
the line segment joining 0 to p. Once r is large enough, this contradicts the
fact that f is proper. Hence Dr winds a nonzero number of times around p
for r large. But Dr winds 0 times around p when r is sufficiently small. This
is only possible if the winding number is not defined for some r. That is,
p ∈ Dr for some r. Hence f is surjective.

To finish the proof, we just have to show that f−1 is continuous. If not,
then we can find some p ∈ R

2 and some sequence {qn} → p such that f−1(qn)
does not converge to f−1(p) on any subsequence. Since f is proper, the se-
quence {f−1(qn)} has a convergent subsequence. Let r be some limit of this
sequence. Since f is continuous, we must have f(r) = lim qn = p. Hence
r = f−1(p). Hence, some subsequence of f−1(qn) converges to f−1(p). This
is a contradiction. Hence f−1 is continuous. ♠
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4.3 The Space of Elliptic Curves

Say that a canonical form for a Weierstrass elliptic curve is either

C∞ : y2 = x3 + 1, (38)

or
Cb : y2 = x3 + x+ b; (39)

There are 2 choices of b for which Cb is singular. Namely b should satisfy
4 + 27b2 = 0. That is

b± = ±2i/
√
27. (40)

Some coordinate change of the form x → αx and y → βy converts an
arbitrary Weierstrass elliptic curve into one in canonical form. The same
kind of coordinate change maps Cb to C−b. It is an exercise to show that Ca

and Cb are projectively equivalent if and only if a = ±b. For this reason, the
space

Y =
(

(C ∪∞)− b+ − b−

)

/± (41)

parametrizes the set of all equivalence classes of Weierstrass elliptic curves.
Any Weierstrass elliptic curve is projectively equivalent to a curve indexed by
a unique point in Y . For this reason, Y is the space of projective equivalence
classes of Weierstrass elliptic curves.

Topologically, the space (C ∪ ∞)/± is still a sphere. Hence the space
Y is topologically a sphere with one point removed, namely [b±]. A sphere
with one point removed is homeomorphic to a plane. So, in short, Y is
homeomorphic to a plane.

4.4 The Space of Lattices

Recall that a lattice is a set of the form

Λ(α, β) = {mα + nβ|m,n ∈ Z}. (42)

Here α and β are two complex numbers with α/β non-real. We say that two
lattices Λ1 and Λ2 are equivalent if there is a complex number w such that
Λ2 = wΛ1. Here is the significance of this definition.

Lemma 4.3 Two lattices Λ1 and Λ2 are equivalent if and only if there is a
CA homeomorphism from C/Λ1 to C/Λ2.
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Proof: If Λ2 = wΛ1 then the map f(z) = wz induces the CA homeomor-
phism from C/Λ1 to C/Λ2. That is the easy direction.

Suppose that f : C/Λ1 → C/Λ2 is a CA homeomorphism. We can adjust
by a translation so that f(0) = 0. Let πj : C → C/Λj be the quotient map.
Let g = f ◦ π1. Then g is a map from C to C/Λ2. Note that g′ makes
sense as a map from C to C. The map g′ is bounded since g′ is completely
determined by what g does on a single parallelogram in C. Since g′ is both
CA and bounded, g′ is constant. So, g must have the form

g(z) = π2(wz). (43)

Here w = g′. For λ ∈ Λ1 we have

π2(wλ) = f(π1(λ)) = f(0) = 0.

Therefore wλ ∈ Λ2. So, wΛ1 ⊂ Λ2. Reversing the roles of Λ1 and Λ2, we see
that (1/w)Λ2 ⊂ Λ1. These two containments show that wΛ1 = Λ2. ♠

For now on, we always order α and β so that {α, β} makes a positive
basis. That is β/α has positive imaginary part. Let SL2(Z) denote the set
of matrices

[

a b
c d

]

; ad− bc = 1. (44)

That is, the determinant is 1. We write (α′, β′) = M(α, β) if α = aα′ + bβ′

and β′ = cα + dβ.

Lemma 4.4 Λ(α, β) = Λ(α′, β′) if and only if (α′, β′) = M(α, β) for some
M ∈ SL2(Z).

Proof: The “if” direction is obvious. Suppose Λ(α, β) = Λ(α′, β′). Since
α′, β′ ∈ Λ(α, β), we can write α′ = aα + bβ and β′ = cα + dα. At the same
time, we can write α = a′α′ + b′β′ and β = c′α′ + d′β′. The corresponding
matrices M and M ′ are inverses of each other, and both are integer matrices.
Hence, they both must have determinant ±1. The condition on the ordering
forces the determinant to be 1. ♠

Every lattice is certainly equivalent to one of the form Λ(1, z) where
Im(z) > 0. Letting H

2 denote the set of such z, we can say that every
lattice is equivalent to one of the form Λ(1, z), with z ∈ H

2.
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Lemma 4.5 Λ(1, z) and Λ(1, z′) are equivalent if and only if

z′ =
az + b

cz + d
; a, b, c, d ∈ Z; ad− bc = 1. (45)

Proof: The “if” direction follows from Lemma 4.4. Suppose that Λ(1, z)
and Λ(1, z′) are equivalent. Then there is some complex number w such
that Λ(1, z′) = wΛ(1, z). That is Λ(1, z′) = Λ(w,wz). But then (1, z′) =
M(w,wz), where M is as in Equation 44. So, z′ = M(wz)/M(w). Writing
this out and cancelling the extra factor of w in both the numerator and de-
nominator gives Equation 45. ♠

We now see that the space X is the same as the quotient H
2/SL2(Z),

where the equivalence relation is as in Equation 45.

4.5 The Weierstrass Map

Now we define the map f : X → Y . We choose some lattice Λ = Λ(1, z)
and form the Weierstrass function P . Next, we define Ψ = (P, P ′). We
have already seen that Ψ maps C/Λ onto an elliptic curve E, given by the
equation

y2 = 4x3 + g2x+ g3.

Here g2 and g3 are such that (P ′)2 = 4P 3 + g2P + g3. We then take the
elliptic curve in Y that is equivalent to this elliptic curve.

We need to see that f is well defined. The problem is that points in X are
represented by more than one lattice. If we use the lattice Λ(1, z∗) instead,
with z∗ ∼ z, we get a different elliptic curve

y2 = 4x3 + g∗2x+ g∗3.

We want to see that the two elliptic curves give the same point in Y .
There is a constant w ∈ C such that Λ(1, z∗) = wΛ(1, z). Below, we will

show that g∗2 = w−4g2 and g∗3 = w−6g3. From this information, it is an easy
exercise to show that our two elliptic curves correspond to the same point in
Y .

Lemma 4.6 g∗2 = w−4g2 and g∗3 = w−6g3.

25



Proof: Let P and P ∗ be the Weierstrass functions defined relative to Λ and
Λ∗ respectively. Consider the new function Q(z) = P ∗(wz). The functions
P and Q are both Λ-periodic. Near 0, we have

P (z) = 1/z2 + z2a(z); Q(z) = 1/(wz)2 + z2b(z),

where a(z) and b(z) are CA functions. So, P (z) − w2Q(z) is a bounded
CA function. Hence P (z) − w2Q(z) is constant. But we also know that
P (0) = Q(0) = 0. Hence Q(z) = w−2P (z).

Now we know that P ∗(wz) = w−2P (z). We can equally well write

P ∗(z) = w−2P (z/w). (46)

By the chain rule,
(P ∗)′(z) = w−3P ′(z/w). (47)

Now we can see that

((P ∗)′(z))2 = w−6(P ′(z/w))2 =

w−6(P (z/w)3 + g2P (z/w) + g3) =

P ∗(z)3 + w−4g2P
∗(z) + w−6g3.

This shows that g∗2 = w−4g2 and g∗3 = w−6g3, as claimed. ♠

Lemma 4.7 f is continuous and injective.

Proof: To prove continuity, one just has to obvserve that the differential
equation satisfied by the Weierstrass function pretty clearly depends contin-
uously on the lattice. For injectivity, suppose that f(x1) = f(x2). Then the
map Ψ−1

2 ◦ Ψ1 gives a CA homeomorphism from C/Λ1 to C/Λ2. But then
Λ1 and Λ2 are equivalent by Lemma 4.3. ♠

We want to use Lemma 4.2, so we need to verify the extra hypothesis.
Let u be any point of H2 so that no two points of C sufficiently close to
u are equivalent to each other in the sense of Equation 45. Only countably
many points in H

2 fail to have this property. For instance u = 1/2+ i/2 has
the desired property. We also assume that f(u) 6= 0.
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In a neighborhood of u, the space X is just a copy of an open set of C.
Likewise, in a neighborhood of f(u), the space Y is just a copy of an open
subset of C. For this reason, it makes sense to discuss f as a CA function
in a neighborhood of u.

Let Cr(u) denote the set of points X representing lattices Λ(1, z), where
|z− u| = r. For r small, no two points of Cr(u) are equivalent to each other.
That is Cr(u) is a loop in X.

Lemma 4.8 For r sufficiently small, f(Cr(u)) winds a nonzero number of
times around f(u) in Y .

Proof: An examination of construction of P and its differential equation
shows that the coefficients g2 and g3 are complex analytic functions of the
parameter z when they are constructed from the lattice Λ(1, z). But then,
the map f is CA in a neighborhood of u. Hence there is some integer m such
that

f(z + u)− f(u) = zmg(z) = zmg(0) + zm+1k(z) = zmg(0) + H.O.T..

Here g and k are CA in a neighborhood of 0 and g(0) 6= 0. This equation
shows that f(Cr(u)) winds m times around f(u) for r small. ♠

Suppose we knew that f was also proper. Then we could conclude from
Lemma 4.2 that f is a homeomorphism from X to Y . The rest of these
notes are devoted to showing that f is proper. Before giving the details, I’ll
explain the idea. If {pn} is an unbounded sequence in X, the corresponding
quotients C/Λn are becoming increasingly long and skinny. The elliptic
curves corresponding to f(pn) are also becoming long and skinny, in a certain
sense, and therefore f(pn) must be an unbounded sequence in Y . In order to
make this argument work, we need to somehow quantify what we mean by
“long and skinny”. The concept of extremal length does the job for us. Now
for the details...

4.6 Extremal Length

Let Λ = Λ(1, z) be a lattice. Suppose that ρ : C/Λ → R
+ is a function,

normalized so that ∫

C/Λ
ρ2 dxdy = 1. (48)
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For each y ∈ R, we define

f(y) =
∫ 1

0
ρ(x+ iy)dx (49)

We define
µ(Λ, ρ) = inf

y∈R
f(y). (50)

So far, these definitions pertain to a specific choice of ρ. Finally, we define

µ(Λ) = sup
ρ

µ(Λ, ρ). (51)

For this last equation, we are extremizing over all choices of ρ.
The function ρ is known as a conformal metric on C/Λ. The first integral

expresses the condition that the total area in this metric is 1. The integral
f(y) measures the length of the horizontal loop at height y relative to this
metric. The quantity µ(Λ, ρ) measures the length of the shortest horizontal
loop relative to this metric. The final quantity maximizes the length of the
shortest loop, over all possible unit area conformal metrics. This quantity is
known as the extremal length of a horizontal loop in C/Λ.

Here is the basic result.

Lemma 4.9 Let {pn} be a sequence of points in X that has no convergent
subsequence. Let Λn be the lattice corresponding to pn. Then µ(Λn) → 0.

Proof: Let zn be such that Λ(1, zn) corresponds to pn. Replacing zn by
zn ± 1, we can assume that zn = xn + yn where xn ∈ [0, 1]. For ease of
exposition, we will assume that xn = 0. The general case requires small but
slightly tedious modifications.

Since {pn} has no convergent subsequence, we have yn → ∞. We might
as well re-index our sequence so that yn > n. If this lemma is false, we can
find some a > 0 and a function ρn so that µ(Λn, ρn) > a for all n.

Let Rn be the rectangle [0, 1]× [0, n]. The rectangle Rn consists of n unit
squares stacked on top of each other. One of these squares has less than
(1/n) times the ρn-area. We can restrict ρn to this square and then rescale
to get a new function α : R1 → R

+ such that

∫

R1

α2(x, y) dxdy < ǫ;
∫ 1

0
α(x+ iy) dx ≥ 2,
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for all y ∈ [0, 1]. Here we can make ǫ as small as we like by taking n large
and suitably rescaling.

We can break R1 into a k × k grid of squares so that α is constant on
each square up to a factor of 2. Let αij be the minimum value of α on the
ijth square on the grid. By hypothesis, we have

∑

i,j

α2
ij ≤ ǫ;

∑

i,j

αij ≥ k.

But the first quantity is minimized when αij = 1/k, and the minimum is 1.
This is a contradiction. ♠

4.7 Conformal Metrics on an Elliptic Curve

We already mentioned that a conformal metric on C/Λ is just a choice of a
positive function ρ. We want to define something similar on an elliptic curve.
Now the situation is more complicated, because elliptic curves are subsets of
P 2(C). This subsection is going to be a crash course on a bit of Riemannian
geometry.

Let E be an elliptic curve. The important feature of E is that it is
nonsingular. For each P ∈ E there is a tangent line, TP (E), which is a copy
of C. Some of you may recognize the nonsingularity condition as saying that
E is a manifold .

A conformal metric on E is a choice of nontrivial function

ρP : TP (E) → R

for each P ∈ E. The function ρP should have the property that

ρP (az) = |a|ρP (z) (52)

for all a ∈ C and all z ∈ TP (E). Also, the function should always assign
positive numbers to nonzero elements of TP (E). A conformal metric on E is
a special case of a Riemannian metric on E.

Given a conformal metric on E we can use it to measure the speeds of
curves on E. If we have a curve γ(t) on E, the derivative γ′(t) is naturally an
element of Tγ(t)(P ). So, we can use ργ(t) to define the speed of γ(t). Namely

|γ′(t)| = ργ(t)(γ
′(t)). (53)
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Once we have the notion of speed, we can integrate it to obtain the notion
of arc length. That is, the length of the portion of γ joining γ(a) to γ(b) is

∫ b

a
|γ′(t)| dt.

The notion of a conformal metric ties in nicely to the concept we intro-
duced in the previous subsection. Let Ψ : C/Λ → E be the Weierstrass
map and suppose E comes with a conformal metric. There is a function
ρ : C/Λ → R such that Ψ is an isometry : The length of any curve γ on
C/Λ with respect to ρ is the same as the length of Ψ(γ) with respect to the
conformal metric on E. This works because the Weierstrass map is complex
analytic. We say that the conformal metric on E has unit area if ρ has unit
area in the sense of the previous subsection.

4.8 Properness

Now we prove that f is proper.
Let {pn} be a sequence of points inX that has no convergent subsequence.

Let Λn be the lattice corresponding to pn. We have µ(Λn) → 0, by Lemma
4.9.

Let En be the elliptic curve corresponding to f(pn). Suppose that {En}
has a convergent subsequence. Passing to a subsequence, we can assume that
{En} converges to some limit elliptic curve E. We can choose a unit area
conformal metric γn on En, and we can arrange that these metrics converge
to a unit area conformal metric γ on the limit E. There is some ǫ > 0 so
that every loop on E has length at least 2ǫ relative to γ. Hence, once n is
large, every closed loop on En has length at least ǫ relative to γn.

Let ρn be the function on C/Λ so that the Weierstrass map is an isometry
from C/Λn to En relative to ρn and γn. Referring to our notation of extremal
length, we would have µ(Λn, ρn) ≥ ǫ. But this contradicts that fact that
µ(Λn, ρn) ≤ µ(Λn) and µ(Λn) → 0.

Hence f is proper. Just to summarize, we now know that f : X → Y is
injective, continuous, and proper. So, by Invariance of Domain, f is a home-
omorphism. In particular, f is surjective. So, up to projective equivalence,
every Weierstrass elliptic curve has a Weierstrass uniformization.
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