MATH 18 INTERMEDIATE CALCULUS, OCTOBER 5, 2004 EXAM 1 SOLUTIONS

(1) Determine whether the following four points are coplanar (with complete justification).

$$P(2,0,0)$$
 $Q(1,0,3)$ $R(3,-1,-1)$ $S(0,1,2)$

We check whether the vercors $PQ = \langle -1, 0, 3 \rangle; PR = \langle 1, -1, -1 \rangle; PS = \langle -2, 1, 2 \rangle$ are coplanar. The triple product is

$$\begin{vmatrix} -1 & 0 & 3 \\ 1 & -1 & -1 \\ -2 & 1 & 2 \end{vmatrix} = -2 \neq 0$$

so they are not co-planar.

(2) (a) Find an equation for the plane passing through the point P = (1, 2, 2) and perpendicular to the line given in symmetric form as

$$\frac{x-2}{3} = \frac{y-3}{4} = z - 5$$

The normal vector is the vector along the line $\vec{N} = \langle 3, 4, 1 \rangle$. Thus the equation is

$$3(x-1) + 4(y-2) + z - 2 = 0.$$

(b) Find the **cosine of the angle** of intersection of the plane above and the xy-plane. The angle θ between the planes is the angle between the normal vectors. The normal to the xy-plane is the vector $\vec{\mathbf{k}}$. Thus

$$\cos \theta = \frac{\vec{\mathbf{N}} \cdot \vec{\mathbf{k}}}{|\vec{\mathbf{N}}| \ |\vec{\mathbf{k}}|} = 1/\sqrt{26}.$$

- (3) Suppose the vector function $\vec{\mathbf{r}}(t) = \langle t, 2t^2, t^3 \rangle$ represents the position of an object as a function of time.
 - (a) Find the speed of the object at time t = 1. $ec{f r}'(t)=\langle 1,4t,3t^2
 angle$ so $ec{f r}'(1)=\langle 1,4,3
 angle$ and thus the speed is $|ec{f r}'(1)|=\sqrt{26}$
 - (b) Determine the times t (if any) at which the *velocity* and *position* vectors of the object are perpendicular to each other. we are looking for t such that $\vec{\mathbf{r}}'(t) \cdot \vec{\mathbf{r}}(t) = 0$, which means $t(1+8t^2+3t^4) = 0$. Since the second term is always positive the only solution is t = 0.
- (4) (a) Sketch the space curve of the vector function $\vec{\mathbf{r}}(t) = \langle t, \cos t, \sin t \rangle$. Label the point where t = 0, and indicate with arrows the direction of increase of t. You should get a helix spiralling along the x-axis, starting at (0,1,0), going forward along x and upwards along z in the beginning.
 - (b) Viewing $\vec{\mathbf{r}}(t)$ as the position of a particle at time t, find the velocity and acceleration of the particle as functions of t.
 - $\vec{\mathbf{v}}(t) = \vec{\mathbf{r}}'(t) = \langle 1, -\sin t, \cos t \rangle$ and $\vec{\mathbf{a}}(t) = \vec{\mathbf{r}}''(t) = \langle 0, -\cos t, -\sin t \rangle$
 - (c) Write a definite integral describing the arclength of the path traversed by the particle between t = 1 and t = 3, and evaluate it.

the arc length is $L = \int_1^3 |\vec{\mathbf{r}}'(t)| dt = \int_1^3 \sqrt{2} dt = 2\sqrt{2}$. (5) Sketch the level curves of $f(x, y) = x^2 + 2y^2$ at height z = 0, z = 1 and z = 2.

for z = 0 you get just the origin. for z = 1 you get an ellipse centered at the origin aligned to the axes and passing through (1,0) and $(0,1/\sqrt{2})$. for z=2 you get an ellipse centered at the origin aligned to the axes and passing through $(\sqrt{2},0)$ and (0,1).