MATH 18 Intermediate Calculus, October 5, 2004 EXAM 1 Solutions

(1) Determine whether the following four points are coplanar (with complete justification).

$$
P(2,0,0) \quad Q(1,0,3) \quad R(3,-1,-1) \quad S(0,1,2))
$$

We check whether the vercors $P Q=\langle-1,0,3\rangle ; P R=\langle 1,-1,-1\rangle ; P S=\langle-2,1,2\rangle$ are coplanar. The triple product is

$$
\left|\begin{array}{ccc}
-1 & 0 & 3 \\
1 & -1 & -1 \\
-2 & 1 & 2
\end{array}\right|=-2 \neq 0
$$

so they are not co-planar.
(2) (a) Find an equation for the plane passing through the point $P=(1,2,2)$ and perpendicular to the line given in symmetric form as

$$
\frac{x-2}{3}=\frac{y-3}{4}=z-5 .
$$

The normal vector is the vector along the line $\overrightarrow{\mathbf{N}}=\langle 3,4,1\rangle$. Thus the equation is

$$
3(x-1)+4(y-2)+z-2=0 .
$$

(b) Find the cosine of the angle of intersection of the plane above and the $x y$-plane. The angle θ between the planes is the angle between the normal vectors. The normal to the $x y$-plane is the vector $\overrightarrow{\mathbf{k}}$. Thus

$$
\cos \theta=\frac{\overrightarrow{\mathbf{N}} \cdot \overrightarrow{\mathbf{k}}}{|\overrightarrow{\mathbf{N}}||\overrightarrow{\mathbf{k}}|}=1 / \sqrt{26} .
$$

(3) Suppose the vector function $\overrightarrow{\mathbf{r}}(t)=\left\langle t, 2 t^{2}, t^{3}\right\rangle$ represents the position of an object as a function of time.
(a) Find the speed of the object at time $t=1$.
$\overrightarrow{\mathbf{r}}^{\prime}(t)=\left\langle 1,4 t, 3 t^{2}\right\rangle$ so $\overrightarrow{\mathbf{r}}^{\prime}(1)=\langle 1,4,3\rangle$ and thus the speed is $\left|\overrightarrow{\mathbf{r}}^{\prime}(1)\right|=\sqrt{26}$
(b) Determine the times t (if any) at which the velocity and position vectors of the object are perpendicular to each other.
we are looking for t such that $\overrightarrow{\mathbf{r}}^{\prime}(t) \cdot \overrightarrow{\mathbf{r}}(t)=0$, which means $t\left(1+8 t^{2}+3 t^{4}\right)=0$. SInce the second term is always positive the only solution is $t=0$.
(4) (a) Sketch the space curve of the vector function $\overrightarrow{\mathbf{r}}(t)=\langle t, \cos t, \sin t\rangle$. Label the point where $t=0$, and indicate with arrows the direction of increase of t.
You should get a helix spiralling along the x-axis, starting at ($0,1,0$), going forward along x and upwards along z in the beginning.
(b) Viewing $\overrightarrow{\mathbf{r}}(t)$ as the position of a particle at time t, find the velocity and acceleration of the particle as functions of t.
$\overrightarrow{\mathbf{v}}(t)=\overrightarrow{\mathbf{r}}^{\prime}(t)=\langle 1,-\sin t, \cos t\rangle$ and $\overrightarrow{\mathbf{a}}(t)=\overrightarrow{\mathbf{r}}^{\prime \prime}(t)=\langle 0,-\cos t,-\sin t\rangle$
(c) Write a definite integral describing the arclength of the path traversed by the particle between $t=1$ and $t=3$, and evaluate it.
the arc length is $L=\int_{1}^{3}\left|\overrightarrow{\mathbf{r}}^{\prime}(t)\right| d t=\int_{1}^{3} \sqrt{2} d t=2 \sqrt{2}$.
(5) Sketch the level curves of $f(x, y)=x^{2}+2 y^{2}$ at height $z=0, z=1$ and $z=2$.
for $z=0$ you get just the origin. for $z=1$ you get an ellipse centered at the origin aligned to the axes and passing through $(1,0)$ and $(0,1 / \sqrt{2})$. for $z=2$ you get an ellipse centered at the origin aligned to the axes and passing through $(\sqrt{2}, 0)$ and $(0,1)$.

