MA 225 B1 - CALC 3

For Exam 2, I recommend that you do as many problems as you can from the book (including review problems) for the sections we have covered in class. Below are a few problems you can practice with. The exam covers 17.7 , all of chapter 18 (skipping 18.9), and 19.1.
(1) Is the function $f(x, y)=\sqrt{9-x^{2}-y^{2}}$ continuous as $(0,0)$? Why?
(2) Let $f(x, y)=\frac{x^{2}-2}{y+2}$ and $P=(2,0,1)$.
(a) find an equation for the line normal to the graph of $f(x, y)$ at P.
(b) find an equation for the plane tangent to the graph of $f(x, y)$ at P.
(c) find an equation for the line normal to the level set of $f(x, y)$ at $(x, y)=(2,0)$.
(d) find an equation for the line tangent to the level set of $f(x, y)$ at $(x, y)=(2,0)$.
(3) Classify the critical points of the function $f(x, y)=x^{2}+2 x y+y^{3} / 6$.
(4) Classify the critical points of the function $f(x, y)=x^{2}+y^{4}-2 x-4 y^{2}+5$.
(5) Find the linear approximation formula for the function $f(x, y)=x^{2} y+y^{2} x$ around the point $\left(x_{0}, y_{0}\right)=(2,1)$ and use it to give the approximation for $f(1.9,1.2)$.
(6) The radius of the base of a cylinder at time 0 is 1 unit and is increasing at a rate of 0.5 units per second. At the same time the height is 2 units and is decreasing at a rate of 0.2 units per second. Find the rate of change of the volume at time 0 . Is it increasing or decreasing?
(7) Let $f(x, y)=x^{2} y ; x(s, t)=s t ; y(s, t)=s^{2}-t^{2}$. Find $\frac{\partial f}{\partial s}$ and $\frac{\partial f}{\partial t}$.
(8) Find the gradient of $f(x, y)=x^{2} y^{2}+x y+2$ at $P=(1,1)$.
(9) Find the point on the plane $2 x+3 y+z-14$ closest to the origin.
(10) Find the dimension of a rectangle, parallel to the axes, of maximal area, which can be inscribed in the ellipse $x^{2} / 9+y^{2}=1$.
(11) Find the direction of steepest decrease of the function $f(x, y, z)=x^{2}+y z^{2}$ at the point $(1,2,3)$.
(12) Find the point on the hyperbola $x y=1$ closest to the point $(1,2)$.
(13) Calculate the iterated integral

$$
\int_{0}^{5} \int_{0}^{2} x^{2} y d x d y
$$

(14) Calculate the double integral

$$
\iint_{R} x \sin (y x) d A
$$

over the rectangle $0 \leq x \leq \pi / 4 ; \quad 0 \leq y \leq 2$.
(15) Evaluate the following:
a) $\int_{0}^{1} \int_{0}^{\sqrt{1-y^{2}}} e^{x^{2}+y^{2}} d x d y$
b) $\int_{1}^{2} \int_{-\sqrt{4-x^{2}}}^{\sqrt{4-x^{2}}} \frac{x^{2}}{x^{2}+y^{2}} d y d x$
c) $\int_{0}^{1} \int_{0}^{\sqrt{1-y^{2}}}\left(x^{2}+y^{2}\right)^{\frac{3}{2}} d x d y$
d) $\int_{-2}^{2} \int_{-\sqrt{4-x^{2}}}^{\sqrt{4-x^{2}}} \int_{0}^{y+2} x y d z d y d x$
e) $\int_{0}^{3} \int_{-\sqrt{9-x^{2}}}^{0} \int_{\sqrt{x^{2}+y^{2}}}^{\sqrt{18-x^{2}-y^{2}}} e^{\left(x^{2}+y^{2}+z^{2}\right)^{\frac{3}{2}}} d z d y d x$
(16) Find the volume of the region lying inside both the cone $z^{2}=x^{2}+y^{2}$ and the sphere $x^{2}+y^{2}+z^{2}=2$.
(17) Find the volume of the region lying inside the cylinder $x^{2}+y^{2}=1$ and the sphere $x^{2}+y^{2}+z^{2}=$ 4.
(18) Check your answer from the previous problem using a different type of coordinates (e.g. if you used cylindrical, use cartesian coordinates).
(19) Find the volume of the solid lying between the spheres $x^{2}+y^{2}+z^{2}=4$ and $x^{2}+y^{2}+z^{2}=16$ and inside the cone $z^{2}=x^{2}+y^{2}$.
(20) Find the surface area of the graph given by $f(x, y)=127+y^{2}$ over the region

$$
Q=\{(x, y) \mid 0 \leq x \leq 2,1 \leq y \leq 2\}
$$

(21) Find the surface area of the portion of the paraboloid $x=9-z^{2}-y^{2}$ lying over the $y z$-plane.
(22) Find the surface area of the part of the paraboloid $z=4-x^{2}-y^{2}$ lying inside the cylinder $x^{2}+y^{2}=1$.
(23) Find

$$
\iint_{Q} \int e^{2\left(x^{2}+y^{2}+z^{2}\right)^{\frac{3}{2}}} d V
$$

where Q is the region bounded between the two half spheres

$$
Q_{1}=\left\{(r, \theta, \phi) \mid 0 \leq r \leq 2,0 \leq \theta \leq 2 \pi, 0 \leq \phi \leq \frac{\pi}{2}\right\}
$$

and

$$
Q_{2}=\left\{(r, \theta, \phi) \mid 0 \leq r \leq 4,0 \leq \theta \leq 2 \pi, 0 \leq \phi \leq \frac{\pi}{2}\right\}
$$

(24) Julie and Holly own a Calculus Tutoring Service. To advertise thier booming business, they have made a thin metal sign that is 4 yards wide and 2 yards high. Suppose its density, which is measured in pounds/yard ${ }^{2}$, at each point is 3 times the distance from the center of the sign squared (hence $p(x, y, z)=3\left(x^{2}+y^{2}\right)$). In order to hang the sign, it must weigh less than 50 pounds. Will they be able to hang it up?
(25) Sebastian and Keith own a company that makes metal wedges. They make them in one size only which is given by the shape of the region

$$
Q=\{(x, y, z) \mid-1 \leq x \leq 1,0 \leq y \leq 3,0 \leq z \leq y\}
$$

The density at the point (x, y, z) is given by $p(x, y, z)=1+x^{2}+y^{2}$ grams $/ \mathrm{cm}^{3}$ and the dimensions of all the wedges are all in centimeters. Suppose that they need to ship a wedge overnight to Seattle and teh shipping rate is $\$ 30$ per gram. Since neither of these guys is good at calculus, they ask you to figure out how much it will cost. What is the price?
(26) Evaluate

$$
\iint_{R}\left(x y^{2}+y\right) d A \quad \text { on } R=\{0 \leq x \leq 1,0 \leq y \leq 1\}
$$

(27) Find the area of the region bounded by the graphs $y=x^{2}$ and $y=4$.
(28) Find the area of the region enclosed by the cardioid $r=1+\cos \theta$ in the first quadrant.
(29) Find the surface area of the region bounded by the cylinder $x^{2}+y^{2}=1$ inside the sphere $x^{2}+y^{2}+z^{2}=4$.
(30) Evaluate

$$
\int_{0}^{1} \int_{0}^{x} \int_{0}^{y} e^{y} d z d y d x
$$

(31) Sketch the solid

$$
Q=\left\{(x, y, z) \mid 0 \leq x \leq 1,0 \leq y \leq \sqrt{1-x^{2}}, 0 \leq z \leq \sqrt{1-x^{2}-y^{2}}\right\}
$$

Find the mass of Q is its density is

$$
D(x, y, z)=x^{2}+y^{2}+z^{2} .
$$

(32) Use a change of variables to find the area of the regien defined by

$$
Q=\left\{(x, y) \left\lvert\, \begin{array}{l}
1 \leq x / y^{4} \leq 2 \\
2 \leq y / x^{4} \leq 3
\end{array}\right.\right\}
$$

(33) Use a substitution to find the volume inside the ellipsiod

$$
x^{2}+y^{2} / 4+z^{2} / 9=1
$$

(34) Evaluate the work done by the force field $\mathbf{F}=x z \mathbf{i}+2 x y \mathbf{j}+z^{2} \mathbf{k}$ along the path given by $\mathbf{r}(t)=t \mathbf{i}+t^{2} \mathbf{j}+t^{3} \mathbf{k}$, in the time interval $0 \leq t \leq 2$.
(35) Evaluate the line integral

$$
\int_{C} x y d x+y^{2} d y
$$

where C is the triangle with vertices $(0,0),(0,1),(1,0)$, in this order.
(36) Evaluate the line integral

$$
\int_{C} x \cos (x y) d x+y \cos (x y) d y
$$

along the circle C of radius 1 around the origin, going clockwise from $(0,1)$.

