Final Exam

Math 212
Instructor: Dr. O'Donnol
04/28/2010

Pledge:

\qquad

Name: \qquad Signature:

Please read the following information

- This exam is closed book, closed notes. Calculators are NOT allowed.
- You have 3 hours to complete the exam.
- This test is worth 200 points total.
- Show all your work to earn full credit.
- Clearly indicate your final answers (box, circle, write "answer", etc.).
- Justify your answers whenever possible.
- No credit will be given for correct but unsupported answers.
- Points will be deducted for incorrect, irrelevant or incoherent statements.
- Good luck!

1. (15 points) Mark each of the following quantities as $\mathbf{C S}$ (constant scalar), $\mathbf{S F}$ (scalar function), $\mathbf{C V}$ (constant vector), VF (vector function), or ND (not defined). No reasons need be given. Assume:
\mathbf{u} is a fixed unit vector in \mathbb{R}^{3}
\mathbf{v} is a fixed vector in \mathbb{R}^{3}
$g(x, y, z)$ is a fixed but arbitrary differentiable function whose domain is \mathbb{R}^{3}
$\mathbf{F}(x, y, z)$ is a fixed but arbitrary differentiable vector field $\mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$
C is the line from the point $(0,0,0)$ to $(5,6,7)$
S is the surface of the unit sphere, centered at the origin and oriented outward
B is the region inside the unit sphere S
$\mathbf{u} \cdot \mathbf{v}$ \qquad
$\mathbf{u} \times \mathbf{v}$ \qquad
$(\mathbf{u} \cdot \mathbf{v}) \mathbf{v}$ \qquad
The directional derivative of g in the \mathbf{u} direction, based at the point $(1,2,3)$ \qquad
∇g \qquad
$\nabla \mathbf{F}$ \qquad
div g \qquad
$\operatorname{div} \mathbf{F}$ \qquad
curl g \qquad
$\operatorname{curl} \mathbf{F}$ \qquad
curl $\mathbf{F}+\nabla g$ \qquad
$\int_{C} \nabla g \cdot d \mathbf{s}$ \qquad
$\iint_{S} \mathbf{F} \cdot d \mathbf{S}$ \qquad
$\iiint_{B} \operatorname{div} \mathbf{F} d V$ \qquad
$\iiint_{B} \operatorname{curl} \mathbf{F} \cdot d \mathbf{S}$ \qquad
2. (15 points) Use Green's Theorem to evaluate $\int_{C} \mathbf{F} \cdot d \mathbf{s}$, where $\mathbf{F}(x, y)=\left(\sqrt{x}+y^{2}, x^{2}+\sqrt{y}\right)$ and where C is the curve $y=\sin (x)$ from $(0,0)$ to $(\pi, 0)$ and the line segment from $(\pi, 0)$ to $(0,0)$.
3. (25 points) Let $M(x, y, z)=\left(M_{1}(x, y, z), M_{2}(x, y, z)\right)$ where $M_{1}(x, y, z)=x e^{y-z^{2}}$ and $M_{2}(x, y, z)=$ $\cos (y z)$, and let $\Phi(u, v)=(x(u, v), y(u, v), z(u, v))$ where $x(u, v)=2 u v, y(u, v)=u-v$, and $z(u, v)=u+v$.
(a) Find $\frac{\partial M}{\partial(x, y, z)}$, the matrix of partial derivatives of M with respect to x, y, and z.
(b) Find $\frac{\partial \Phi}{\partial(u, v)}$, the matrix of partial derivatives of Φ with respect to u and v.
(c) Express $\frac{\partial M}{\partial(u, v)}$ in terms of $\frac{\partial M}{\partial(x, y, z)}$ and $\frac{\partial \Phi}{\partial(u, v)}$.
(d) Find $\frac{\partial M_{1}}{\partial v}(3,-1)$.
4. (10 points)
(a) Is $\mathbf{F}(x, y, z)=\left(x^{3}-3 x y^{2}, y^{3}-3 x^{2} y, z\right)$ a conservative vector field? Explain.
(b) Suppose \mathbf{G} is a conservative vector field in the plane such that

$$
\begin{aligned}
& \int_{\mathbf{c}} \mathbf{G} \cdot d \mathbf{s}=4 \\
& \int_{A B C} \mathbf{G} \cdot d \mathbf{s}=6 \\
& \int_{A O} \mathbf{G} \cdot d \mathbf{s}=2 \\
& \int_{O F} \mathbf{G} \cdot d \mathbf{s}=-1
\end{aligned}
$$

Find
(i) $\int_{\mathbf{d}} \mathbf{G} \cdot d \mathbf{s}=$
(ii) $\int_{C E F} \mathbf{G} \cdot d \mathbf{s}=$
(iii) $\int_{B C} \mathbf{G} \cdot d \mathbf{s}=$
5. (15 points) Let

$$
f(x, y)=\frac{\sin ^{2}(x y-2)}{x y-2}
$$

(a) Find

$$
\lim _{(x, y) \rightarrow(3,1)} f(x, y)
$$

(b) Where is $f(x, y)$ defined?
(c) Find

$$
\lim _{(x, y) \rightarrow(1,2)} f(x, y)
$$

6. (20 points) Calculate $\iiint_{E} y z d V$, where E is the region above the plane $z=0$, below the plane $z=y$, and inside the cylinder $x^{2}+y^{2}=1$.
7. (20 points) Find the point(s) on the surface $z=2 x y+4$ closest to the origin.
8. (15 points)
(a) Determine the maximum rate of change of the pressure function $f(x, y, z)=\frac{x}{y}+\frac{y}{z}+\frac{z}{x}$ at the point $P=(1,2,-1)$, and the direction in which it occurs.
(b) At what point Q is the maximum rate of change of $g(x, y, z)=x^{2} y z$ in the direction $\mathbf{i}-\mathbf{j}-\mathbf{k}$?
9. (25 points)
(a) Find the linear transformation T that maps the unit square $[0,1] \times[0,1]$ to the parallelogram determined by $\mathbf{x}=(1,-3)$ and $\mathbf{y}=(2,-1)$.
(b) Let $S(u, v)=\left(v, 1-u^{2}\right)$. Sketch the image of $D=[-1,1] \times[-1,1]$ under S.
(c) Is S one-to-one on D ? Explain.
(d) Is there a domain D^{*} such that $S: D^{*} \rightarrow D^{*}$ is onto? If so, find such a D^{*} and explain.
10. (20 points) Evaluate \iint_{S} curl $\mathbf{F} \cdot d \mathbf{S}$, where $\mathbf{F}(x, y, z)=\left(\frac{x}{2}, y, x^{y}\right)$ and S is the union of the half ellipsoid $\left(\frac{x}{2}\right)^{2}+y^{2}+\left(\frac{z-2}{3}\right)^{2}=1$ for $z \geq 2$ and the elliptical cylinder $\left(\frac{x}{2}\right)^{2}+y^{2}=1$ for $0 \leq z \leq 2$, with outward pointing normal.
11. (20 points) Evaluate $\iint_{S} \mathbf{F} \cdot d \mathbf{S}$ for $\mathbf{F}(x, y, z)=(2 x+3 y) \mathbf{i}-(4 y+3 z) \mathbf{j}+4 z \mathbf{k}$, where S consists of the paraboloid $z=x^{2}+y^{2}$ with $0 \leq z \leq 1$ and the disk $0 \leq x^{2}+y^{2} \leq 1$ with $z=1$, and outward pointing normal.
