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Abstract. We consider a 2D time-dependent quantum system of N -bosons with harmonic
external confining and attractive interparticle interaction in the Gross-Pitaevskii scaling. We
derive stability of matter type estimates showing that the k-th power of the energy controls
the H1 Sobolev norm of the solution over k-particles. This estimate is new and more diffi cult
for attractive interactions than repulsive interactions. For the proof, we use a version of the
finite-dimensional quantum di Finetti theorem from [49]. A high particle-number averaging
effect is at play in the proof, which is not needed for the corresponding estimate in the
repulsive case. This a priori bound allows us to prove that the corresponding BBGKY
hierarchy converges to the GP limit as was done in many previous works treating the case
of repulsive interactions. As a result, we obtain that the focusing nonlinear Schrödinger
equation is the mean-field limit of the 2D time-dependent quantum many-body system with
attractive interatomic interaction and asymptotically factorized initial data. An assumption
on the size of the L1-norm of the interatomic interaction potential is needed that corresponds
to the sharp constant in the 2D Gagliardo-Nirenberg inequality though the inequality is not
directly relevant because we are dealing with a trace instead of a power.
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1. Introduction

Bose-Einstein condensate (BEC) is a state of matter occurring in a dilute gas of bosons
(identical particles with integer spin) at very low tempertures, where all particles fall into
the lowest quantum state. This form of matter was predicted in 1924 by Einstein, inspired
by calculations for photons by Bose. In 1995, BEC was first produced experimentally by
Cornell and Wieman [4] at the University of Colorado at Boulder NIST—JILA lab, in a gas of
rubidium cooled to 20 nK. Shortly thereafter, Ketterle [41] at MIT demonstrated important
properties of a BEC of sodium atoms. For this work, Cornell, Weiman, and Ketterle received
the 2001 Nobel Prize in Physics1. Since then, this new state of matter has attracted a lot of
attention in physics and mathematics as it can be used to explore fundamental questions in
quantum mechanics, such as the emergence of interference, decoherence, superfluidity and
quantized vortices.
Let us lay out the quantum mechanical description of the N -body problem. Let t ∈ R be

the time variable and rN = (r1, . . . , rN) ∈ RnN be the position vector of N particles in Rn.
The dynamic of N bosons are described by a symmetric N -body wave function ψN(rN , t)

evolving according to the linear N -body Schrödinger equation

i∂tψN = HNψN

with Hamiltonian HN given by

(1.1) HN = −
N∑
j=1

∆rj +
1

N

∑
1≤i<j≤N

NnβV (Nβ(ri − rj)) +
N∑
j=1

W (rj)

where V represents the interparticle attraction/repulsion and W represents the external
confining potential.
Informally, BEC means that, up to a phase factor depending only on t, the N -body wave

function nearly factorizes

(1.2) ψN(rN , t) ≈
N∏
j=1

ϕ(rj, t)

In the simplest cases, where is it assumed that interactions between condensate particles are
of the contact two-body type and also anomalous contributions to self-energy are neglected,
it is widely believed, based upon heuristic and formal calculations, that (1.2) is valid and the
one-particle state ϕ evolves according to the nonlinear Schrödinger equation (NLS)

(1.3) i∂tϕ = (−∆ +W (r))ϕ+ 8πµ|ϕ|2ϕ

This is one of the main motivations for studying the NLS equation, and there is now a
wide body of literature on well-posedness [7, 61], the long-time asymptotics of global-in-time
solutions [43], the possibility and structure of finite-time blow-up solutions [60], and the
stability and dynamics of coherent solutions called solitary waves [63, 5]. In particular,
blow-up and solitary waves only exist in the case of µ < 0, called the focusing case.

1http://www.nobelprize.org/nobel_prizes/physics/laureates/2001/press.html.

http://www.nobelprize.org/nobel_prizes/physics/laureates/2001/press.html
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Before proceeding, let us remark on the choice of scaling in the interparticle interaction
term. In 2D, it is taken as N−1VN(r) in (1.1), where VN(r) = N2βV (Nβr), for β > 0.2 This
scaling is intended to capture the so-called Gross-Pitaevskii limit, in which the ground-state
asymptotics are described by the one-particle Gross-Pitaevskii (GP) energy functional

E(ϕ) =

∫
(|∇ϕ|2 +W |ϕ|2 + 4πµ|ϕ|4)

In the case of repulsive interactions µ > 0, in the stationary case, the ground state energy
asymptotics in the 2D Gross-Pitaevskii limit from the 2D N -body quantum setting, are
discussed in [50, Theorem 6.5]. It is found that aN , the 2D scattering length of the microscopic
interaction, should scale as aN = N−1/2e−N/2µ. The scattering length associated to a potential
is the radius of the hard-sphere potential that gives the same low-wave number phase
shifts as the given potential. A precise definition in 2D is given in [50, §9.3]. If we take
VN (x) = N2βV (Nβx), then by [50, Corollary 9.4] with λ = (

∫
V )N−1 and R = N−β, we have

(1.4) aN ∼ N−β exp

(
−4πN∫

V
(1 + η(N))

)
where η(N)→ 0 as N →∞. Thus β = 1

2
gives the correct N -dependence for aN . Other values

of β could be produced by modifying N2βV (Nβr) to (1 + c lnN
N

)N2βV (Nβr) for appropriate
c, and thus changing β corresponds to a lower-order correction in the scaling.3 Moreover,
the analysis shows that we have µ = 1

8π

∫
V . The corresponding time-dependent problem,

for µ > 0, was studied by Kirkpatrick-Schlein-Staffi lani [44] in the periodic setting and by
X.Chen [15] in the trapping setting(W 6= 0).
Another way to obtain a 2D limit is to start with a 3D quantum N -body system with

strong confining in one-dimension (say the z-direction). In the stationary repulsive case, this
was explored by Schnee-Yngvason [54]. If external confining in the z-direction is imposed to
give the system an effective width ω−1/2, then one should take the 3D interaction potential
to be (N

√
ω)3β−1V ((N

√
ω)βr), where r = (x, y, z), in place of the 2D interaction potential

N2β−1V (Nβr), where r = (x, y), and take ω →∞ as N →∞. In the repulsive case (µ > 0),
the corresponding time-dependent problem was studied by X.Chen-Holmer [17]. We will not
consider the dimensional reduction problem here.
As indicated earlier, one expects that the nonlinear coeffi cent µ in (1.3) is given by

µ = 1
8π

∫
V , or expressed in terms of the scattering length aN of N−1VN(r), the relation is

µ = −N [ln(Na2N)]−1.4 The scattering length can be adjusted experimentally by the method
of Feshbach resonance, which exploits the hyperfine structure of the atoms in the condensate.
Specifically, we see that the sign of µ depends on

∫
V , and that

∫
V < 0 leads to focusing NLS

2We consider the β > 0 case solely in this paper. For β = 0 (Hartree dynamic), see [34, 28, 47, 53, 51, 37,
38, 14, 2, 3].

3We note, in particular, that, unlike the 3D case, nothing special happens at β = 1. Exponential in N
scaling would allow one to shift the value of µ, but still would not yield the 2D scattering length of V itself.

4Although the definition of scattering length in [50, §9.3] is given in the case of repulsive potentials V ≥ 0,
it can be adjusted to the case of attractive potentials V ≤ 0, in which the requirement that ψ(x) = ln |x|a for

|x| → ∞ is replaced with ψ(x) = − ln |x|a for |x| → ∞. Then (1.4) is changed by the reciprocal, so we still
obtain an exponentially small quantity, rather than an unphysical exponentially large quantity in N .
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with µ < 0. BEC with µ < 0 has been produced in laboratory experiments [24, 26, 59, 42] in
different contexts, and solitary waves and blow-up have been observed. Thus there is strong
motivation for determining whether the mean-field approximation (1.3) is theoretically valid
in different contexts.
We are concerned here with precise conditions under which (1.2) and (1.3) hold, and the

rigorous demonstration of this result. For our quantitive formulation of the N →∞ limit,
we use the BBGKY framework. Specifically, let γN be the projection operator in L

2(R2N)

onto the one-dimensional space spanned by ψN . The kernel is

(1.5) γN(t, rN , r
′
N) = ψN(t, rN)ψN(t, r′N)

Let γ(k)N denote the trace of γN over the last (N − k) particles, called the k-th marginal
density. Then γ(k)N is a trace-class operator on L2(R2k) with kernel given by

(1.6) γ
(k)
N (t, rk, r

′
k) =

∫
rN−k

γN(t, rk, rN−k; r
′
k, rN−k) drN−k

In this language, (1.2) becomes the informal statement

γ
(k)
N (t, rk, r

′
k) ≈

k∏
j=1

ϕ(rj, t)ϕ(r′j, t)

Our main result demonstrates that this holds, in the sense of convergence as N → ∞ in
the trace norm. Our result covers the focusing case in 2D, also known as the mass-critical
focusing case in the NLS literature. Previous results either dealt with the defocusing case in
dimensions 1,2, or 3, or the focusing case in dimension 1 (obtained either as limit from 1D or
3D quantum many-body dynamics).

Definition 1. We denote Cgn the sharp constant of the 2D Gagliardo—Nirenberg estimate:

(1.7) ‖φ‖L4 6 Cgn ‖φ‖
1
2

L2 ‖∇φ‖
1
2

L2 .

Theorem 1.1 (Main Theorem). Assume that the focusing pair interaction V is an even
nonpositive Schwartz class function such that ‖V ‖L1 < 2α

C4gn
for some α ∈ (0, 1). Let ψN (t,xN)

be the N − body Hamiltonian evolution eitHNψN(0), where

(1.8) HN =

k∑
j=1

(
−4xj + ω2 |xj|2

)
+

1

N

∑
i<j

N2βV (Nβ(xi − xj))

for some nonzero ω ∈ R/{0} and for some β ∈
(
0, 1

6

)
, and let

{
γ
(k)
N

}
be the family of

marginal densities associated with ψN . Suppose that the initial datum ψN(0) verifies the
following conditions:
(a) the initial datum is normalized, that is

‖ψN(0)‖L2 = 1,

(b) the initial datum is asymptotically factorized, in the sense that,

(1.9) lim
N→∞

Tr
∣∣∣γ(1)N (0, x1;x

′
1)− φ0(x1)φ0(x′1)

∣∣∣ = 0,
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for some one particle wave function φ0 s.t.
∥∥∥(−4x + ω2 |x|2

) 1
2 φ0

∥∥∥
L2(R)

<∞.
(c) initially, each particle’s energy, though may not be positive, is bounded above

(1.10) sup
N

1

N
〈ψN(0), HNψN(0)〉 <∞.

Then ∀t > 0, ∀k > 1, we have the convergence in the trace norm or the propagation of chaos
that

lim
N→∞

Tr

∣∣∣∣∣γ(k)N (t,xk;x
′
k)−

k∏
j=1

φ(t, xj)φ(t, x′j)

∣∣∣∣∣ = 0,

where φ(t, x) is the solution to the 2D focusing cubic NLS

i∂tφ =
(
−4x + ω2 |x|2

)
φ− b0 |φ|2 φ in R2+1(1.11)

φ(0, x) = φ0(x)

and the coupling constant b0 =
∣∣∫
R2 V (x)dx

∣∣ .
Theorem 1.1 is equivalent to the following theorem.

Theorem 1.2 (Main Theorem). Assume that the focusing pair interaction V is an even
nonpositive Schwartz class function such that ‖V ‖L1 < 2α

C4gn
for some α ∈ (0, 1). Let ψN (t,xN)

be the N − body Hamiltonian evolution eitHNψN (0) with HN given by (1.8) for some nonzero

ω ∈ R/{0} and for some β ∈ (0, 1/6) , and let
{
γ
(k)
N

}
be the family of marginal densities

associated with ψN . Suppose that the initial datum ψN(0) is normalized and asymptotically
factorized in the sense of (a) and (b) in Theorem 1.1 and verifies the following energy
condition:
(c’) there is a C > 0 independent of N or k such that

(1.12)
〈
ψN(0), Hk

NψN(0)
〉
< CkNk, ∀k > 1,

though the quantity
〈
ψN(0), Hk

NψN(0)
〉
may not be positive.

Then ∀t > 0, ∀k > 1, we have the convergence in the trace norm or the propagation of
chaos that

lim
N→∞

Tr

∣∣∣∣∣γ(k)N (t,xk;x
′
k)−

k∏
j=1

φ(t, xj)φ(t, x′j)

∣∣∣∣∣ = 0,

where φ(t, x) is the solution to the 2D focusing cubic NLS (1.11).

It follows from the fact that ψN evolves according to i∂tψN = HNψN and the definition
(1.5), (1.6) of the marginal densities γ(k)N that

i∂tγ
(k)
N =

k∑
j=1

[
−4xj +ω2 |xj|2 , γ(k)N

]
+

1

N

∑
16i<j6k

[
VN(xi − xj), γ(k)N

]

+
N − k
N

k∑
j=1

Trk+1

[
VN(xj − xk+1), γ(k+1)N

]
,
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This coupled sequence of equations is called the BBGKY hierarchy. The use of the BBGKY
hierarchy in the quantum setting was suggested by Spohn [58] and has been employed in
rigorous work by Adami, Golse, & Teta [1] and Elgart, Erdös, Schlein, & Yau [27, 29, 30, 31, 32].
The latter series of works rigorously derives the 3D cubic defocusing NLS from a 3D time-
dependent quantum many-body system with repulsive pair interactions and no trapping
(ω = 0). Their program consists of two main steps.5 First, they derive H1-energy type a
priori estimates for the N -body Hamiltonian from which a compactness property, for each k,
of the sequence { γ(k)N }+∞N=1 follows, yielding limit points γ(k) solving the 3D Gross-Pitaevskii
hierarchy

(1.13) i∂tγ
(k) +

k∑
j=1

[
4rk , γ

(k)
]

= b0

k∑
j=1

Trrk+1 [δ(rj − rk+1), γ(k+1)], for all k ≥ 1 .

Second, they show that (1.13) has a unique solution which satisfies the H1-energy type a
priori estimates obtained in the first step. Since a compact sequence with a unique limit point
is, in fact, a convergent sequence, it follows that (in an appropriate weak sense) solutions to
the BBGKY hierarchy γ(k)N converge to solutions to the GP hierarchy γ(k). Moreover, it is
easily verified that a tensor product of solutions of NLS (1.3) solves the GP hierarchy, and
hence this is the unique solution.
In the defocusing literature, a major diffi culty is that the uniqueness theory for the

hierarchy (1.13) is surprisingly delicate due to the fact that it is a system of infinitely many
coupled equations over an unbounded number of variables and there has been much work
on it. Klainerman & Machedon [45] gave a Strichartz type uniqueness theorem using a
collapsing estimate originating from the multilinear Strichartz estimates and a board game
argument inspired by the Feynman graph argument in [30]. The method by Klainerman &
Machedon [45] was taken up by Kirkpatrick, Schlein, & Staffi lani [44], who derived the 2D
cubic defocusing NLS from the 2D time-dependent quantum many-body system; by T. Chen
& Pavlovíc [10], who considered the 1D and 2D 3-body repelling interaction problem; by
X. Chen [15, 16], who investigated the defocusing problem with trapping in 2D and 3D; by
X. Chen & Holmer [17], who proved the effectiveness of the defocusing 3D to 2D reduction
problem, and by T.Chen & Pavlovíc [11] and X.Chen & Holmer [16, 18, 21], who proved
the Strichartz type bound conjectured by Klainerman & Machedon. Such a method has
also inspired the study of the general existence theory of hierarchy (1.13), see [12, 9, 35, 57].
Recently, using a version of the quantum de Finetti theorem from [48]6, T.Chen, Hainzl,
Pavlovíc, & Seiringer [8] provided an alternative proof to the uniqueness theorem in [30] and
showed that it is an unconditional uniqueness result in the sense of NLS theory. With this
method, Sohinger derived the 3D defocusing cubic NLS in the periodic case [56]. See also
[22, 40].
However, for the focusing case, things are different. How to obtain the needed H1-

energy type a priori estimates is the central question. To be precise, without such a
priori estimates, one cannot check the requirements of the various uniqueness theorems

5See [6, 36, 52, 46] for different approaches.
6See also [3, 2].
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[30, 45, 44, 15, 16, 56, 8, 22, 40] at all.7 It is already highly nontrivial and may not be possible
to even prove the weaker type II stability of matter estimate

(1.14) 〈ψN , HNψN〉 > −CN for all ψN ∈ L2s(RnN)

when HN is given by (1.1) with V < 0 while it is obviously true when V > 0. The first
complete work on the focusing problem was done by X.Chen and Holmer [19, 20] for the
time-dependent 1D problem. The key is to explore the structure of the 2-body operator

(1.15) H+ij = −∆ri +W (ri)−∆rj +W (rj) +
N − 1

N
NnβV (Nβ(ri − rj))

generated in the decomposition of HN . Such a technique was later used independently
by Lewin, Nam, & Rougerie in [49], where they investigated the ground state problem in
the focusing setting. The main portion of this paper is devoted to this problem in 2D. In
particular, we prove

Theorem 1.3. Consider the focusing many-body Hamiltonian

HN =
k∑
j=1

(
−4xj + ω2 |xj|2

)
+

1

N

∑
i<j

N2βV (Nβ(xi − xj)),

in 2D. Assume ω > 0, β < 1
6
, and ‖V ‖L1 < 2α

C4gn
for some α ∈ (0, 1), then let c0 = min(1−α√

2
, 1
2
),

we have ∀k = 0, 1, ..., there is an N0(k) > 0 such that

(1.16)
〈
ψN ,

(
N−1HN + 1

)k
ψN

〉
> ck0

∥∥S(k)ψN∥∥2L2 ,
for all N > N0(k) and for all ψN ∈ L2s(R2N). Here

S(k) =
k∏
j=1

Sj

and S2j is the Hermite operator −4xj + ω2 |xj|2.

The diffi culty of proving Theorem 1.3 is self-evident. In the 2D setting in which the kinetic
energy, effectively the H1 norm, cannot control VN , effectively a Dirac δ-mass8, not only
Theorem 1.3 provides stability of matter, it also proves regularity. The key to the proof, as
we will explain later, is to make use of a large N averaging effect which is revealed via a
clever application of a finite dimensional quantum de Finette theorem in [49].

7In fact, one of the authors of [27, 29, 30, 31, 32] remarked the a priori bound was the most delicate part
in the defocusing case as well when the results were revisited in [6].

8Different from the limit NLS in which the L4 norm is easily controlled in H1, in the N -body setting, one
has to control a trace with H1.
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1.1. Organization of the paper. As mentioned before, the main portion of this paper is
devoted to proving Theorem 1.3. We do so in §2. We will first prove the k = 1 case:

(1.17)
〈
ψN ,

(
N−1HN + 1

)
ψN
〉
> (1− α) ‖S1ψN‖

2
L2

which is Theorem 2.1 in §2.1.
We remark that not only the proof of Theorem 2.1 departs totally from its analogues in

the previous work, its underlying machinery is also significantly different. Theorem 2.1 works
because of a large N averaging effect not observed before. To explain this fact, consider the
general Hamiltonian (1.1) and let H+ij be defined as in (1.15), then by symmetry,〈

ψN ,
(
N−1HN + 1

)
ψN
〉
xN

= 〈ψN , (2 +H+12)ψN〉xN ,

that is, (1.17) is equivalent to

(1.18) 〈ψN , (2 +H+12)ψN〉 > C
∥∥∥(−∆r1 +W (r2))

1
2 ψN

∥∥∥2
L2
.

In all the defocusing work [1, 10, 15, 16, 17, 27, 29, 30, 32, 31, 44, 56], estimates like (1.18) are
automatically true because V > 0. In the previous focusing work [19, 20], it takes substantial
work to prove the similar estimates but they actually do not rely on the fact that ψN is
a N -body bosonic wave function in the sense that they hold even if one replaces ψN by
some f(x1, x2) in (1.18). However, Theorem 2.1 requires that ψN is a N -body bosonic wave
function. In fact, when V < 0, in 2D, the quantity 〈f, (2 +H+12) f〉 is not even bounded
below, because of the δ-function emerging from VN . Hence, we are observing a large N
averaging effect, or more precisely, "though VN gets more singular as N →∞, larger N beats
it.", as we will see in the proof.9 Moreover, this is the only energy estimate in the "nD to
nD" 10 literature which requires the trapping ω 6= 0 at the moment.
Based on the k = 1 case, we then prove the k > 1 case in §2.2 with a delicate computation

using the 2-body operator. In §2.3, by giving a counter example, we show that with the
current technique, one can not reach a higher β.
With Theorem 1.3 established, we prove Theorems 1.1 and 1.2 in §3. Though the technique

in §3 is standard by now, this is the first time the derivation of the trapping case is written
down without using the lens transform in [15, 16, 19] and it simplifies the argument.

1.2. Acknowledgements. X.C. was supported in part by NSF grant DMS-1464869 and
J.H. was supported in part by NSF grant DMS-1500106.

2. Stability of Matter / Energy Estimates for Focusing Quantum
Many-body System

In this section, we prove stability of matter / energy estimate (1.16).11

9See Remark 3.
10Here, "nD to nD" means "deriving nD NLS from nD N -body dynamic".
11For the defocusing case (V > 0) in which there is no need to worry about particles focusing to a point, it

certainly makes sense to only call estimates like (1.16) "energy estimates". However, that is obviously not
the case when V < 0. Moreover, (1.16) does have a similar form with the stability of matter estimates like
(1.14). Hence we use the word "stability of matter / energy estimates" here.
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2.1. Stability of Matter when k = 1.

Theorem 2.1 (Stability of Matter). Assume ω > 0, β < 1
6
, and ‖V ‖L1 < 2α

C4gn
for some

α ∈ (0, 1), then ∀C0 > 0, there exists an N0 > 0 such that〈
ψN ,

(
N−1HN + C0

)
ψN
〉
> (1− α) ‖S1ψN‖

2
L2 ,

for all N > N0 and for all ψN ∈ L2s(R2N ). Here, N0 grows to infinity as C0 approaches 0. In
particular, the N-body system is stable provided N is larger than a threshold.

Remark 1. In the previous focusing work [19, 20], there is a positive lower bound for the C0
while there is no such requirement in Theorem 2.1 as long as C0 > 0.

To prove Theorem 2.1, we adopt the notation that: for any function f , write

fNij = N2βf(Nβ(xi − xj)).

The key of the proof of Theorem 2.1 is the following theorem.

Theorem 2.2. Define

(2.1) Hij = S2i + S2j +
N − 1

N
VNij.

Assume ω > 0, β < 1
6
, and ‖V ‖L1 < 2α

C4gn
for some α ∈ (0, 1), then ∀C0 > 0, there exists an

N0 > 0 such that

〈ψN , (2C0 +H12)ψN〉 > 2 (1− α) ‖S1ψN‖
2
L2 ,

for all N > N0 and for all ψN ∈ L2s(R2N). Here, N0 grows to infinity as C0 approaches 0.

Proof of Theorem 2.1 assuming Theorem 2.2. We decompose the Hamiltonian HN into

(2.2) N−1HN + C0 =
1

2N(N − 1)

∑
i,j=1,...,N

i 6=j

(2C0 +Hij) .

Hence 〈
ψN ,

(
N−1HN + C0

)
ψN
〉

=
1

2N(N − 1)

∑
i,j=1,...,N

i 6=j

〈ψN , (2C0 +Hij)ψN〉

=
1

2N(N − 1)

∑
i,j=1,...,N

i 6=j

〈ψN , (2C0 +H12)ψN〉

> (1− α) ‖S1ψN‖
2
L2 .

�

We then turn our attention onto the proof of Theorem 2.2. We will prove the following
proposition.
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Proposition 2.1. Assume ω > 0, β < 1
6
, and ‖V ‖L1 < 2α

C4gn
for some α ∈ (0, 1), define the

operator

Hij,α = αS2i + αS2j +
N − 1

N
VNij.

Then ∀C0 > 0, there exists an N0 > 0 such that

2C0 +Hij,α > 0, ∀N > N0.

Here, N0 grows to infinity as C0 approaches 0.

Proof. See §2.1.1. �
In fact, assuming Proposition 2.1, then

〈ψN , (2C0 +H12)ψN〉 = (1− α)
〈
ψN ,

(
S21 + S22

)
ψN
〉

+ 〈ψN , (2C0 +H12,α)ψN〉
> 2 (1− α) ‖S1ψN‖

2
L2 .

Hence we are left with the proof of Proposition 2.1.

2.1.1. Proof of Proposition 2.1. Define the Littlewood-Paley projectors (eigenspace projectors)
by

P j
6M = χ(0,M ] (Sj) ,

P j
>M = χ(M,∞) (Sj) ,

P
(k)
6M =

k∏
j=1

P j
6M , P

(k)
>M =

k∏
j=1

P j
>M

We will need the following lemmas.

Lemma 2.1. 12Let Hij,α be defined as in Proposition 2.1, then, for all ε ∈ (0, 1), as long as

M >
√

3‖V ‖∞
2α

Nβ

ε
, we have

H12,α > P
(2)
6MH12,αP

(2)
6M − 2ε2P

(2)
6M |VN12|P

(2)
6M .

Proof. We write

S2j =
(
P
(2)
6M + P

(2)
>M

)
S2j

(
P
(2)
6M + P

(2)
>M

)
= P

(2)
6MS

2
jP

(2)
6M + P

(2)
>MS

2
jP

(2)
>M

because
P
(2)
>MS

2
jP

(2)
6M = P

(2)
6MS

2
jP

(2)
>M = 0.

We then write

VN12 =
(
P
(2)
6M + P

(2)
>M

)
VN12

(
P
(2)
6M + P

(2)
>M

)
= P

(2)
6MVN12P

(2)
6M + P

(2)
>MVN12P

(2)
>M + P

(2)
>MVN12P

(2)
6M + P

(2)
6MVN12P

(2)
>M

We estimate the high-high terms by〈
ψN , P

(2)
>MVN12P

(2)
>MψN

〉
> −N2β ‖V ‖∞

∥∥∥P (2)>MψN

∥∥∥2
L2
.

12This lemma is essentially [49, Lemma 3.6].



2D CUBIC FOCUSING NLS FROM 2D N -BODY QUANTUM 11

and the high-low and the low-high terms by Cauchy-Schwarz,〈
ψN , P

(2)
>MVN12P

(2)
6MψN

〉
> − 1

ε2

〈
P
(2)
>MψN , |VN12|P

(2)
>MψN

〉
− ε2

〈
P
(2)
6MψN , |VN12|P

(2)
6MψN

〉
> −N

2β ‖V ‖∞
ε2

∥∥∥P (2)>MψN

∥∥∥2
L2
− ε2

〈
P
(2)
6MψN , |VN12|P

(2)
6MψN

〉
.

Hence

H12,α > P
(2)
6MH12,αP

(2)
6M + P

(2)
>MC0P

(2)
>M + αP

(2)
>MS

2
1P

(2)
>M + αP

(2)
>MS

2
2P

(2)
>M

−P (2)>M ‖V ‖∞ (1 +
2

ε2
)N2βP

(2)
>M − 2ε2P

(2)
6M |VN12|P

(2)
6M .

Whenever M >
√

3‖V ‖∞
2α

Nβ

ε
, we have

αP
(2)
>MS

2
1P

(2)
>M + αP

(2)
>MS

2
2P

(2)
>M − P

(2)
>M ‖V ‖∞ (1 +

2

ε2
)N2βP

(2)
>M

> P
(2)
>M2αM2P

(2)
>M − P

(2)
>M ‖V ‖∞ (1 +

2

ε2
)N2βP

(2)
>M > 0.

Hence

H12,α > P
(2)
6MH12,αP

(2)
6M − 2ε2P

(2)
6M |VN12|P

(2)
6M

as claimed. �

Lemma 2.2 (Finite dimensional quantum de Finetti [23, Theorem II.8] or [49, Lemma

3.4]). 13Assume
{
γ
(k)
N

}N
k=1

is the marginal density generated by a N-body wave function

ψN ∈ L2s(R2N). Then there is a probability measure dµN supported on the unit sphere of
P6M (L2s(R2)) such that

Tr

∣∣∣∣∣P (2)6Mγ(2)N P
(2)
6M −

∫
S(P6M (L2s(R2)))

∣∣φ⊗2〉 〈φ⊗2∣∣ dµN(φ)

∣∣∣∣∣ 6 8DM

N

where DM is the dimension of P6M (L2s(R2)).

Remark 2. Lemma 2.2 is the only place in which this paper needs ω > 0. It is a major open
problem to prove Lemma 2.2 without assuming a finite dimensional Hilbert space.

Lemma 2.3. If ‖V ‖L1 < 2α
C4gn
, then there exists ε which depends solely on ‖V ‖L1 such that,

for all φ ∈ L2(R2) with ‖φ‖L2 = 1, we have

Eε(φ) =
〈
φ(x1)φ(x2), H

ε
12,αφ(x1)φ(x2)

〉
> 0

where

(2.3) Hε
12,α = αS21 + αS22 +

N − 1

N
VN12 − 2ε2 |VN12|

13To be precise, this version we are using is [49, Lemma 3.4]. If one uses [23, Theorem II.8] to prove it,
one will have a 16 instead of a 8. The optimal coeffi cient is important in the literature of de Finetti theorems,
but it does not matter for our application here.
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Proof. We first compute directly that

Eε(φ) = 2α

∫
|Sφ|2 dx+

N − 1

N

∫
VN12 |φ(x1)φ(x2)|2 dx1dx2

−2ε2
∫
|VN12| |φ(x1)φ(x2)|2 dx1dx2.

Apply Cauchy-Schwarz,

> 2α

∫
|Sφ|2 dx− (1 + 2ε2)

∥∥|φ|2∥∥
L2

∥∥VN ∗ |φ|2∥∥L2 .
Use Young’s convolution inequality,

> 2α

∫
|Sφ|2 dx− (1 + 2ε2) ‖VN‖L1

∥∥|φ|2∥∥
L2

∥∥|φ|2∥∥
L2

= 2α

∫
|Sφ|2 dx− (1 + 2ε2) ‖V ‖L1 ‖φ‖

4
L4 .

With estimate (1.7), we get to

Eε(φ) > 2α

∫
|Sφ|2 dx− (1 + 2ε2)C4gn ‖V ‖L1 ‖∇φ‖

2
L2 .

Hence, when ‖V ‖L1 < 2α
C4gn
, we can select ε small enough so that

Eε(φ) > 0.

�

With Lemmas 2.1 to 2.3, we now prove Proposition 2.1.

Proof of Proposition 2.1. The trick is to notice the equaltiy〈
P
(2)
6MψN , H

ε
12,αP

(2)
6MψN

〉
= TrHε

12,αP
(2)
6Mγ

(2)
N P

(2)
6M

where Hε
12,α is defined in (2.3). It helps because

〈ψN , (2C0 +H12,α)ψN〉

> 2C0 +
〈
P
(2)
6MψN , H

ε
12,αP

(2)
6MψN

〉
= 2C0 + TrHε

12,αP
⊗2
6Mγ

(2)
N P

(2)
6M

provided that M >
√

3‖V ‖∞
2α

Nβ

ε
, by Lemma 2.1.

Rewrite

TrHε
12,αP

(2)
6Mγ

(2)
N P

(2)
6M

= Tr

∫
S(P6M (L2s(R2)))

Hε
12,α

∣∣φ⊗2〉 〈φ⊗2∣∣ dµN(φ)

+

[
TrHε

12,αP
(2)
6Mγ

(2)
N P

(2)
6M −

∫
S(P6M (L2s(R2)))

Hε
12,α

∣∣φ⊗2〉 〈φ⊗2∣∣ dµN(φ)

]
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We can use the inequality TrAB 6 ‖A‖op Tr |B| to get to

〈ψN , (2C0 +H12,α)ψN〉

> 2C0 +

∫
S(P6M (L2s(R2)))

Eε(φ)dµN(φ)

−
∥∥Hε

12,α

∥∥
op

Tr

∣∣∣∣∣P (2)6Mγ(2)N P
(2)
6M −

∫
S(P6M (L2s(R2)))

∣∣φ⊗2〉 〈φ⊗2∣∣ dµN(φ)

∣∣∣∣∣
Now fix ε as in Lemma 2.3, apply Lemma 2.3 on the second term and Lemma 2.2 on the
third term, it becomes

〈ψN , (2C0 +H12,α)ψN〉 > 2C0 −
∥∥Hε

12,α

∥∥
op

8DM

N
.

On the one hand, with frequency smaller than M , the Hermite operator in 2D has at most
M4 eigenfunctions, that is

DM 6
(
M2
)2 6 CN4β

ε4
.

On the other hand,∥∥Hε
12,α

∥∥
op
6 2αM2 + (1 + 2ε2) ‖V ‖L∞ N2β 6 CN2β

ε2
.

Thus we conclude that

〈ψN , (2C0 +H12,α)ψN〉 > 2C0 −
CN6β

N
> 0

provided that N is large enough and β < 1
6
. Thence we have completed the proof of

Proposition 2.1, concluded Theorem 2.2, and obtained Theorem 2.1. �

Remark 3. The above proof is exactly what we meant by saying "though VN gets more
singular as N →∞, but larger N beats it." in the introduction.

2.2. High Energy Estimates when k > 1. Assuming (1.16) holds for k, we now prove it
for k + 2. Using the induction hypothesis, we arrive at

(2.4)
1

ck+20

〈ψN , (N−1HN + 1)k+2ψN〉 >
1

c20
〈S(k)(N−1HN + 1)ψN , S

(k)(N−1HN + 1)ψN〉.

We decompose N−1HN + 1 like in (2.2), but this time we separate the sum as

N−1HN + 1 =
1

N(N − 1)

∑
1≤i<j≤N

i≤k

(2 +Hij) +
1

N(N − 1)

∑
1≤i<j≤N

i>k

(2 +Hij) .

Then (2.4) unfold into three terms if we combine the two crossing terms, namely

1

ck+20

〈
ψN , (N

−1HN + 1)k+2ψN
〉
>M + EC + EP
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where the main term M is

M =
1

c20N
2(N − 1)2

∑
1≤i1<j1≤N
1≤i2<j2≤N

such that i1>k, i2>k

〈
S(k) (2 +Hi1j1)ψN , S

(k) (2 +Hi2j2)ψN
〉
,

the cross error term E is

EC =
1

c20N
2(N − 1)2

∑
1≤i1<j1≤N
1≤i2<j2≤N

such that i1≤k, i2>k

2 Re
〈
S(k) (2 +Hi1j1)ψN , S

(k) (2 +Hi2j2)ψN
〉
,

and the nonnegative error term EP is

EP =
1

c20N
2(N − 1)2

∑
1≤i1<j1≤N
1≤i2<j2≤N

such that i1≤k, i2≤k

〈
S(k) (2 +Hi1j1)ψN , S

(k) (2 +Hi2j2)ψN
〉

=
1

c20N
2(N − 1)2

〈 ∑
1≤i<j≤N

i6k

S(k) (2 +Hi1j1)ψN ,
∑

1≤i<j≤N
i6k

S(k) (2 +Hi2j2)ψN

〉
> 0.

Here, we distinguish the terms by the cardinality of the sums. Implicitly, we always have
N >> k, hence the main contribution comes from the sum

∑
k<i<N . In fact, M has ∼ N4

summands inside while the cross error term EC has ∼ N3 summands.
Since the nonnegative error term EP > 0, we drop it and (2.4) becomes

(2.5)
1

ck+20

〈
ψN , (N

−1HN + 1)k+2ψN
〉
>M + EC .

The strategy is to first extract the desired kinetic energy part from the main term M in
§2.2.1 then prove that the cross error term EC can be absorbed into M for large N in §2.2.2.
During the course of the proof, we will need the following lemma.

Lemma 2.4 ([19, Lemma A.2]). If A1 ≥ A2 ≥ 0, B1 ≥ B2 ≥ 0 and AiBj = BjAi for all
1 ≤ i, j ≤ 2, then A1B1 ≥ A2B2.

2.2.1. Handling the Main Term. Commute (1 +Hi1j1) and (1 +Hi2j2) with S
(k) in M ,

(2.6) M =
1

c20N
2(N − 1)2

∑
1≤i1<j1≤N
1≤i2<j2≤N

such that i1>k, i2>k

〈S(k)ψN , (2 +Hi1j1) (2 +Hi2j2)S
(k)ψN〉

We decompose the sum into three pieces

M = M1 +M2 +M3

where M1 consists of the terms with

{i1, j1} ∩ {i2, j2} = ∅,

M2 consists of the terms with
|{i1, j1} ∩ {i2, j2}| = 1,
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and M3 consists of the terms with

|{i1, j1} ∩ {i2, j2}| = 2.

By symmetry of ψN , we have

M1 =
1

4c20
〈
(
2 +H(k+1)(k+2)

)
S(k)ψN ,

(
2 +H(k+3)(k+4)

)
S(k)ψN〉

M2 =
1

2c20
N−1〈

(
2 +H(k+1)(k+2)

)
S(k)ψN ,

(
2 +H(k+2)(k+3)

)
S(k)ψN〉

M3 =
1

2c20
N−2〈

(
2 +H(k+1)(k+2)

)
S(k)ψN ,

(
2 +H(k+1)(k+2)

)
S(k)ψN〉

We drop M3 since it is nonnegative. Thus (2.6) becomes

M >M1 +M2.

By the fact that [
2 +H(k+1)(k+2), 2 +H(k+3)(k+4)

]
= 0,

we deduce

M1 >
4(1− α)2

4c20
〈S(k)ψN , S2k+1S2k+2S(k)ψN〉

using Theorem 2.2 and Lemma 2.4. Recall c0 = min(1−α√
2
, 1
2
), hence

(2.7) M1 > 2〈S(k+2)ψN , S(k+2)ψN〉 = 2
∥∥S(k+2)ψN∥∥2L2 .

We now deal with M2. We expand

M2 = M21 +M22 +M23

where

M21 =
N−1

2c20
〈
(
2 + S2k+1 + S2k+2

)
S(k)ψN ,

(
2 + S2k+2 + S2k+3

)
S(k)ψN〉,

M22 =
N−1

c20
Re〈
(
2 + S2k+1 + S2k+2

)
S(k)ψN , VN(k+2)(k+3)S

(k)ψN〉,

M23 =
N−1

2c20
〈VN(k+1)(k+2)S(k)ψN , VN(k+2)(k+3)S(k)ψN〉.

We keep only the S4k+2 terms inside M21, which carries as many derivatives as in (2.7) and
hence is the second main contribution. That is
(2.8)

M21 >
N−1

2c20
〈S2k+2S2k+2S(k)ψN , S(k)ψN〉 > 2N−1〈S4k+1S(k)ψN , S(k)ψN〉 = 2N−1‖S1S(k+1)ψN‖2L2 .
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For M22, we first rearrange the derivatives

M22 =
2N−1

c20
〈S(k)ψN , VN(k+2)(k+3)S(k)ψN〉

+
N−1

c20
〈S(k+1)ψN , VN(k+2)(k+3)S(k+1)ψN〉

+
N−1

c20
〈Sk+2S(k)ψN , VN(k+2)(k+3)Sk+2S(k)ψN〉

+
Nβ−1

c20
Re〈Sk+2S(k)ψN , (∇V )N(k+2)(k+3) S

(k)ψN〉

Notice that, in the above, we have used the fact that ∇ is the only thing inside Sj that needs
the Leibniz’s rule.14 Do Hölder,

|M22| . N−1
∥∥VN(k+2)(k+3)∥∥L1xk+3 ∥∥S(k)ψN∥∥2L2L∞xk+3

+N−1
∥∥VN(k+2)(k+3)∥∥L1+xk+3 ∥∥S(k+1)ψN∥∥2L2L∞−xk+3

+N−1
∥∥VN(k+2)(k+3)∥∥L1+xk+3 ∥∥Sk+2S(k)ψN∥∥2L2L∞−xk+3

+Nβ−1
∥∥∥(∇V )N(k+2)(k+3)

∥∥∥
L1+xk+3

∥∥Sk+2S(k)ψN∥∥L2L∞−xk+3 ∥∥S(k)ψN∥∥L2L∞−xk+3 ,
Apply Sobolev,

|M22| . N−1
∥∥S(k+2)ψN∥∥2L2 +N−1+

∥∥S(k+2)ψN∥∥2L2 +N−1+
∥∥S(k+2)ψN∥∥2L2(2.9)

+Nβ−1+ ∥∥S(k+2)ψN∥∥2L2
6 CNβ−1+ ∥∥S(k+2)ψN∥∥2L2 ,

which is easily absorbed into the positive contributions. Alert reader should notice the loss
due to the failure of the 2D endpoint Sobolev: 1

2
− 1
∞ = 1

2
.

Do the same thing for M23,

|M23| . N−1
∥∥VN(k+1)(k+2)∥∥L1+xk+1 ∥∥VN(k+2)(k+3)∥∥L1+xk+3 ∥∥S(k)ψN∥∥L2L∞−xk+1L∞−xk+3(2.10)

6 CN−1+
∥∥S(k+2)ψN∥∥2L2 .

Collecting (2.7)-(2.10), we arrive at the following estimate for M :

(2.11) M >
(
2− CNβ−1+) (‖S(k+2)ψ‖2L2 +N−1‖S1S(k+1)ψ‖2L2

)
.

2.2.2. Handling the Cross Error Term. Next we turn our attention to estimating EC . We
will prove that

(2.12) EC > −C max(N2β− 3
2
+, Nβ−1+)

(
‖S(k+2)ψN‖2L2 +N−1‖S1S(k+1)ψN‖2L2

)
.

That is, EC is an absorbable error if added into (2.11).

14This is a fact proved and used by many authors. See, for example, [62].
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We assume k > 1, since EC = 0 when k = 0. We decompose the sum into three parts

(2.13) EC = E1 + E2 + E3

where E1 contains the terms with j1 6 k, E2 contains the terms with j1 > k and j1 ∈ {i2, j2},
and E3 contains those terms with j1 > k, j1 6= i2 and j1 6= j2.
Since Hij = Hji, by symmetry of ψN , we have

E1 = k2N−2〈S(k) (2 +H12)ψN , S
(k)
(
2 +H(k+1)(k+2)

)
ψN〉

E2 = kN−2〈S(k)
(
2 +H1(k+1)

)
ψN , S

(k)
(
2 +H(k+1)(k+2)

)
ψN〉

E3 = N−1〈S(k)
(
2 +H1(k+1)

)
ψN , S

(k)
(
2 +H(k+2)(k+3)

)
ψN〉

We first address E1. We commute (2 +H12) with S(k) and obtain

E1 = E11 + E12 + E13,

where

E11 = N−2〈(2 +H12)S
(k)ψN ,

(
2 +H(k+1)(k+2)

)
S(k)ψN〉

E12 = N−2〈S1 [S2, H12]
S(k)

S1S2
ψN ,

(
2 +H(k+1)(k+2)

)
S(k)ψN〉

E13 = N−2〈[S1, H12]
S(k)

S1
ψN ,

(
2 +H(k+1)(k+2)

)
S(k)ψN〉

By Theorem 2.2 and Lemma 2.4, E11 > 0 and we drop it. For E12, since [S2, H12] =

−Nβ(∇V )N12, expanding
(
2 +H(k+1)(k+2)

)
gives

E12 = −2Nβ−2〈(∇V )N12
S(k)

S1S2
ψN , S1S

(k)ψN〉

−Nβ−2〈(∇V )N12
S(k)

S1S2
ψN , (S

2
k+1 + S2k+2)S1S

(k)ψN〉

−Nβ−2〈(∇V )N12
S(k)

S1S2
ψN , VN(k+1)(k+2)S1S

(k)ψN〉

Use Holder,

|E12|

. Nβ− 3
2 ‖(∇V )N12‖L2+x1

∥∥∥∥ S(k)S1S2
ψN

∥∥∥∥
L2L∞−x1

N−
1
2

∥∥S1S(k)ψN∥∥L2
+Nβ− 3

2 ‖(∇V )N12‖L2+x1

∥∥∥∥S(k+1)S1S2
ψN

∥∥∥∥
L2L∞−x1

N−
1
2

∥∥S1S(k+1)ψN∥∥L2
+Nβ− 3

2 ‖(∇V )N12‖L2+x1
∥∥VN(k+1)(k+2)∥∥L1+xk+1

∥∥∥∥ S(k)S1S2
ψN

∥∥∥∥
L2L∞−x1 L∞−xk+1

N−
1
2

∥∥S1S(k)ψN∥∥L2L∞−xk+1
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Use Sobolev and notice that ‖(∇V )N12‖L2+x1 ∼ Nβ+ in 2D, we have

|E12| . N2β− 3
2
+
∥∥S(k−1)ψN∥∥L2 N− 1

2

∥∥S1S(k)ψN∥∥L2(2.14)

+N2β− 3
2
+
∥∥S(k)ψN∥∥L2 N− 1

2

∥∥S1S(k)ψN∥∥L2
+N2β− 3

2
+
∥∥S(k)ψN∥∥L2 N− 1

2

∥∥S1S(k+1)ψN∥∥L2
. N2β− 3

2
+
(∥∥S(k)ψN∥∥2L2 +N−1

∥∥S1S(k+1)ψN∥∥2L2) .
Now, for E13, notice that [S1, H12] = Nβ(∇V )N12, writting out

(
2 +H(k+1)(k+2)

)
gives,

E13 = 2Nβ−2〈(∇V )N12
S(k)

S1
ψN , S

(k)ψN〉

+Nβ−2〈(∇V )N12
S(k)

S1
ψN , (S

2
k+1 + S2k+2)S

(k)ψN〉

+Nβ−2〈(∇V )N12
S(k)

S1
ψN , VN(k+1)(k+2)S

(k)ψN〉.

Thus

|E13|

. Nβ−2 ‖(∇V )N12‖L2+x1

∥∥∥∥S(k)S1
ψN

∥∥∥∥
L2L∞−x1

∥∥S(k)ψN∥∥L2
+Nβ−2 ‖(∇V )N12‖L2+x1

∥∥∥∥S(k+1)S1
ψN

∥∥∥∥
L2L∞−x1

∥∥S(k+1)ψN∥∥L2
+Nβ−2 ‖(∇V )N12‖L2+x1

∥∥VN(k+1)(k+2)∥∥L1+xk+1
∥∥∥∥S(k)S1

ψN

∥∥∥∥
L2L∞−x1 L∞−xk+1

∥∥S(k)ψN∥∥L2L∞−xk+1 .
Hence, with the Sobolev estimates,

|E13|(2.15)

. N2β−2+ ∥∥S(k)ψN∥∥L2 ∥∥S(k)ψN∥∥L2 +N2β−2+ ∥∥S(k+1)ψN∥∥L2 ∥∥S(k+1)ψN∥∥L2
+N2β−2+ ∥∥S(k+1)ψN∥∥L2 ∥∥S(k+1)ψN∥∥L2

. N2β−2+ ∥∥S(k+1)ψN∥∥2L2 .
Hence, combining with (2.14), we have acquired

(2.16) E1 > −CN2β− 3
2
+
(∥∥S(k+1)ψN∥∥2L2 +N−1

∥∥S1S(k+1)ψN∥∥2L2)
since E11 > 0.
Next, we deal with E2. We remind the readers that

E2 = kN−2〈S(k)
(
2 +H1(k+1)

)
ψN , S

(k)
(
2 +H(k+1)(k+2)

)
ψN〉.

Commuting
(
2 +H1(k+1)

)
to the front, we write

E2 = E21 + E22
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where

E21 = N−2〈
(
2 +H1(k+1)

)
S(k)ψN , S

(k)
(
2 +H(k+1)(k+2)

)
ψN〉,

E22 = N−2〈[S1, H1(k+1)]
S(k)

S1
ψN , S

(k)
(
2 +H(k+1)(k+2)

)
ψN〉.

For E21, expanding 2 +Hij yields

E21 = E211 + E212 + E213 + E214

where

E211 = N−2〈
(
2 + S21 + S2k+1

)
S(k)ψN , S

(k)
(
2 + S2k+1 + S2k+2

)
ψN〉,

E212 = N−2〈
(
2 + S21 + S2k+1

)
S(k)ψN , VN(k+1)(k+2)S

(k)ψN〉,
E213 = N−2〈VN1(k+1)S(k)ψN , S(k)

(
2 + S2k+1 + S2k+2

)
ψN〉,

E214 = N−2〈VN1(k+1)S(k)ψN , VN(k+1)(k+2)S(k)ψN〉.

Note that E211 > 0, so we can discard it. Expand E212,

E212 = 2N−2〈S(k)ψN , VN(k+1)(k+2)S(k)ψN〉
+N−2〈S1S(k)ψN , VN(k+1)(k+2)S1S(k)ψN〉
+Nβ−2〈S(k+1)ψN , (∇V )N(k+1)(k+2) S

(k)ψN〉

+N−2〈S(k+1)ψN , VN(k+1)(k+2)S(k+1)ψN〉

Apply Hölder,

|E212|
. N−2

∥∥VN(k+1)(k+2)∥∥L1xk+1 ∥∥S(k)ψN∥∥2L2L∞xk+1
+N−1

∥∥VN(k+1)(k+2)∥∥L1+xk+1 N−1 ∥∥S1S(k)ψN∥∥2L2L∞−xk+1
+Nβ−2

∥∥∥(∇V )N(k+1)(k+2)

∥∥∥
L1+xk+2

∥∥S(k+1)ψN∥∥L2L∞−xk+2 ∥∥S(k)ψN∥∥L2L∞−xk+2
+N−2

∥∥VN(k+1)(k+2)∥∥L1+xk+2 ∥∥S(k+1)ψN∥∥2L2L∞−xk+2
With Sobolev, we see

|E212| . N−2
∥∥S(k+2)ψN∥∥2L2 +N−1+N−1

∥∥S1S(k+1)ψN∥∥2L2(2.17)

+Nβ−2+ ∥∥S(k+2)ψN∥∥L2 ∥∥S(k+1)ψN∥∥L2
+N−2+

∥∥S(k+2)ψN∥∥2L2
. N−1+

(∥∥S(k+2)ψN∥∥2L2 +N−1
∥∥S1S(k+1)ψN∥∥2L2)

where we used max(Nβ−2+, N−1+) = N−1+ for our problem in which β < 1.



20 XUWEN CHEN AND JUSTIN HOLMER

For E213,

E213 = N−2〈VN1(k+1)S(k)ψN , S(k)
(
2 + S2k+1 + S2k+2

)
ψN〉

= 2N−2〈VN1(k+1)S(k)ψN , S(k)ψN〉+N−2〈VN1(k+1)S(k)Sk+2ψN , S(k)Sk+2ψN〉
+Nβ−2〈(∇V )N1(k+1) S

(k)ψN , S
(k+1)ψN〉+N−2〈VN1(k+1)S(k+1)ψN , S(k+1)ψN〉

Apply Hölder,

|E213| . N−2
∥∥VN1(k+1)∥∥L1+xk+1 ∥∥S(k)ψN∥∥2L2L∞−xk+1

+N−2
∥∥VN1(k+1)∥∥L1+xk+1 ∥∥Sk+2S(k)ψN∥∥2L2L∞−xk+1

+Nβ−1
∥∥∥(∇V )N1(k+1)

∥∥∥
L1+x1

N−1
∥∥S(k)ψN∥∥L2L∞−x1 ∥∥S(k+1)ψN∥∥L2L∞−x1

+N−2
∥∥∥(∇V )N1(k+1)

∥∥∥
L∞x1

∥∥S(k+1)ψN∥∥2L2 .
Utilize Sobolev,

|E213| . N−2+
∥∥S(k+1)ψN∥∥2L2 +N−2+

∥∥S(k+2)ψN∥∥2L2(2.18)

+Nβ−1+N−1
∥∥S1S(k)ψN∥∥L2 ∥∥S1S(k+1)ψN∥∥L2

+N2β−2 ∥∥S(k+1)ψN∥∥2L2 .
. Nβ−1+

(
N−1

∥∥S1S(k+1)ψN∥∥2L2 +
∥∥S(k+2)ψN∥∥2L2)

Then, for E214

|E214| =
∣∣N−2〈VN1(k+1)S(k)ψN , VN(k+1)(k+2)S(k)ψN〉∣∣

. N−2
∥∥VN1(k+1)∥∥L1+x1 ∥∥VN(k+1)(k+2)∥∥L1+xk+2 ∥∥S(k)ψN∥∥2L2L∞−x1 L∞−xk+2

. N−1+N−1
∥∥S1S(k+1)ψN∥∥2L2 .

Together with (2.17)-(2.18), we have the estimate for E21,

(2.19) E21 > −CNβ−1+
(
N−1

∥∥S1S(k+1)ψN∥∥2L2 +
∥∥S(k+2)ψN∥∥2L2) ,

because E211 > 0.
We now turn to E22 which is

E22 = N−2〈[S1, H1(k+1)]
S(k)

S1
ψN , S

(k)
(
2 +H(k+1)(k+2)

)
ψN〉.

Substitute [S1, H1(k+1)] = Nβ(∇V )N1(k+1) and expand 2 +H(k+1)(k+2) to obtain

E22 = E221 + E221 + E223
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where

E221 = Nβ−2〈(∇V )N1(k+1)
S(k)

S1
ψN , S

(k)S2k+1ψN〉

E222 = Nβ−2〈(∇V )N1(k+1)
S(k)

S1
ψN , S

(k)S2k+2ψN〉

E223 = Nβ−2〈(∇V )N1(k+1)
S(k)

S1
ψN , S

(k)VN(k+1)(k+2)ψN〉

For E221, we first Hölder at x1 as follows:

|E221| . Nβ−2‖(∇V )N1(k+1)‖L2+x1 ‖
S(k)

S1
ψN‖L2L∞−x1 ‖S

(k+1)Sk+1ψN‖L2 ,

then Soblev to obtain

|E221| . N2β− 3
2
+‖S(k)ψN‖L2N−

1
2‖S1S(k+1)ψN‖L2(2.20)

. N2β− 3
2
+
(
‖S(k)ψN‖2L2 +N−1‖S1S(k+1)ψN‖2L2

)
.

Use Hölder in xk+1 for E222, we get

|E222| . Nβ−2‖(∇V )N1(k+1)‖L1+xk+1‖
S(k)

S1
Sk+2ψN‖L2L∞−xk+1‖S

(k)Sk+2ψN‖L2L∞−xk+1(2.21)

. Nβ−2+‖S(k+2)ψN‖2L2 .

Then, argue in the same way for E223,

|E223| . Nβ−2‖(∇V )N1(k+1)‖L1+x1
∥∥VN(k+1)(k+2)∥∥L1+xk+2

×‖S
(k)

S1
ψN‖L2L∞−x1 L∞−xk+2

‖S(k)ψN‖L2L∞−x1 L∞−xk+2

. Nβ− 3
2
+‖S(k+1)ψN‖L2N−

1
2‖S1S(k+1)ψN‖L2

. Nβ− 3
2
+
(
‖S(k+1)ψN‖2L2 +N−1‖S1S(k+1)ψN‖2L2

)
Together with (2.20) and (2.21), we have the estimate for E22,

(2.22) |E22| . N2β− 3
2
+
(
‖S(k)ψN‖2L2 +N−1‖S1S(k+1)ψN‖2L2

)
.

This completes the treatment of E2. Specifically, (2.19) and (2.22) give

(2.23) E2 > −C max(N2β− 3
2
+, Nβ−1+)

(
‖S(k)ψN‖2L2 +N−1‖S1S(k+1)ψN‖2L2

)
.

Finally, we treat E3 which is

E3 = N−1〈S(k)
(
2 +H1(k+1)

)
ψN , S

(k)
(
2 +H(k+2)(k+3)

)
ψN〉.

Commute
(
2 +H1(k+1)

)
and S(k),

E3 = E31 + E32,
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where

E31 = N−1〈
(
2 +H1(k+1)

)
S(k)ψN , S

(k)
(
2 +H(k+2)(k+3)

)
ψN〉,

E32 = N−1〈
[
S1, H1(k+1)

] S(k)
S1

ψN , S
(k)
(
2 +H(k+2)(k+3)

)
ψN〉.

We first discard E31 because E31 > 0 by Theorem 2.2 and Lemma 2.4. For E32, we plug in[
S1, H1(k+1)

]
= Nβ(∇V )N1(k+1) and expand

(
2 +H(k+2)(k+3)

)
to obtain

E32 = Nβ−1〈(∇V )N1(k+1)
S(k)

S1
ψN , S

(k)
(
2 + S2k+2 + S2k+3

)
ψN〉

+Nβ−1〈(∇V )N1(k+1)
S(k)

S1
ψN , S

(k)VN(k+2)(k+3)ψN〉

= 2Nβ−1〈(∇V )N1(k+1)
S(k)

S1
ψN , S

(k)ψN〉

+2Nβ−1〈(∇V )N1(k+1)
S(k)

S1
Sk+2ψN , S

(k)Sk+2ψN〉

+Nβ−1〈(∇V )N1(k+1)
S(k)

S1
ψN , S

(k)VN(k+2)(k+3)ψN〉.

First Hölder again

|E32|

. Nβ−1 ∥∥(∇V )N1(k+1)
∥∥
L1+xk+1

‖S
(k)

S1
ψN‖L2L∞−xk+1‖S

(k)ψN‖L2L∞−xk+1

+Nβ−1 ∥∥(∇V )N1(k+1)
∥∥
L1+xk+1

‖S
(k)

S1
Sk+2ψN‖L2L∞−xk+1‖S

(k)Sk+2ψN‖L2L∞−xk+1

+Nβ−1 ∥∥(∇V )N1(k+1)
∥∥
L1+xk+1

∥∥VN(k+2)(k+3)∥∥L1+xk+2 ‖S(k)S1
ψN‖L2L∞−xk+1L∞−xk+2‖S

(k)ψN‖L2L∞−xk+1L∞−xk+2 ,

then Sobolev gives

|E32| . Nβ−1+‖S(k)ψN‖L2‖S(k+1)ψN‖L2 +Nβ−1+‖S(k+1)ψN‖L2‖S(k+2)ψN‖L2
+Nβ−1+‖S(k+1)ψN‖L2‖S(k+2)ψN‖L2

. Nβ−1+‖S(k+2)ψN‖2L2 .

That is

(2.24) E3 > −CNβ−1+‖S(k+2)ψN‖2L2 .

Putting (2.16), (2.23) and (2.24) in one line, we obtain the estimate for the cross error term

EC > −C max(N2β− 3
2
+, Nβ−1+)

(
‖S(k+2)ψN‖2L2 +N−1‖S1S(k+1)ψN‖2L2

)
,

which is exactly (2.12).
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Finally, combining (2.11)and (2.12), we have

1

ck+20

〈ψN , (N−1HN + 1)k+2ψN〉

>
(

2− C max(N2β− 3
2
+, Nβ−1+)

) (
‖S(k+2)ψ‖2L2 +N−1‖S1S(k+1)ψ‖2L2

)
> ‖S(k+2)ψ‖2L2 +N−1‖S1S(k+1)ψ‖2L2

for N larger than some threshold, as originally claimed. Whence, we have proved (1.16) for
all k and established Theorem 1.3.

2.3. Remark on higher β. It is easy to see from §2.2 that Theorem 1.3 will hold up to
β < 3/4 as long as Theorem 2.1 works for higher β. It is certainly of mathematical and
physical interest to push for a higher β in Theroem 1.3. On the one hand, higher β makes
the convergence VN → −b0δ as N → ∞ faster and hence is more singular, diffi cult, and
interesting to deal with. On the other hand, larger β means stronger and more localized
interaction.
Examing the proof of Theorem 2.1, one immediately notice the obstacles lie in Lemmas 2.1

and 2.2. While it is extremely diffi cult to improve Lemma 2.2, one would certainly wonder
how to improve the crude estimate, Lemma 2.1. However, it turns out that the crude estimate
is actually optimal in the sense that it fails if M 6 C Nβ−δ

ε
for some δ > 0. (See Lemma 2.5

below.) Thus, there is no obvious way to improve the current result and reach a higher β.

Lemma 2.5. Suppose that V ∈ S(R2) with V̂ (ξ) = 1 for |ξ| ≤ 4. Suppose that Mj = Mj(N),
j = 1, 2 are dyads with 0 ≤ M1 ≤ M2 ≤ Nβ and limN→∞

M2

M1
= ∞. There does not exist

a constant C independent of N such that the following estimate holds: for all symmetric
ψ(x1, x2),

(2.25)
∫
|VN(x1 − x2)||P (2)M1≤•≤M2

ψ(x1, x2)|2 dx1 dx2 ≤ C‖∇1ψ‖2L2

Before proceeding with the proof, we make a few remarks. First, the assumption V̂ (ξ) = 1

for |ξ| ≤ 4 can be eliminated, but we add it since it simplifies the proof and still covers a wide
class of Schwartz class potentials. Second, we note the estimate (2.25) is in fact true when
M2/M1 remains bounded as N → ∞. This follows readily from scaling and the Bernstein
inequality: if M is a single dyadic interval, then ‖PMφ‖L∞ ≤ M‖PMφ‖L2. Moreover, the
core of Lemma 2.1 is effectively the estimate

(2.26)
∫
|VN(x1 − x2)||P (2)>M1

ψ(x1, x2)|2 dx1 dx2 ≤ C‖∇1ψ‖2L2 for M1 > Nβ.

Lemma 2.5 shows that Lemma 2.1 cannot be improved in the sense that one cannot select
M2 = Nβ and M1 � Nβ (for example M1 = Nβ−δ for any δ > 0) and expect (2.26) to hold.

Proof. Replacing xj by
xj

M
1/2
1 M

1/2
2

and Ñ = N

M
1/2β
1 M

1/2β
2

, we obtain that the estimate (2.25) is

equivalent to∫
|VÑ(x1 − x2)|P (2)(

M1
M2

)1/2
≤•≤

(
M2
M1

)1/2ψ(x1, x2)|2 dx1 dx2 ≤ C‖∇1ψ‖2L2
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Notice thatM2 ≤ Nβ implies
(
M2

M1

)1/2
≤ Ñβ and limN→∞

M2

M1
=∞ implies that limN→∞

(
M2

M1

)1/2
=

∞ and hence limN→∞ Ñ =∞.
Thus, it suffi ces to assume that in (2.25), we in fact have limN→∞M1 = 0 and limN→∞M2 =

∞.
For any functions W , ψ1, ψ2, consider

I
def
=

∫
x1,x2

W (x1 − x2)ψ1(x1, x2)ψ2(x1, x2) dx1 dx2

=

∫
x1,x2,η,ξ1,ξ2

ei(x1−x2)ηeix1ξ1eix2ξ2Ŵ (η)ψ̂1(ξ1, ξ2)ψ2(x1, x2) dx1 dx2

=

∫
η,ξ1,ξ2

Ŵ (η)ψ1(ξ1, ξ2)

∫
x1,x2

e−ix1(ξ1+η)e−ix2(ξ2−η)ψ2(x1, x2) dx1 dx2 dη dξ1 dx2

=

∫
η,ξ1,ξ2

Ŵ (η)ψ1(ξ1, ξ2)ψ2(ξ1 + η, ξ2 − η) dη dξ1 dξ2

=

∫
η,ξ1,ξ2

Ŵ (η)ψ̂1(ξ1 −
η

2
, ξ2 +

η

2
)ψ̂2(ξ1 +

η

2
, ξ2 −

η

2
) dξ1dξ2dη

=

∫
η,ξ1,ξ2

Ŵ (2η)ψ̂1(ξ1 − η, ξ2 + η)ψ̂2(ξ1 + η, ξ2 − η) dξ1dξ2dη

Let

JV
def
=

∫
|VN(x1 − x2)||PM1≤•≤M2ψ(x1, x2)|2 dx1 dx2

and

Jδ
def
=

∫
δ(x1 − x2)|PM1≤•≤M2ψ(x1, x2)|2 dx1 dx2

=

∫
|PM1≤•≤M2ψ(x, x)|2 dx

We show that JV = Jδ. To obtain I = JV −Jδ, in the expression for I, we takeW = VN −δ
and ψj = PM1≤•≤M2ψ. Then

Ŵ (2η) = V̂ (
2η

Nβ
)− 1

so Ŵ (2η) = 0 for |η| ≤ 2Nβ. On the other hand, the frequency restrictions on ψj imply that
|ξ1 − η| ≤M2 ≤ Nβ and |ξ1 + η| ≤M2 ≤ Nβ. It follows that

|2η| = |(ξ1 + η)− (ξ1 − η)| ≤ |ξ1 + η|+ |ξ1 − η| ≤ 2Nβ

Consequently I = 0, completing the proof of the claim.
We argue by contradiction assuming that (2.25) holds with C independent of N . Since

JV = Jδ,

Jδ =

∫
|PM1≤•≤M2ψ(x, x)|2 dx ≤ C‖∇x1ψ‖2L2
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with a constant C independent of N , where M1 → 0 and M2 →∞ as N →∞. By Fatou’s
lemma,

(2.27)
∫
|ψ(x, x)|2 dx ≤ C‖∇x1ψ‖2L2

which is the (false) 2D endpoint trace estimate. A counterexample can be constructed as
follows. Let χ be a smooth function with χ(−x) = χ(x), χ(x) = 1 for |x| ≤ 1

4
and χ(x) = 0

for |x| ≥ 1
2
. Then

ψ(x1, x2) = χ(x1 − x2)χ(x1)χ(x2) ln(− ln |x1 − x2|)

is a symmetric function for which the left side of (2.27) is infinite but the right side is finite.
More properly written, we can introduce a smooth function

ψε(x1, x2) = χ(x1 − x2)χ(x1)χ(x2) ln(− ln(|x1 − x2|+ ε))

Then ∫
|ψε(x, x)|2 dx ∼ ln ln ε−1

while ‖∇x1ψε‖L2 is bounded independently of ε as ε → 0. Sending ε → 0 shows that any
choice of C in (2.27) can be beat, giving us the contradiction. �

3. Derivation of the 2D Focusing NLS

3.1. Proof of Theorem 1.2. We start by introducing an appropriate topology on the
density matrices as was previously done in [27, 28, 29, 30, 31, 32, 44, 10, 15, 16, 17, 18].
Denote the spaces of compact operators and trace class operators on L2

(
R2k
)
as Kk and L1k,

respectively. Then (Kk)′ = L1k. By the fact that Kk is separable, we select a dense countable
subset {J (k)i }i>1 ⊂ Kk in the unit ball of Kk (so ‖J

(k)
i ‖op 6 1 where ‖·‖op is the operator

norm). For γ(k), γ̃(k) ∈ L1k, we then define a metric dk on L1k by

dk(γ
(k), γ̃(k)) =

∞∑
i=1

2−i
∣∣∣Tr J

(k)
i

(
γ(k) − γ̃(k)

)∣∣∣ .
A uniformly bounded sequence γ(k)N ∈ L1k converges to γ(k) ∈ L1k with respect to the weak*
topology if and only if

lim
N→∞

dk(γ
(k)
N , γ(k)) = 0.

For fixed T > 0, let C ([0, T ] ,L1k) be the space of functions of t ∈ [0, T ] with values in L1k
which are continuous with respect to the metric dk. On C ([0, T ] ,L1k) , we define the metric

d̂k(γ
(k) (·) , γ̃(k) (·)) = sup

t∈[0,T ]
dk(γ

(k) (t) , γ̃(k) (t)),

and denote by τ prod the topology on the space ⊕k>1C ([0, T ] ,L1k) given by the product of
topologies generated by the metrics d̂k on C ([0, T ] ,L1k).
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By Theorem 1.3, we have, ∀k = 0, 1, ...,

TrS(k)γ
(k)
N (t)S(k) =

∥∥S(k)ψN(t)
∥∥2
L2

6 Ck
〈
ψN(t),

(
N−1HN + 1

)k
ψN(t)

〉
= Ck

〈
ψN(0),

(
N−1HN + 1

)k
ψN(0)

〉
=

k∑
j=0

(
k

j

)
〈ψN(0),

1

Nk−jH
k−j
N ψN(0)〉

6
k∑
j=0

(
k

j

)
1jCk−j

6 Ck

provided that N > N0(k). That is the energy estimate:

(3.1) sup
t

TrS(k)γ
(k)
N (t)S(k) 6 Ck.

With estimate (3.1), one can go through Lemmas 3.1, 3.2, and 3.3 to conclude that, as trace
class operators:

γ
(k)
N (t) ⇀ |φ(t)〉 〈φ(t)|⊗k weak*.

By the argument on [16, p.398-399]15, we can upgrade the above weak* convergence to strong
and hence finish the proof of Theorem 1.2.

Lemma 3.1 (Compactness). For all finite T > 0, the sequence{
ΓN(t) =

{
γ
(k)
N

}N
k=1

}
⊂
⊕
k>1

C
(
[0, T ] ,L1k

)
,

which satisfies the 2D focusing BBGKY hierarchy

i∂tγ
(k)
N =

k∑
j=1

[
−4xj +ω2 |xj|2 , γ(k)N

]
+

1

N

∑
16i<j6k

[
VN(xi − xj), γ(k)N

]
(3.2)

+
N − k
N

k∑
j=1

Trk+1

[
VN(xj − xk+1), γ(k+1)N

]
,

where V < 0, subject to energy condition (3.1) is compact with respect to the product topology
τ prod. For any limit point Γ(t) =

{
γ(k)
}N
k=1

, γ(k) is a symmetric nonnegative trace class
operator with trace bounded by 1, and it verifies the energy bound

(3.3) sup
t∈[0,T ]

TrS(k)γ(k)S(k) 6 Ck.

15The proof [16, p.398-399] is actually for more general datum.
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Lemma 3.2 (Convergence). Let Γ(t) =
{
γ(k)
}∞
k=1

be a limit point of
{

ΓN(t) =
{
γ
(k)
N

}N
k=1

}
,

the sequence in Theorem 3.1, with respect to the product topology τ prod, then Γ(t) is a solution
to the focusing GP hierarchy

(3.4) i∂tγ
(k) =

k∑
j=1

[
−4xj +ω2 |xj|2 , γ(k)

]
− b0

k∑
j=1

Trk+1
[
δ(xj − xk+1), γ(k+1)

]
,

subject to initial data γ(k) (0) = |φ0〉 〈φ0|
⊗k with coupling constant b0 =

∫
|V (x)| dx. which,

written in integral form, is

(3.5) γ(k) (t) = U (k)(t)γ(k) (0) + ib0

k∑
j=1

∫ t

0

U (k)(t− s) Trk+1
[
δ (xj − xk+1) , γ(k+1) (s)

]
ds.

where

U (k)(t) = eit(−4xj+ω
2|xj |2)e

−it
(
−4x′

j
+ω2|x′j|2

)
.

Lemma 3.3. 16If Γ(t) =
{
γ(k)
}∞
k=1

is a solution to (3.4) subject to the following two condi-
tions:
(a) Γ(t) is sequence of normalized symmetry nonnegative trace class opertors which is a

limit point of some N-body marginals with respect to the product topology τ prod or satisifes
Trk+1 γ

(k+1) = γ(k).
(b) For some α > 2

3
, we have the regularity estimate

sup
t∈[0,T ]

Tr
(
S(k)

)α
γ(k)

(
S(k)

)α 6 Ck,

then Γ(t) is also the only solution of (3.4) subject to (a) and (b).
In particular, if Γ(t) checks (a) and (b) of this lemma and γ(k) (0) = |φ0〉 〈φ0|

⊗k where φ0
satisfies

∥∥∥(−4x + ω2 |x|2
) 1
2 φ0

∥∥∥
L2(R)

<∞, then

γ(k)(t) = |φ(t)〉 〈φ(t)|⊗k

where φ(t) solves the 2D focusing cubic NLS (1.11). This is because |φ(t)〉 〈φ(t)|⊗k is a
solution to (3.4) subject to (a) and (b) of this lemma.

To prove Lemma 3.1 and 3.2, we need the following lemma.

Lemma 3.4 ([44, Lemma A.2]). Let f ∈ L1 (R2) such that
∫
R2 〈r〉 |f (r)| dr < ∞ and∫

R2 f (r) dr = 1 but we allow that f not be nonnegative everywhere. Define fα (r) = α−2f
(
r
α

)
.

16One can also use the Strichartz type uniqueness theorems [15, Theorem 3] or [44, Theorem 7.1] here.
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Then, for every κ ∈ (0, 1) , there exists Cκ > 0 s.t.∣∣Tr J (k) (fα (rj − rk+1)− δ (rj − rk+1)) γ(k+1)
∣∣

6 Cκ

(∫
|f (r)| |r|κ dr

)
ακ

×
(∥∥∥(1−4xj)

1
2J (k)(1−4xj)

− 1
2

∥∥∥
op

+
∥∥∥(1−4xj)

− 1
2J (k)(1−4xj)

1
2

∥∥∥
op

)
×Tr

(
1−4xj

) (
1−4xk+1

)
γ(k+1)

6 Cκ

(∫
|f (r)| |r|κ dr

)
ακ
(∥∥SjJ (k)S−1j ∥∥op +

∥∥S−1j J (k)Sj
∥∥
op

)
TrSjSk+1γ

(k+1)SjSk+1

for all nonnegative γ(k+1) ∈ L1
(
L2
(
R2k+2

))
.

Proof of Compactness. By [32, Lemma 6.2], this is equivalent to the statement that for every
test function f (k) from a dense subset of Kk and for every ε > 0, there exists δ(f (k), ε) such
that for all t1, t2 ∈ [0, T ] with |t1 − t2| 6 δ, we have

sup
N

∣∣∣Tr f (k)γ
(k)
N (t1)− Tr f (k)γ

(k)
N (t2)

∣∣∣ 6 ε .

We select the test functions f (k) ∈ Kk which satisfy∥∥SiSjf (k)S−1i S−1j
∥∥
op

+
∥∥S−1i S−1j f (k)SiSj

∥∥
op
<∞,

Let 0 6 t1 6 t2 6 T , we take advantage of the ∂tγ
(k)
N in the hierarchy (3.2) and use the

fundamental theorem of calculus to get to∣∣∣Tr f (k)γ
(k)
N (t2)− Tr f (k)γ

(k)
N (t1)

∣∣∣
6

k∑
j=1

∫ t2

t1

∣∣∣Tr f (k)
[
S2j , γ

(k)
N (s)

]∣∣∣ ds
+

1

N

∑
16i<j6k

∫ t2

t1

∣∣∣Tr f (k)
[
VN (xi − xj) , γ(k)N (s)

]∣∣∣ ds
+
N − k
N

k∑
j=1

∫ t2

t1

∣∣∣Tr f (k)
[
VN (xj − xk+1) , γ(k+1)N (s)

]∣∣∣ ds.
We estimate each term as follow. The first term can be easily estimated∫ t2

t1

∣∣∣Tr f (k)
[
S2j , γ

(k)
N (s)

]∣∣∣ ds
=

∫ t2

t1

∣∣∣TrS−1j f (k)SjSjγ
(k)
N (s)Sj − TrSjf

(k)S−1j Sjγ
(k)
N (s)Sj

∣∣∣ ds
6

∫ t2

t1

(∥∥S−1j f (k)Sj
∥∥
op

+
∥∥Sjf (k)S−1j ∥∥op)(TrSjγ

(k)
N (s)Sj

)
ds

6 CfC |t2 − t1| .
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For the second and the third terms, we use the fact that conjugation preserves traces and the
Sobolev inequality

(3.6)
∥∥S−1ij S−1k+1VN (xi − xj)S−1j S−1k+1

∥∥
op
6 C ‖VN‖L1 = C ‖V ‖L1

to deduce
1

N

∑
16i<j6k

∫ t2

t1

∣∣∣Tr f (k)
[
VN (xi − xj) , γ(k)N (s)

]∣∣∣ ds
6 k2

N

∫ t2

t1

|TrS−1i S−1j f (k)SiSjS
−1
i S−1j VN (xi − xj)S−1i S−1j SiSjγ

(k)
N (s)SiSj|ds

+
k2

N

∫ t2

t1

|TrSiSjf
(k)S−1i S−1j SiSjγ

(k)
N (s)SiSjS

−1
i S−1j VN (xi − xj)S−1i S−1j |ds

6 Ck2

N

(∥∥S−1i S−1j f (k)SiSj
∥∥
op

+
∥∥SiSjf (k)S−1i S−1j

∥∥
op

)∥∥S−1i S−1j VN (xi − xj)S−1i S−1j
∥∥∫ t2

t1

TrSiSjγ
(k)
N (s)SiSjds

6 k2

N
CfC

2 |t2 − t1| ,

and

N − k
N

k∑
j=1

∫ t2

t1

∣∣∣Tr f (k)
[
VN (xj − xk+1) , γ(k+1)N (s)

]∣∣∣ ds
6 k

∫ t2

t1

|TrS−1j S−1k+1f
(k)SjSk+1S

−1
j S−1k+1VN (xj − xk+1)S−1j S−1k+1SjSk+1γ

(k+1)
N (s)SjSk+1|ds

+k

∫ t2

t1

|TrSjSk+1f
(k)S−1j S−1k+1SjSk+1γ

(k+1)
N (s)SjSk+1S

−1
j S−1k+1VN (xj − xk+1)S−1j S−1k+1|ds

6 Ck
(∥∥S−1j f (k)Sj

∥∥
op

+
∥∥Sjf (k)S−1j ∥∥op)∥∥S−1ij S−1k+1VN (xi − xj)S−1j S−1k+1

∥∥∫ t2

t1

TrSjSk+1γ
(k+1)
N (s)SjSk+1ds

6 kCfC
2 |t2 − t1| .

That is ∣∣∣Tr f (k)γ
(k)
N (t2)− Tr f (k)γ

(k)
N (t1)

∣∣∣ 6 Cf,k |t2 − t1| ,
which is enough to end the proof of Theorem 3.1. �
Proof of Convergence. By Theorem 3.1, passing to subsequences if necessary, we have

(3.7) lim
N→∞

sup
t∈[0,T ]

Tr f (k)
(
γ
(k)
N − γ(k)

)
= 0, ∀f (k) ∈ Kk.

We test (3.5) against the test functions f (k) in Theorem 3.1. We prove that the limit point
verifies

(3.8) Tr f (k)γ(k) (0) = Tr f (k) |φ0〉 〈φ0|
⊗k ,
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and

Tr f (k)γ(k) = Tr f (k)U (k)(t)γ(k) (0)(3.9)

+ib0

k∑
j=1

∫ t

0

Tr f (k)U (k)(t− s)
[
δ (xj − xk+1) , γ(k+1) (s)

]
ds.

Rewrite the BBGKY hierarchy (3.2) as the following

Tr f (k)γ
(k)
N = Tr f (k)U (k)(t)γ

(k)
N (0)

+
i

N

∑
16i<j6k

∫ t

0

Tr f (k)U (k)(t− s)
[
−VN(xi − xj), γ(k)N (s)

]
ds

+i
N − k
N

k∑
j=1

∫ t

0

Tr f (k)U (k)(t− s)
[
−VN(xj − xk+1), γ(k+1)N (s)

]
ds

= I +
i

N

∑
16i<j6k

II + i

(
1− k

N

) k∑
j=1

III.

Notice that b0 = −
∫
VN(x)dx, we have put a minus sign in front of VN to match 3.9.

Immediately following (3.7), we have

lim
N→∞

Tr f (k)u
(k)
N = Tr f (k)u(k),

lim
N→∞

Tr f (k)U (k)(t)γ
(k)
N (0) = Tr f (k)U (k)(t)f (k) (0) .

By the well-known argument on [50, p.64], we know γ
(k)
N (0)→ |φ0〉 〈φ0|

⊗k strongly as trace
operators because γ(1)N (0)→ |φ0〉 〈φ0| strongly as trace operators. So we have checked relation
(3.8) and the left hand side and the first term on the right hand side of (3.9) for Γ(t).
We now prove

(3.10) lim
N→∞

II

N
= lim

N→∞

k

N
III = 0,

and

(3.11) lim
N→∞

III =

∫ t

0

Tr J (k)U (k)(t− s)
[
δ (xj − xk+1) , γ(k+1) (s)

]
ds.

In the proof of Theorem 3.1, we have already shown that |II| and |III| are uniformly bounded
for every finite time, thus (3.10) has been checked. So we are left to prove 3.11. To use
Lemma 3.4, we take a probability measure ρ ∈ L1 (R2), define ρα (y) = 1

α2
ρ
(
y
α

)
. Adopt the
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notation f (k)s−t = f (k)U (k) (t− s), we have∣∣∣Tr f (k)U (k) (t− s)
(
−VN (xj − xk+1) γ(k+1)N (s)− b0δ (xj − xk+1) γ(k+1) (s)

)∣∣∣
6
∣∣∣Tr f

(k)
s−t (−VN (xj − xk+1)− b0δ (xj − xk+1)) γ(k+1)N (s)

∣∣∣
+ b0

∣∣∣Tr f
(k)
s−t (δ (xj − xk+1)− ρα (xj − xk+1)) γ(k+1)N (s)

∣∣∣
+ b0

∣∣∣Tr f
(k)
s−tρα (xj − xk+1)

(
γ
(k+1)
N (s)− γ(k+1) (s)

)∣∣∣
+ b0

∣∣∣Tr f
(k)
s−t (ρα (xj − xk+1)− δ (xj − xk+1)) γ(k+1) (s)

∣∣∣
= IV + V + V I + V II.

Lemma 3.4 and the energy condition (3.1) gives

IV 6 C

Nκβ

(∥∥S−1j f (k)Sj
∥∥
op

+
∥∥Sjf (k)S−1j ∥∥op)TrSjSk+1γ

(k+1)
N SjSk+1

6 Cf
Nκβ

→ 0 as N →∞, uniformly for s ∈ [0, T ] with T <∞.

Similarly, we obtain V, V II 6 Cfα
κ → 0 as α→ 0. For VI,

G 6 b0

∣∣∣∣Tr f
(k)
s−tρα (xj − xk+1)

1

1 + εSk+1

(
γ
(k+1)
N (s)− γ(k+1) (s)

)∣∣∣∣
+b0

∣∣∣∣Tr f
(k)
s−tρα (xj − xk+1)

εSk+1
1 + εSk+1

(
γ
(k+1)
N (s)− γ(k+1) (s)

)∣∣∣∣ .
The first term in the above inequality tends to zero as N → ∞ for every ε > 0, since we
have assumed (3.7) and f (k)s−tρα (xj − xk+1) 1

1+εSk+1
is a compact operator. Due to the energy

bounds (3.1) and (3.3), the second term tends to zero as ε→ 0, uniformly in N .
Combining the estimates for IV − V II, we have justified limit (3.11) and thus limit (3.9).

Hence, we have proved Theorem 3.2. �

Proof of Uniqueness. The proof is essentially already in [8] and [22]. One merely needs to set

A =0, switch the Strichartz estimate for eit4 to the ones for eit(4−ω
2|x|2) in [22] and notice

that ‖f‖Hα . ‖Sαf‖L2 for α > 0. We skip the details. �

3.2. Proof of Theorem 1.1. Assuming Theorem 1.2, we now prove Theorem 1.1. If ψN (0)

satisfies (a), (b), and (c) in Theorem 1.1, then ψN (0) checks the requirements of the following
lemma.

Lemma 3.5. Assume ψN (0) satisfies (a), (b), and (c) in Theorem 1.1. Let χ ∈ C∞0 (R) be
a cut-off such that 0 6 χ 6 1, χ (s) = 1 for 0 6 s 6 1 and χ (s) = 0 for s > 2. For κ > 0, we
define an approximation ψκN(0) of ψN (0) by

(3.12) ψκN(0) =
χ (κHN/N)ψN (0)

‖χ (κHN/N)ψN (0)‖ .

This approximation has the following properties:
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(i) ψκN(0) verifies the energy condition

〈ψκN(0), Hk
Nψ

κ
N(0)〉 6 2kNk

κk
.

(ii)
sup
N
‖ψκN(0)− ψN(0)‖L2 6 Cκ

1
2 .

(iii) For small enough κ > 0, ψκN(0) is asymptotically factorized as well

lim
N→∞

Tr
∣∣∣γκ,(1)N (0, x1;x

′
1)− φ0(x1)φ0(x′1)

∣∣∣ = 0,

where γκ,(1)N (0) is the marginal density associated with ψκN(0) and φ0 is the same as in
assumption (b) in Theorem 1.1.

Proof. (i) and (ii) follows from [19, Lemma B.1] and [20, Lemma B.1]. (iii) follows from the
proof of [30, Proposition 5.1 (iii)]. Notice that for two dimension, we get a Nβ instead of a
N

3β
2 in [30, (5.20)] and hence we get a Nβ−1 in the estimate of [30, (5.18)] which goes to zero

for β ∈ (0, 1). �

Thus we can define an approximation ψκN(0) of ψN (0) as in (3.12). Via (i) and (iii)
of Lemma 3.5, ψκN(0) verifies the requirements of Theorem 1.2 for small enough κ > 0.

Therefore, for γκ,(k)N (t) , the marginal density associated with eitHNψκN(0), Theorem 1.2 gives
the convergence:

(3.13) γ
(k)
N (t)→ |φ(t)〉 〈φ(t)|⊗k strongly, ∀k, t

as trace class operators, for all small enough κ > 0.
For γ(k)N (t) in Theorem 1.2, we notice that, for any test function f (k) ∈ Kk and any t ∈ R,

we have ∣∣∣Tr f (k)
(
γ
(k)
N (t)− |φ (t)〉 〈φ (t)|⊗k

)∣∣∣
6

∣∣∣Tr f (k)
(
γ
(k)
N (t)− γκ,(k)N (t)

)∣∣∣
+
∣∣∣Tr f (k)

(
γ
κ,(k)
N (t)− |φ (t)〉 〈φ (t)|⊗k

)∣∣∣
= A+ B.

Convergence (3.13) then takes care of B. To handle A, part (ii) of Lemma 3.5 yields∥∥eitHNψκN(0)− eitHNψN(0)
∥∥
L2

= ‖ψκN(0)− ψN(0)‖L2 6 Cκ
1
2

which implies

A =
∣∣∣Tr f (k)

(
γ
(k)
N (t)− γκ,(k)N (t)

)∣∣∣ 6 C
∥∥f (k)∥∥

op
κ
1
2 .

Since κ > 0 is arbitrary, we deduce that

lim
N→∞

∣∣∣Tr f (k)
(
γ
(k)
N (t)− |φ (t)〉 〈φ (t)|⊗k

)∣∣∣ = 0,

i.e.
γ
(k)
N (t) ⇀ |φ (t)〉 〈φ (t)|⊗k weak*
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as trace class operators. Notice that the limit has the same trace norm as γ(k)N (t) for every
N , the Grümm’s convergence theorem then upgrades the above weak* convergence to strong.
Thence, we have concluded Theorem 1.1 via Theorem 1.2.
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