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3.3 The Uniform Boundedness Conjecture

Northcott’s Theorem 3.12 says that a morphismφ : PN → PN has only finitely
manyK-rational preperiodic points. It is even effective in the sense that we can, in
principle, find an explicit constantC(φ) in terms of the coefficients ofφ such that
every pointP ∈ PrePer(φ) satisfiesh(P ) ≤ C(φ). This also allows us to compute
an upper bound for#PrePer(φ,PN (K)), but the bound grows extremely rapidly
as the coefficients ofφ become large. A better bound, at least for periodic points,
may be derived from the local estimates in Chapter 2 as described in Corollary 2.26.
However, even that estimate depends on the coefficients ofφ, since it is in terms of
the two smallest primes for whichφ has good reduction. The following uniformity
conjecture says that there should be a bound for the size ofPrePer(φ,PN (K)) that
depends in only a minimal fashion onφ andK.

Conjecture 3.15. (Morton–Silverman [290])Fix integersd ≥ 2, N ≥ 1, andD ≥ 1.
There is a constantC(d,N,D) such that for all number fieldsK/Q of degree at
mostD and all finite morphismsφ : PN → PN of degreed defined overK,

#PrePer(φ,PN (K)) ≤ C(d,N, D).

Remark3.16. There are many results in the literature giving explicit bounds for the
size of the setsPrePer(φ,PN (K)) or Per(φ,PN (K)) in terms ofφ, especially in
the caseN = 1. Some of these results use global methods, while others use a small
prime of good (or at least not too bad) reduction forφ. For example, we used local
methods in Corollary 2.26 to give a weak bound for#Per(φ,P1(K)). For further
results, see [47, 81, 84, 85, 92, 93, 126, 150, 158, 174, 175, 176, 177, 178, 206, 306,
243, 290, 302, 303, 305, 307, 327, 329, 332, 333, 335, 428].

Remark3.17. Very little is known about Conjecture 3.15. Indeed, it is not known
even in the simplest case(d,N, D) = (2, 1, 1), that is, forQ-rational points and de-
gree 2 maps onP1. Specializing further, if we letφc : P1 → P1 denote the quadratic
mapφc(z) = z2 + c, then the conjecture implies that

sup
c∈Q

#Per(φc,P1(Q)) < ∞,

but the best known upper bounds for#Per(φc,P1(Q)) depend onc.
There are one-parameter families ofc-values for whichφc(z) has aQ-rational

periodic point of exact period1, 2, or 3, see Exercise 3.9 and Example 4.9, and
one can show thatφc cannot haveQ-rational periodic points of exact period 4 or 5,
see [158, 287]. Poonen has conjectured thatφc cannot have anyQ-rational periodic
points of period greater than 3. Assuming this conjecture, he gives a complete de-
scription of all possible rational preperiodic structures forφc, see [335].

Remark3.18. Another interesting collection of rational maps is the family

φa,b(z) = az +
b

z
.
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These maps have the symmetry propertyφa,b(−z) = −φa,b(z), i.e., conjugation by
the mapf(z) = −z leaves them invariant. It is known that there are one-parameter
families of these maps with aQ-rational periodic point of exact period1 (in addition
to the obvious fixed point at∞), 2, or 4, and that none of the mapsφa,b(z) has aQ-
rational periodic point of exact period3. See [264] for details, and Examples 4.69
and 4.71 and Exercises 4.1, 4.40 and 4.41 for additional properties of these maps.

Remark3.19. Conjecture 3.15 is an extremely strong uniformity conjecture. For
example, if we consider only mapsφ : P1 → P1 of degree 4 defined overQ, then
the assertion that#PrePer(φ,P1(Q)) ≤ C for an absolute constantC immediately
implies Mazur’s theorem [270] that the torsion subgroup of an elliptic curveE/Q
is bounded independently ofE. To see this, we observe that Proposition 0.3 tells us
that

Etors = PrePer
(
[2], E

)
,

and hence the associated Lattès mapφE,2 described in Section 1.6.3 satisfies

x (Etors) = PrePer(φE,2,P1).

Note thatφE,2 has degree 4.
In a similar manner, Conjecture 3.15 for maps of degree4 on P1 over number

fields implies Merel’s Theorem [275] that the size of the torsion subgroup of an
elliptic curve over a number field is bounded solely in terms of the degree of the
number field. Turning this argument around, Merel’s theorem implies the uniform
boundedness conjecture for Lattès maps, i.e., for rational maps associated to elliptic
curves, see Theorem 6.65. Lattès maps are the only nontrivial family of rational maps
for which the uniform boundedness conjecture is currently known.

In higher dimension, Fakhruddin [150] has shown that Conjecture 3.15 implies
that there is a constantC(N, D) such that ifK is a number field of degree at mostD
and ifA/K is an abelian variety of dimensionN , then

#A(K)tors≤ C(N, D).

He also shows that if Conjecture 3.15 is true overQ, then it is true for all number
fields.

3.4 Canonical Heights and Dynamical Systems

It is obvious from the definition of the height that

h(αd) = dh(α) for all α ∈ Q̄. (3.11)

Notice that Theorem 3.11 applied to the particular mapφ(z) = zd gives the less
precise statement

h(φ(P )) = dh(P ) + O(1). (3.12)

Clearly the exact formula (3.11) is more attractive than the approximation (3.12). It
would be nice if we could modify the heighth in some way so that the general for-
mula (3.12) from Theorem 3.11 is true without theO(1). It turns out that this can be
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done for each morphismφ. To create these special heights, we follow a construction
due originally to Tate.

Theorem 3.20. LetS be a set, letd > 1 be a real number, and let

φ : S → S and h : S → R

be functions satisfying

h
(
φ(P )

)
= dh(P ) + O(1) for all P ∈ S.

Then the limit
ĥ(P ) = lim

n→∞
1
dn

h
(
φn(P )

)
(3.13)

exists and satisfies:

(a) ĥ(P ) = h(P ) + O(1).

(b) ĥ
(
φ(P )

)
= dĥ(P ).

The function̂h : S → R uniquely determined by the properties(a)and (b).

Proof. We prove that the limit (3.13) exists by proving that the sequence is Cauchy.
Let n > m ≥ 0 be integers. We are given that there is a constantC so that

∣∣h(φ(Q))− dh(Q)
∣∣ ≤ C for all Q ∈ S. (3.14)

We apply inequality (3.14) withQ = φi−1(P ) to the telescoping sum

∣∣∣∣
1
dn

h(φn(P ))− 1
dm

h(φm(P ))
∣∣∣∣ =

∣∣∣∣∣
n∑

i=m+1

1
di

(
h(φi(P ))− dh(φi−1(P ))

)∣∣∣∣∣

≤
n∑

i=m+1

1
di

∣∣h(φi(P ))− dh(φi−1(P ))
∣∣

≤
n∑

i=m+1

C

di
≤

∞∑

i=m+1

C

di
=

C

(d− 1)dm
. (3.15)

The inequality (3.15) clearly implies that
∣∣∣∣

1
dn

h(φn(P ))− 1
dm

h(φm(P ))
∣∣∣∣ → 0 asm,n →∞,

so the sequenced−nh(φn(P )) is Cauchy and the limit (3.13) exists.
In order to prove (a), we takem = 0 in (3.15), which yields

∣∣∣∣
1
dn

h(φn(P ))− h(P )
∣∣∣∣ ≤

C

d− 1
.

Next we letn →∞ to obtain
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∣∣ĥφ(P )− h(P )
∣∣ ≤ C

d− 1
,

which is (a) with an explicit value for theO(1) constant.
The proof of (b) is a simple computation using the definition ofĥ,

ĥφ(φ(P )) = lim
n→∞

1
dn

h
(
φn(φ(P ))

)
= lim

n→∞
d

dn+1
h
(
φn+1(P ))

)
= dĥφ(P ).

Finally, to prove uniqueness, suppose thatĥ′ : S → R also has properties (a)
and (b). Then the differenceg = ĥ− ĥ′ satisfies

g(P ) = O(1) and g(φ(P )) = dg(P ).

These formulæ hold for all elementsP ∈ S, so

dng(P ) = g(φn(P )) = O(1) for all n ≥ 0.

In other words, the quantitydng(P ) is bounded asn → ∞, which can only happen
if g(P ) = 0. This proves that̂h(P ) = ĥ′(P ), soĥ is unique.

Definition. Let φ : PN → PN be a morphism of degreed ≥ 2. Thecanonical height
function(associated toφ) is the unique function

ĥφ : PN (Q̄) −→ R
satisfying

ĥφ(P ) = h(P ) + O(1) and ĥφ

(
φ(P )

)
= dĥφ(P ).

The existence and uniqueness ofĥφ follows from Theorem 3.20 applied to the maps

φ : PN (Q̄) −→ PN (Q̄) and h : PN (Q̄) −→ R,

since Theorem 3.11 tells us thatφ andh satisfy

h
(
φ(P )

)
= dh(P ) + O(1) for all P ∈ PN (Q̄).

Remark3.21. The definitionĥφ(P ) = limn→∞ d−nh
(
φn(P )

)
is not practical for

accurate numerical calculations. Thus even forP ∈ P1(Q), one would need to com-
pute the exact value ofφn(P ) whose coordinates haveO(dn) digits. A practical
method for the numerical computation ofĥφ(P ) to high accuracy uses the decom-
position of ĥφ as a sum of local heights or Green functions. This decomposition
is described in Sections 3.5 and 5.9. See in particular Exercise 5.29 for a detailed
description of the algorithm.

The canonical height provides a useful arithmetic characterization of the prepe-
riodic points ofφ.
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Theorem 3.22. Let φ : PN → PN be a morphism of degreed ≥ 2 defined over̄Q
and letP ∈ PN (Q̄). Then

P ∈ PrePer(φ) if and only if ĥφ(P ) = 0.

Proof. If P is preperiodic, then the quantityh(φn(P )) takes on only finitely many
values, so it is clear thatd−nh(φn(P )) → 0 asn →∞.

Now suppose that̂hφ(P ) = 0. Let K be a number field containing the coor-
dinates ofP and the coefficients ofφ, i.e., P ∈ PN (K) andφ is defined overK.
Theorem 3.20 and the assumptionĥφ(P ) = 0 imply that

h(φn(P )) = ĥφ(φn(P )) + O(1) = dnĥφ(P ) + O(1) = O(1) for all n ≥ 0.

Thus the orbit

Oφ(P ) = {P, φ(P ), φ2(P ), φ3(P ), . . .} ⊂ PN (K)

is a set of bounded height, so it is finite from Theorem 3.7. ThereforeP is a preperi-
odic point forφ.

Remark3.23. Further material on canonical heights in dynamics may be found in
Sections 3.5, 5.9, and 7.4, as well as [13, 18, 21, 34, 36, 37, 81, 82, 83, 135, 147,
207, 208, 210, 211, 212, 381, 384, 420, 427]

Theorem 3.22 is a generalization of Kronecker’s theorem (Theorem 3.8), which
says thath(α) = 0 if and only if α is a root of unity. Thus Kronecker’s theorem
follows by applying Theorem 3.22 to thedth-power mapφ(z) = zd whose canonical
height is the ordinary heighth.

The fact that only roots of unity have height0 leads naturally to the question
of how small a nonzero height can be. If we take the relationh(αd) = dh(α) and
substitute inα = 21/d, we find that

h(21/d) =
1
d
h(2) =

log 2
d

,

so the height can become arbitrarily small. However, this is only possible by taking
numbers lying in fields of higher and higher degree. For any algebraic numberα, let

D(α) = [Q(α) : Q]

denote the degree of its minimal polynomial overQ.

Conjecture 3.24. (Lehmer’s Conjecture [242])There is an absolute constantκ > 0
such that

h(α) ≥ κ/D(α)

for every nonzero algebraic numberα that is not a root of unity.
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There has been a great deal of work on Lehmer’s conjecture by many mathe-
maticians, see for example [87, 7, 6, 70, 242, 340, 396, 398, 419]. The best result
currently known, which is due to Dobrowolski [127], says that

h(α) ≥ κ

D(α)

(
log log D(α)

log D(α)

)3

.

The smallest known nonzero value ofD(α)h(α) is

D(β0)h(β0) = 0.1623576 . . . ,

whereβ0 = 1.17628 . . . is a real root of

x10 + x9 − x7 − x6 − x5 − x4 − x3 + x + 1.

Theorem 3.22 tells us that̂hφ(P ) = 0 if and only if P is a preperiodic point
for φ. This suggests a natural generalization of Lehmer’s conjecture to the dynamical
setting. (See [295] for an early version of this conjecture in a special case.)

Conjecture 3.25. (Dynamical Lehmer Conjecture)Let φ : PN → PN be a
morphism defined over a number fieldK, and for any pointP ∈ PN (K̄), let
D(P ) = [K(P ) : K]. Then there is a constantκ = κ(K, φ) > 0 such that

ĥφ(P ) ≥ κ

D(P )
for all P ∈ PN (K̄) with P /∈ PrePer(φ).

There has been considerable work on this conjecture for mapsφ : P1 → P1 that
are associated to groups as described in Section 1.6. For example, in the case thatφ
is attached to an elliptic curveE, it is known that

ĥφ(P ) ≥





κ

D(P )3 log2 D(P )
in general [269],

κ

D(P )2
if j(E) is nonintegral [185],

κ

D(P )

(
log log D(P )

log D(P )

)3

if E has complex multiplication [241].

Aside from maps associated to groups, there does not appear to be a single example
where it is known that̂hφ(P ) is always greater than a constant over a fixed power
of D(P ). Using trivial estimates based on the number of points of bounded height
in projective space, it is easy to prove a lower bound that decreases faster than expo-
nentially inD(P ), see Exercise 3.17.

Remark3.26. The Lehmer conjecture involves a single mapφ and points from num-
ber fields of increasing size. Another natural question to ask about lower bounds for
the canonical height involves fixing the fieldK and letting the mapφ vary. For exam-
ple, consider quadratic polynomialsφc(z) = z2 + c asc varies overQ. Is it true that
ĥφc(α) is uniformly bounded away from0 for all c ∈ Q and all nonpreperiodicα?
In other words, does there exist a constantκ > 0 such that
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ĥφc
(α) ≥ κ for all c ∈ Q and allα /∈ PrePer(φc)?

We might even ask that the lower bound grow asc becomes larger (in an arithmetic
sense). Thus is there a constantκ > 0 so that

ĥφc
(α) ≥ κh(c) for all c ∈ Q and allα /∈ PrePer(φc)?

This is a dynamical analog of a conjecture for elliptic curve that is due to Serge Lang,
see [184], [232, page 92], or [385, VIII.9.9].

For the quadratic mapz2 + c, the height of the parameterc provides a natural
measure of its size, but the situation for general rational mapsφ(z) ∈ K(z) is more
complicated. We cannot simply use the height of the coefficients ofφ, because the
canonical height is invariant under conjugation (see Exercise 3.11), while the height
of the coefficients is not conjugation invariant. We return to this question in Sec-
tion 4.11 after we have developed a way to measure the size of the conjugacy class
of a rational map.

3.5 Local Canonical Heights

The canonical height̂hφ attached to a rational mapφ is a useful tool in studying
the arithmetic dynamics ofφ. For more refined analyses, it is helpful to decompose
the canonical height as a sum of local canonical heights, one for each absolute value
on K. In this section we briefly summarize the basic properties of local canonical
heights, but we defer the proofs until Section 5.9. The reader wishing to proceed
more rapidly to the main arithmetic results of this chapter may safely omit this sec-
tion on first reading, since the material covered is not used elsewhere in this book.

The construction of the canonical height relies on the fact that the ordinary height
satisfiesh(φ(P )) = dh(P ) + O(1), so it is “almost canonical.” The ordinary height
of a pointP = [α, 1] is equal to the sum

h(P ) = h(α) =
∑

v∈MK

nv log max{|α|v, 1},

so for eachv ∈ MK it is natural to define a local height function

λv(α) = log max{|α|v, 1}.

We can understandλv geometrically by observing that forv ∈ M0
K ,

λv(α) = − log ρv(α,∞),

whereρv is the nonarchimedean chordal metric defined in Section 2.1. One says
thatλv(α) is thelogarithmic distancefrom α to∞.

Unfortunately, the functionλv does not transform canonically, sinceλv(φ(α)) is
not equal todλv(α) + O(1). To see why, note thatλv(φ(α)) is large ifα is close to
a pole ofφ, while λv(α) is large ifα is close to the point∞ ∈ P1. (Here the word
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7.1 Dynamics Of Rational Maps On Projective Space

Recall that arational mapφ : PN → PN is described by homogeneous polynomials
with no common factor, and thatφ is amorphismif the polynomials have no com-
mon root inPN (K̄). (See page 88 in Chapter 3 for the precise definition.) As noted
in the introduction to this chapter, height functions are a powerful tool for studying
the arithmetic of morphismsφ : PN → PN . The situation is considerably more com-
plicated if the mapφ : PN → PN is only required to be a rational map. Notice that
we did not run into this situation when studying rational functionsφ(z) ∈ K(z) of
one variable, since every rational mapφ : P1 → P1 is automatically a morphism. But
in dimensions2 and higher, there are many rational maps that are not morphisms.

Example7.1. The rational map

φ : P2 −→ P2, φ
(
[X,Y, Z]) = [X2

0 , X0X1, X
2
2 ], (7.1)

is not a morphism, since it is not defined at the point[0, 1, 0]. Notice that if we
discard[0, 1, 0], thenφ fixes every point on the lineX0 = X2, andφ sends every
point on the lineX0 = 0 to the single point[0, 0, 1]. This sort of behavior is not
possible for morphismsP2 → P2.

Continuing with this example, recall that ifφ were a morphism, then Theo-
rem 3.11 would tell us thath

(
φ(P )

)
= 2h(P ) + O(1) for all P ∈ P2(Q̄). But this

is clearly false for the map (7.1), since for alla, b ∈ Q̄∗ we have

φ
(
[a, b, a]

)
= [a2, ab, a2] = [a, b, a].

Thus
h
(
φ
(
[a, b, a]

))
= h

(
[a, b, a]

)
,

so we cannot use Theorem 3.7 to conclude thatφ has only finitely manyQ-rational
periodic points. Of course, that’s good, since in factφ has infinitely manyQ-rational
fixed points!

An initial difficulty in studying the dynamics of a rational mapφ : PN → PN

arises from the fact that the orbitOφ(P ) of a point may “terminate” if some it-
erateφn(P ) arrives at a point whereφ is not defined. This suggests looking first at
mapsφ for which there is a large uncomplicated (e.g., quasiprojective, or even affine)
subsetU ⊂ PN with the property thatφ(U) ⊂ U and studying the dynamics ofφ
on U . As a further simplication, we might require thatφ be an automorphism ofU ,
since quasiprojective varieties often allow interesting automorphisms.

7.1.1 Affine Morphisms and the Locus of Indeterminacy

In this section we study rational mapsPN → PN with the property that they induce
morphisms of affine spaceAN → AN . Concretely, anaffine morphism

φ : AN → AN

is a map of the form
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φ = (F1, · · · , FN ) with F1, . . . , FN ∈ K[z1, . . . , zN ].

To avoid trivial cases, we generally assume that at least one of theFi is not the0-
polynomial.

Definition. The degree of a polynomial

F (z1, . . . , zN ) =
∑

i1,...,iN

ai1···iN
zi1
1 · · · ziN

N ∈ K[z1, . . . , zN ]

is defined to be

deg F = max
{
i1 + · · ·+ iN : ai1···iN

6= 0
}
.

In other words, the degree ofF is the largest total degree of the monomials that
appear inF . (By convention the0-polynomial is assigned degree−∞.) Thedegree
of a morphismφ = (F1, . . . , FN ) : AN → AN is defined to be

deg φ = max{deg F1, . . . , deg FN}.
Homogenization of the coordinates of an affine morphismφ : AN → AN of de-

greed yields a rational map̄φ : PN → PN of degreed. For each coordinate func-
tion Fi of φ, we let

F̄i(X0, X1, . . . , XN ) = Xd
0Fi

(
X1

X0
,
X2

X0
, . . . ,

XN

X0

)
.

Notice that each̄Fi is a homogeneous polynomial of degreed (or the0-polynomial),
so the map

φ̄ = [Xd
0 , F̄1, F̄2, . . . , F̄N ] : PN → PN

is a rational map of degreed. We call φ̄ the rational map induced byφ. A rational
map need not be everywhere defined.

Definition. Let φ : AN → AN be an affine morphism of degreed and let

φ̄ = [Xd
0 , F̄1, . . . , F̄N ] : PN → PN

be the rational map that it induces. Thelocus of indeterminacy ofφ is the set

Z(φ) =
{
P = [0, x1, . . . , xN ] ∈ PN : F1(P ) = · · · = FN (P ) = 0

}
.

This is the set of points at which̄φ is not defined. Notice thatZ(φ) lies in the hyper-
planeH0 = {X0 = 0} at infinity, sinceφ is well-defined onAN .

The polynomialsF̄1, . . . , F̄N can be used to define a morphism

Φ : AN+1 −→ AN+1, Φ = (Xd
0 , F̄1, . . . , F̄N ).

The mapΦ is called alift of φ̄. If we let π be the natural projection map,

π : AN+1 r {0} −→ PN , (x0, . . . , xN ) 7−→ [x0, . . . , xN ],
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thenπ, Φ, andφ̄ fit together into the commutative diagram

AN+1 r {0} Φ−−−−→ AN+1 r {0}yπ

yπ

PN φ̄−−−−→ PN

Example7.2. The map

φ : A2 −→ A2, φ(z1, z2) = (z1z2, z
2
1)

induces the rational map

φ : P2 −→ P2, φ̄
(
[X0, X1, X2]

)
= [X2

0 , X1X2, X
2
1 ]

and has indeterminacy locusZ(φ) =
{
[0, 0, 1]

}
consisting of a single point.

7.1.2 Affine Automorphisms

Of particular interest are affine morphisms that admit an inverse.

Definition. An affine morphismφ : AN → AN is anautomorphismif it has an
inverse morphism. In other words,φ is an affine automorphism if there is an affine
morphismφ−1 : AN → AN such that

φ
(
φ−1(z1, . . . , zN )

)
= (z1, . . . , zN ) and φ−1

(
φ(z1, . . . , zN )

)
= (z1, . . . , zN ).

Somewhat surprisingly,φ andφ−1 need not have the same degree, nor doesdeg(φn)
have to equal(deg φ)n.

Example7.3. Consider the mapφ(x, y) = (x, y + x2). It has degree2 and is an
automorphism, since it has the inverseφ−1(x, y) = (x, y−x2). The compositionφ2

is
φ2(x, y) = φ(x, y + x2) = (x, y + 2x2),

sodeg(φ2) = 2 = deg(φ). More generally,φn(x, y) = (x, y + nx2) has degree2,
so the degree ofφn does not grow. This contrasts sharply with what happens for
morphisms ofPN .

Example7.4. Let a ∈ K∗ and letf(y) ∈ K[y] be a polynomial of degreed ≥ 2.
The map

φ : A2 −→ A2, φ(x, y) =
(
y, ax + f(y)

)
,

is called aHénon map. It is an automorphism ofA2, since one easily checks that it
has an inverseφ−1 given by

φ−1 : A2 −→ A2, φ−1(x, y) =
(
a−1y − a−1f(x), x

)
.

Hénon maps, especially those withdeg(f) = 2, have been extensively studied since
Hénon [182] introduced them as examples of mapsR2 → R2 having strange at-
tractors. There are many open questions regarding the real and complex dynamics
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of Hénon maps, see for example [122,§2.9] or [193], as well as [194, 388] for a
compactification of the H́enon map.

The rational mapsP2 → P2 induced byφ andφ−1 are

φ̄
(
[X0, X1, X2]

)
= [Xd

0 , Xd−1
0 X2, aXd−1

0 X1 + f̄(X0, X2)],

φ̄−1
(
[X0, X1, X2]

)
= [Xd

0 , a−1Xd−1
0 X2 − a−1f̄(X0, X1), Xd−1

0 X1],

where we writef̄(u, v) = udf(v/u) for the homogenization off . It is easy to see
that the loci of indeterminacy ofφ andφ−1 are

Z(φ) =
{
[0, 1, 0]

}
and Z(φ−1) =

{
[0, 0, 1]

}
.

In particular, the locus of indeterminacy ofφ is disjoint from the locus of indetermi-
nacy ofφ−1. Maps with this property are calledregular, see Section 7.1.3.

Example7.5. Consider the very simple H́enon map

φ(x, y) = (y,−x + y2).

The extension̄φ = [X2
0 , X0X2,−X0X1 + X2

2 ] of φ to P2 has degree2, but it is not
a morphism, since it is not defined at the point[0, 1, 0]. And just as in Example 7.2,
there is no height estimate of the formh

(
φ(P )

)
= 2h(P ) + O(1) for φ̄. We can see

this by noting that

φ̄
(
[b, a, b]

)
= [b2, b2,−ab + b2] = [b, b,−a + b],

so if a, b,∈ Z with gcd(a, b) = 1 andb > a > 0, then[b, a, b] andφ̄
(
[b, a, b]

)
have

the same height. Hence for everyε > 0 even the weaker statement

h
(
φ̄(P )

) ≥ (1 + ε)h(P ) + O(1) for all P = (x, y) ∈ A2(Q)

is false. It turns out thatφ has only finitely manyQ-rational periodic points (Theo-
rem 7.18), but the proof does not follow directly from a simple height argument.

Example7.6. More generally, ifφ : AN → AN is an affine automorphism, then it is
not possible to have simultaneous estimates of the form

h
(
φ(P )

) ≥ (1 + ε)h(P ) + O(1),

h
(
φ−1(P )

) ≥ (1 + ε)h(P ) + O(1),
(7.2)

for someε > 0 and allP ∈ AN (K). To see this, suppose that (7.2) were true. Then
we would have for allP ∈ AN (K),

h(P ) = h
(
φ(φ−1(P ))

) ≥ (1 + ε)h
(
φ−1(P )

)
+ O(1) ≥ (1 + ε)2h(P ) + O(1).

Thush(P ) would be bounded, leading to the untenable conclusion thatAN (K) is
finite. So it is too much to require that bothφ(P ) andφ−1(P ) have heights larger
than the height ofP . However, as we shall see, it is often possible to show that some
combination ofh

(
φ(P )

)
andh

(
φ−1(P )

)
is large, which is then sufficent to prove

thatPer(φ) is a set of bounded height.
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We conclude this section with two useful geometric lemmas. The first relates the
locus of indetermincay of an affine automorphism and its inverse, and the second
characterizes when the degree of a composition is smaller than the product of the
degrees.

Lemma 7.7. Letφ : AN → AN be an affine automorphism of degree at least2 and
denote the hyperplane at infinity byH0 = {X0 = 0} = PN rAN . Then

φ̄
(
H0 r Z(φ)

) ⊂ Z(φ−1).

Proof. Let

Φ = (Xd
0 , F̄1, F̄2, . . . , F̄N ) and Φ−1 = (Xe

0 , Ḡ1, Ḡ2, . . . , ḠN )

be the lifts ofφ̄ andφ̄−1, respectively. The fact thatφ andφ−1 are inverses of one
another implies that there is a homogeneous polynomialf of degreede− 1 with the
property that

(Φ−1 ◦ Φ)(X0, . . . , XN ) = (f ·X0, f ·X1, . . . , f ·XN ).

But the first coordinate of the composition isXde
0 , so we see thatf = Xde−1

0 . Thus

(Φ−1 ◦ Φ)(X0, . . . , XN ) = (Xde
0 , Xde−1

0 X1, X
de−1
0 X1, . . . , X

de−1
0 XN ),

or equivalently,

Ḡj(Xd
0 , F̄1, . . . , F̄N ) = Xde−1

0 Xj for all 1 ≤ j ≤ N . (7.3)

Now letP = [0, x1, . . . , xN ] ∈ H0 r Z(φ), soφ(P ) =
[
0, F̄1(P ), . . . , F̄N (P )

]
with at least onēFi(P ) 6= 0. From (7.3) we see that

Ḡj

(
Φ(P )

)
= Ḡj

(
0, F̄1(P ), . . . , F̄N (P )

)
= 0de−1xj = 0 for all 1 ≤ j ≤ N .

Hence

Φ−1
(
Φ(P )

)
=

(
0, Ḡ1

(
Φ(P )

)
, Ḡ2

(
Φ(P )

)
, . . . , ḠN

(
Φ(P )

)
= (0, 0, 0, . . . , 0),

soφ−1 is not defined atφ(P ). Thereforeφ(P ) ∈ Z(φ−1).

Lemma 7.8. Let φ : AN → AN and ψ : AN → AN be affine morphisms, and
let H0 = {X0 = 0} = PN rAN be the usual hyperplane at infinity. Then

deg(ψ ◦ φ) < deg(ψ) deg(φ) if and only if φ̄
(
H0 r Z(φ)

) ⊂ Z(ψ).

Proof. Let d = deg(φ), let e = deg(ψ), and letΦ and Ψ be lifts of φ̄ and ψ̄,
respectively. We writeΦ explicitly as

Φ = (Xd
0 , F̄1, F̄2, . . . , F̄N ).

The compositionΨ ◦ Φ has the form
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Ψ ◦ Φ = (Xde
0 , Ē1, Ē2, . . . , ĒN ),

whereĒ1, . . . , ĒN are homogeneous polynomials of degreede. The degree ofψ ◦ φ
will be strictly less thande if and only if there is some cancellation in the coordinate
polynomials ofΨ ◦ Φ. Since the first coordinate isXde

0 , this shows that

deg(ψ ◦ φ) < deg(ψ) deg(φ) ⇐⇒ X0 dividesĒj for every1 ≤ j ≤ N .

Suppose now thatX0|Ēj for everyj and letP = [0, x1, . . . , xN ] ∈ H0 r Z(φ).
Sinceφ is defined atP , some coordinate of

Φ(P ) =
(
0, F̄1(P ), . . . , F̄N (P )

)

is nonzero. On the other hand, the assumption thatX0|Ēj implies that

(Ψ ◦ Φ)(P ) =
(
0, Ē1(Φ(P )), Ē2(Φ(P )), . . . , ĒN (Φ(P ))

)
= (0, 0, 0, . . . , 0).

Henceψ is not defined atφ(P ), so φ(P ) ∈ Z(ψ). This completes the proof that
if deg(ψ ◦ φ) < de, thenφ

(
H0 r Z(φ)

) ⊂ Z(ψ).
For the other direction, suppose thatφ

(
H0 r Z(φ)

) ⊂ Z(ψ). This implies that
for (almost all) points of the form(0, x1, . . . , xN ), the mapψ is not defined at the
pointφ

(
[0, x1, . . . , xN ]

)
. Hence

Ψ
(
Φ(0, X1, X2, . . . , XN )

)
= (0, 0, 0, . . . , 0),

soĒj(0, X1, X2, . . . , XN ) = 0 for all j. ThereforeX0|Ēj for all j.

Example7.9. Letφ be the mapφ(x, y) = (x, y+x2) that we studied in Example 7.3.
Dehomogenizingφ yields

φ̄
(
[X0, X1, X2]

)
= [X2

0 , X0X1, X0X2 + X2
1 ],

so the locus of indeterminacy forφ is Z(φ) =
{
[0, 0, 1]

}
. Notice that

φ̄
(
[0, X1, X2]

)
= [0, 0, X2

1 ] = [0, 0, 1] ∈ Z(φ).

Henceφ̄
(
H0rZ(φ)

)
= Z(φ), so Lemma 7.8 tells us thatdeg(φ2) < deg(φ)2. This

is in agreement with Example 7.3, where we computed thatdeg(φ2) = 2.

7.1.3 The Geometry of Regular Automorphisms ofAN

In this section we briefly discuss the geometric properties of an important class of
affine automorphisms.

Definition. An affine automorphismφ : AN → AN is said to beregular if the
indeterminacy loci ofφ andφ−1 have no points in common,

Z(φ) ∩ Z(φ−1) = ∅.
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The following theorem summarizes some of the geometric properties enjoyed
by regular automorphisms ofAN . We sketch the proof of (a) and refer the reader
to [376] for (b) and (c).

Theorem 7.10. Letφ : AN → AN be a regular affine automorphism.
(a) For all n ≥ 1,

φn is regular, Z(φn) = Z(φ), and deg(φn) = deg(φ)n.

(b) Let

d1 = deg φ, d2 = deg φ−1, `1 = dim Z(φ)+1, `2 = dim Z(φ−1)+1.

Then

`1 + `2 = N and d`1
2 = d`2

1 .

(c) For all n ≥ 1 the set ofn-periodic pointsPern(φ) is a discrete subset ofAN (C).
Counted with appropriate multiplicities,

# PerNn(φ) = d`1Nn
2 = d`2Nn

1 .

Proof. (a) We first prove by induction onn that

Z(φn) ⊂ Z(φ) and Z(φ−n) ⊂ Z(φ−1) for all n ≥ 1.

This is trivally true forn = 1, so assume now that it is true forn−1. LetP ∈ Z(φn),
so in particularP ∈ H0. Suppose thatP /∈ Z(φ). The induction hypothesis tells us
thatP /∈ Z(φn−1), so applying Lemma 7.7 to the mapφn−1, we deduce that

φn−1(P ) ∈ φn−1
(
H0 r Z(φn−1)

) ⊂ Z(φ−(n−1)) ⊂ Z(φ−1).

(For the last equality we have again used the induction hypothesis.) On the other
hand, we have thatφn−1 is defined atP andφn is not defined atP , which implies
that φn−1(P ) ∈ Z(φ). This proves thatφn−1(P ) is in both Z(φ−1) and Z(φ),
contradicting the assumption thatφ is regular. HenceP ∈ Z(φ), which completes
the proof thatZ(φn) ⊂ Z(φ). Similarly, we find thatZ(φ−n) ⊂ Z(φ−1).

Having shown thatZ(φn) ⊂ Z(φ) andZ(φ−n) ⊂ Z(φ−1), the regularity ofφ
implies that

Z(φn) ∩ Z(φ−n) ⊂ Z(φ) ∩ Z(φ−1) = ∅,
soφn is also regular.

Next suppose thatdeg(φn) < deg(φ)n for somen ≥ 2. We taken to be the
smallest value for which this is true, so in particulardeg(φn−1) = deg(φ)n−1, and
hence

deg(φn) < deg(φn−1) deg(φ).

We apply Lemma 7.8 withψ = φn−1 to conclude that

φ
(
H0 r Z(φ)

) ⊂ Z(φn−1) ⊂ Z(φ),
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where the last inclusion was proven earlier. On the other hand, Lemma 7.7 says that
φ
(
H0 r Z(φ)

) ⊂ Z(φ−1). Hence

φ
(
H0 r Z(φ)

) ⊂ Z(φ) ∩ Z(φ−1) = ∅.
This is a contradiction, which completes the proof thatdeg(φn) = deg(φ)n.

It remains to show thatZ(φ) ⊂ Z(φn). Let

Φ : AN+1 −→ AN+1, Φ = (Xd
0 , F1, F2, . . . , FN ),

be a lift ofφ, so

Z(φ) =
{
P ∈ H0 : F1(P ) = · · · = FN (P ) = 0

}
.

By a slight abuse of notation, we say thatP ∈ Z(φ) if and only if Φ(P ) = 0. (To be
precise, we should liftP toAN+1.)

We proved thatdeg(φn) = deg(φ), which implies that the coordinate functions
of Φn have no common factor. Thusφn can be computed by evaluatingΦn and map-
ping down toPN . Hence just as above we haveP ∈ Z(φn) if and only ifΦn(P ) = 0.
Therefore

P ∈ Z(φ) =⇒ Φ(P ) = 0 =⇒ Φn(P ) = 0 =⇒ P ∈ Z(φn).

This proves thatZ(φ) ⊂ Z(φn) and completes the proof of (a).
(b) See [376, Proposition 2.3.2].
(c) See [376, Theorem 2.3.4].

Remark7.11. If φ : A2 → A2 is a regular automorphism of the affine plane, then
Theorem 7.10(b) tells us that`1 = `2 = 1 (which is clear anyway since the indeter-
minacy locus of a rational map has codimension at least2) and thatd1 = d2. Thus
planar regular automorphisms satisfydeg(φ) = deg(φ−1). In the opposite direction,
if d1 = d2, then Theorem 7.10(b) says that`1 = `2, and hence thatN = `1 + `2
is even. In other words, a regular automorphismφ : AN → AN with N odd always
satisfiesdeg(φ) 6= deg(φ−1).

Example7.12. Let φ : A3 → A3 be given by

φ(x, y, z) = (y, z + y2, x + z2).

One can check that the inverse ofφ is

φ−1(x, y, z) =
(
z − (y − x2)2, x, y − x2

)
.

Homogenizingx = X1/X0, y = X2/X0, z = X3/X0, we have the formulæ

φ̄ = [X2
0 , X0X2, X0X3 + X2

2 , X0X1 + X2
3 ],

φ̄−1 = [X4
0 , X3

0X3 − (X0X2 −X2
1 )2, X3

0X1, X3
0X2 −X2

0X2
1 ],

from which it is easy to check that
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Z(φ) = {X0 = X2 = X3 = 0} = {[0, 1, 0, 0]},
Z(φ−1) = {X0 = X1 = 0} = {[0, 0, u, v]}.

Thus Z(φ) consists of a single point, whileZ(φ−1) is a line. In the notation of
Theorem 7.10, we haveN = 3 and

d1 = deg φ = 2, d2 = deg φ−1 = 4,

`1 = dim Z(φ) + 1 = 1, `2 = dim Z(φ−1) = 1 = 2.

The mapφ is regular, sinceZ(φ) ∩ Z(φ−1) = ∅.
Remark7.13. Let φ : AN → AN be an affine morphism and letΦ : AN+1 → AN+1

be a lift ofφ. The mapφ is calledalgebraically stableif

Φn
({X0 = 0}) 6= {0} for all n ≥ 1.

In other words,φ is algebraically stable if for everyn ≥ 1, some coordinate
of Φn(X0, . . . , XN ) is not divisible byX0. Since the first coordinate ofΦn is a
power ofX0, this implies that there can be no cancellation among the coordinates,
so an algebraically stable mapφ satisfies

deg(φn) = deg(φ)n.

Further, an adaptation of the proof of Theorem 7.10(a) shows that

Z(φn) ⊂ Z(φm) for all n < m.

Regular automorphisms are algebraically stable, but there are algebraically stable
automorphisms that are not regular. For a discussion of the complex dynamics of
algebraically stable maps, see [161, 170, 376].

For arbitrary morphismsφ : AN → AN , we define thedynamical degree ofφ to
be the quantity

dyndeg(φ) = lim
n→∞

deg(φn)1/n.

The dynamical degree provides a coarse measure of the stable complexity of the
mapφ, and presumably it has an impact on the arithmetic properties ofφ. See [268]
for an indication of this effect in certain cases. One can show that the dynamical
degree is in fact the infimum ofdeg(φn)1/n. The dynamical degree need not be an
integer, nor even a rational number, see Exercise 7.4 for an example.

7.1.4 A Height Bound for Jointly Regular Affine Morphisms

In this section we prove a nontrivial lower bound for the height of points under
regular affine automorphisms. The theorem is an amalgamation of results due to
Denis [121], Kawaguchi [210, 207], Marcello [265, 266, 267, 268] and Silver-
man [388, 393]. Before stating the theorem, we need to define what is meant by
the height of a point in affine space.
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Definition. The heighth(P ) of a pointP = (x1, . . . , xN ) ∈ AN (Q̄) in affine space
is defined to be the height of the associated point in projective space using the natural
embeddingAN → PN ,

h(P ) = h
(
[1, x1, . . . , xN ]

)
.

Eventually we will apply the following height estimate to a regular affine auto-
morphismφ and its inverseφ−1, but it is no harder to prove the result for any pair
of jointly regular maps, and working in a general setting helps clarify the underlying
structure of the proof.

Theorem 7.14. Let φ1 : AN → AN andφ2 : AN → AN be affine morphisms with
the property that

Z(φ1) ∩ Z(φ2) = ∅.
(We say thatφ1 andφ2 are jointly regular.) Let

d1 = deg φ1 and d2 = deg φ2.

There is a constantC = C(φ1, φ2) so that for allP ∈ AN (Q̄),

1
d1

h
(
φ1(P )

)
+

1
d2

h
(
φ2(P )

) ≥ h(P )− C. (7.4)

Remark7.15. We recall that the upper bound

h
(
ψ(P )

) ≤ (deg ψ)h(P ) + O(1) (7.5)

is valid even for rational mapsψ : PN → PN (see Theorem 3.11), since the proof
of (7.5) uses only the triangle inequality. Thus Theorem 7.14 may be viewed as
providing a nontrivial lower bound complementary to the elementary upper bound

1
d1

h
(
φ1(P )

)
+

1
d2

h
(
φ2(P )

) ≤ 2h(P ) + O(1).

Proof of Theorem7.14. Write the rational functionsPN → PN induced byφ1

andφ2 as

φ̄2 = [Xd1
0 , F̄1, F̄2, . . . , F̄N ] and φ̄2 = [Xd2

0 , Ḡ1, Ḡ2, . . . , ḠN ],

where theF̄i are homogeneous polynomials of degreed1 and theḠi are homoge-
neous polynomials of degreed2. The loci of indeterminacy ofφ1 andφ2 are given
by

Z(φ1) = {X0 = F̄1 = · · · = F̄N = 0},
Z(φ2) = {X0 = Ḡ1 = · · · = ḠN = 0}.

We define a rational mapψ : P2N → P2N of degreed1d2 by
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ψ =
[
Xd1d2

0 , F̄ d2
1 , . . . , F̄ d2

N , Ḡd1
1 , . . . , Ḡd1

N

]
.

The locus of indeterminacy ofψ is the set

Z(ψ) = {X0 = F̄1 = · · · = F̄N = Ḡ1 = · · · = ḠN = 0} = Z(φ1) ∩ Z(φ2) = ∅,
since by assumptionZ(φ1) andZ(φ2) are disjoint. Henceψ is a morphism, so we
can apply the fundamental height estimate for morphisms (Theorem 3.11) to deduce
that

h
(
ψ(P )

)
= d1d2h(P ) + O(1) for all P ∈ P2N (Q̄). (7.6)

The following lemma will give us an upper bound for the height ofψ(P ).

Lemma 7.16. Letu, a1, . . . , aN , b1, . . . , bN ∈ Q̄ with u 6= 0. Then

h
(
[u, a1, . . . , aN , b1, . . . , bN ]

) ≤ h
(
[u, a1, . . . , aN ]

)
+ h

(
[u, b1, . . . , bN ]

)
.

Proof. Let αi = ai/u andβi = bi/u for 1 ≤ i ≤ N . Then for any absolute valuev
we have the trivial estimate

max
{
1, |α1|v, . . . , |αN |v, |β1|v, . . . , |βN |v

}

≤ max
{
1, |α1|v, . . . , |αN |v

} ·max
{
1, |β1|v, . . . , |βN |v

}
.

Raising to an appropriate power, multiplying over all absolute values, and taking
logarithms yields

h
(
[1, α1, . . . , αN , β1, . . . , βN ]

) ≤ h
(
[1, α1, . . . , αN ]

)
+ h

(
[1, β1, . . . , βN ]

)
.

This is the desired result, since the height does not depend on the choice of homoge-
neous coordinates of a point.

We apply Lemma 7.16 to the point

ψ(P ) =
[
X0(P )d1d2 , F̄1(P )d2 , . . . , F̄N (P )d2 , Ḡ1(P )d1 , . . . , ḠN (P )d1

]

with P ∈ AN (Q̄), which ensures thatX0(P ) 6= 0. The lemma tells us that

h
(
ψ(P )

) ≤ h
([

X0(P )d1d2 , F̄1(P )d2 , . . . , F̄N (P )d2
])

+ h
([

X0(P )d1d2 , Ḡ1(P )d1 , . . . , ḠN (P )d1
])

= d2h
([

X0(P )d1 , F̄1(P ), . . . , F̄N (P )
])

+ d1h
([

X0(P )d2 , Ḡ1(P ), . . . , ḠN (P )
])

= d2h
(
φ1(P )

)
+ d1h

(
φ2(P )

)
.

We combine this with (7.6) to obtain

d1d2h(P ) + O(1) = h
(
ψ(P )

) ≤ d2h
(
φ1(P )

)
+ d1h

(
φ2(P )

)
.

Dividing both sides byd1d2 completes the proof of Theorem 7.14.
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For regular affine automorphism, it is conjectured that the height inequality (7.4)
in Theorem 7.14 may be replaced by a stronger estimate.

Conjecture 7.17. Letφ : AN → AN be a regular affine automorphism. Then there
is a constantC = C(φ) so that for allP ∈ AN (Q̄),

1
d1

h
(
φ(P )

)
+

1
d2

h
(
φ−1(P )

) ≥
(

1 +
1

d1d2

)
h(P )− C. (7.7)

Kawaguchi [210] proves Conjecture 7.17 in dimension2, i.e., for regular affine
automorphismsφ : A2 → A2, see also [388]. However, for general jointly regular
affine morphisms, it is easy to see that (7.4) cannot be improved, see Exercise 7.8.
Kawaguchi also constructs canonical heights for maps that satisfy (7.7), see [210]
and Exercises 7.17–7.22.

7.1.5 Boundedness of Periodic Points for Regular
Automorphisms ofAN

Theorem 7.14 applied to a regular affine automorphismφ and its inverse implies that
at least one ofφ(P ) andφ−1(P ) has reasonably large height. This suffices to prove
that the periodic points ofφ form a set of bounded height, a result first demonstrated
by Marcello [265, 266] (see also [121, 393]) using a height bound slightly weaker
than the one in Theorem 7.14.

Theorem 7.18. (Marcello)Let φ : AN → AN be a regular affine automorphism of
degree at least2 defined over̄Q. ThenPer(φ) is a set of bounded height inAN (Q̄).
In particular,

Per(φ) ∩ AN (K) is finite for all number fieldsK.

Proof. Let

d1 = deg φ and d2 = deg φ−1.

Applying Theorem 7.14 withφ1 = φ andφ2 = φ−1 yields the basic inequality

1
d1

h
(
φ(P )

)
+

1
d2

h
(
φ−1(P )

) ≥ h(P )− C, (7.8)

whereC is a constant depending onφ, but not onP ∈ AN (Q̄).
We prove the theorem initially under the assumption thatd1d2 > 4. Define a

function

f(P ) =
1
d1

h(P )− 1
αd2

h
(
φ−1(P )

)− C

α− 1
, (7.9)

where the real numberα > 1 will be specified later. Thenf satisfies
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f
(
φ(P )

)− αf(P ) =
(

1
d1

h
(
φ(P )

)− 1
αd2

h(P )− C

α− 1

)

−α

(
1
d1

h(P )− 1
αd2

h
(
φ−1(P )

)− C

α− 1

)

=
(

1
d1

h
(
φ(P )

)
+

1
d2

h
(
φ−1(P )

))−
(

α

d1
+

1
αd2

)
h(P ) + C

≥
(

1− α

d1
− 1

αd2

)
h(P ) from (7.8).

Hence if we take

α =
d1d2 +

√
(d1d2)2 − 4d1d2

2d2
,

then

1− α

d1
− 1

αd2
= 0,

and our assumption thatd1d2 > 4 ensures thatα > 1, so for this choice ofα we
conclude that

f
(
φ(P )

) ≥ αf(P ) for all P ∈ AN (Q̄).

Applying this estimate to the pointsP, φ(P ), φ2(P ), . . . , φn−1(P ), we obtain the
fundamental inequality

f
(
φn(P )

) ≥ αnf(P ) for all P ∈ AN (Q̄) and alln ≥ 0. (7.10)

Similarly, we define

g(P ) =
1
d2

h(P )− 1
βd1

h
(
φ(P )

)− C

β − 1
(7.11)

and take

β =
d1d2 +

√
(d1d2)2 − 4d1d2

2d1
.

Then an analogous calculation, which we leave to the reader, shows thatg satisfies

g
(
φ−1(P )

) ≥ βg(P ) for all P ∈ AN (Q̄),

from which we deduce that

g
(
φ−n(P )

) ≥ βng(P ) for all P ∈ AN (Q̄) and alln ≥ 0. (7.12)

We compute
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α−nf
(
φn+1(P )

)
+ β−ng

(
φ−n−1(P )

)

≥ f
(
φ(P )

)
+ g

(
φ−1(P )

)
from (7.10) and (7.12),

=
(

1
d1

h
(
φ(P )

)− 1
αd2

h(P )− C

α− 1

)

+
(

1
d2

h
(
φ−1(P )

)− 1
βd1

h(P )− C

β − 1

)

from the definition (7.9) and (7.11) off andg,

≥
(

1− 1
αd2

− 1
βd1

)
h(P )−

(
1 +

1
α− 1

+
1

β − 1

)
C from (7.8).

Using the definition off andg and rearranging the terms, we have proven the in-
equality

h
(
φn+1(P )

)

αnd1
+

h
(
φ−n−1(P )

)

βnd2
+

(αβ − 1)C
(α− 1)(β − 1)

≥
(

1− 1
αd2

− 1
βd1

)
h(P ) +

h
(
φn(P )

)

αn+1d2
+

h
(
φ−n(P )

)

βn+1d1
. (7.13)

Now suppose thatP ∈ AN (Q̄) is a periodic point forφ. Thenh
(
φk(P )

)
is

bounded independently ofk, so lettingn →∞ in (7.13) yields

(αβ − 1)C
(α− 1)(β − 1)

≥
(

1− 1
αd2

− 1
βd1

)
h(P ),

where we are using the fact thatα > 1 andβ > 1. Our assumption thatd1d2 > 4
also ensures that

1− 1
αd2

− 1
βd1

=
√

1− 4
d1d2

> 0,

so the height ofP is bounded by a constant depending only onφ. This completes
the proof of the first assertion of Theorem 7.18 under the assumption thatd1d2 > 4,
and the second is immediate from Theorem 7.28(f), which says that for any given
number field,PN (K) contains only finitely many points of bounded height.

In order to deal with the cased1d2 ≤ 4, i.e.,d1 = d2 = 2, we use Theorem 7.10,
which tells us thatφ2 is regular and has degreed2

1. Similarly deg(φ−2) = d2
2. Hence

from what we have already proven, the periodic points ofφ2 form a set of bounded
height, and since it is easy to see thatPer(φ) = Per(φ2), this completes the proof in
all cases.

Remark7.19. We observe that Theorem 7.18 applies only to regular maps. It cannot
be true for all affine automorphisms, since there are affine automorphisms whose
fixed (or periodic) points include components of positive dimension. For example,
the affine automorphismφ(x, y) = (x, y + f(x)) fixes all points of the form(a, b)
satisfyingf(a) = 0. Of course, this mapφ is not regular, since one easily checks
that

Z(φ) = Z(φ−1) =
{
[0, 1, 0]

}
.
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Definition. Let φ : V → V be a morphism of a (not necessarily projective) vari-
ety V . A point P ∈ Per(φ) is isolatedif P is not in the closure ofPern(φ)r {P}
for all n ≥ 0. In particular, ifPern(φ) is finite for alln, then every periodic point is
isolated.

Conjecture 7.20. Letφ : AN → AN be an affine automorphism of degree at least2
defined over̄Q. Then the set of isolated periodic points ofφ is a set of bounded height
in AN (Q̄).

A classification theorem of Friedland and Milnor [162] says that every automor-
phismφ : A2 → A2 of the affine plane is conjugate to a composition of elementary
maps and H́enon maps. Using this classification, Denis [121] proved Conjecture 7.20
in dimension 2. (See also [265, 266].)

7.2 Primer on Algebraic Geometry

In this section we summarize basic material from algebraic geometry, primarily hav-
ing to do with the theory of divisors, linear equivalence, and the divisor class group
(Picard group). This theory is used to describe the geometry of algebraic varieties
and the geometry of the maps between them. We assume that the reader is familiar
with basic material on algebraic varieties as may be found in any standard textbook,
such as [169, 180, 181, 187].

This section deals with geometry, so we work over an algebraically closed field.
Let

K = an algebraically closed field,

V = a nonsingular irreducible projective variety defined overK,

K(V ) = the field of rational functions onV.

7.2.1 Divisors, Linear Equivalence and the Picard Group

In this section we recall the theory of divisors, linear equivalence, and the divisor
class group (Picard group).

Definition. A prime divisoron V is an irreducible subvarietyW ⊂ V of codimen-
sion 1. Thedivisor group ofV , denotedDiv(V ), is the free abelian group generated
by the prime divisors onV . ThusDiv(V ) consists of all formal sums

∑

W

nW W,

where the sum is over prime divisorsW ⊂ V , the coefficientsnW are integers, and
only finitely manynW are nonzero. Thesupportof a divisorD =

∑
nW W is

|D| =
⋃

W with
nW 6=0

W.


