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Torsion in the Nottingham group

Jonathan Lubin

Abstract

From local class-field theory and higher ramification theory one gets a classification up to
conjugacy of the torsion elements of arbitrary order in the Nottingham group over a finite
field, in terms of continuous characters on the multiplicative group of principal units in the ring
of formal power series over the field. An essential part of this classification is to partition the
torsion elements according to the depths of their successive p-power iterates. The classification
described here is good enough to permit an independent proof of Klopsch’s theorem on torsion
elements of order p, but not good enough to give a full description of the finite set of classes of
torsion elements with a given depth-sequence. The final section exhibits an efficient method of
calculating the first few hundred terms of a series of order pn, limited only by the capabilities of
the computation package used, but gives no idea of any formula for describing the coefficients.

Introduction

This paper arises out of an appreciation of the Theorem of Klopsch [5], according to which
the elements of the Nottingham group over a finite field κ of characteristic p > 0 that are of
period p are classified in two steps: first according to the depth, which may be any positive
integer d prime to p, but when d is given, there are only |κ| − 1 conjugacy classes, described
neatly by the coefficient of the torsion series in degree d+ 1.

There is little new mathematics in this paper. Rather, it makes direct use of standard results
from local class field theory as may be found in [7] (English translation, [8]). And in Section 5
we use results from [6].

This paper is organized as follows: first I run through a very quick description of Klopsch’s
result, as a standard to reach for in the more complicated case of general order pn. Next, the
quickest and sketchiest possible précis of local class field theory, as it applies to the analysis of
the situation at hand. Then I explain how a character of a certain type on the multiplicative
group 1 + tκJtK describes and can be used to construct a torsion element of Nottingham, and
discuss an equivalence relation among such characters that corresponds to conjugacy of the
torsion elements in Nottingham; and I show how the ramification numbers of the character are
related to the depths of successive p-power iterates of the torsion element. Then I give a proof
of Klopsch’s Theorem using these tools, to show how the method applies. The final application
is a sketch of how to use symbolic computation to produce from a character of order pn the
essentially unique torsion element of Nottingham that corresponds.

1. Notations, conventions, prior results

We will work with a fixed finite constant field κ of characteristic p. Our discussions will deal
mostly with extensions of Laurent-series fields over κ, and as much as possible I will call the
larger field K = κ((x)), the smaller one F = κ((t)). The ring of integers of each of these fields will
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be denoted OK = κJxK and OF = κJtK, respectively, with maximal ideal xOK = MK and MF

respectively. We also need to handle the groups of principal units of these, 1 + MK and 1 + MF .
Although the definitions here have depended on the choice of uniformizer x and t, the structures
themselves are not so dependent. That is, any field automorphism ϕ ∈ Autκ(K) sends OK and
MK to themselves. An automorphism that sends a uniformizer x ofK to xz, where z ∈ 1 + MK ,
is called wild; again this does not depend on the choice of x. I will use xϕ to denote the image
of x under the action of ϕ, so that xϕ = u(x) = x

(
1 +

∑
m≥1 amx

m
)
∈ OK . If d is the smallest

index for which ad 6= 0, we say that the depth of u is d, and write δ(u) = d. The depth is a
property of the automorphism ϕ, not merely the series u that describes it. The set of wild
automorphisms of K is a group, which I will denote Aut1

κ(K), and the corresponding series are
all the u(x) = x+ · · · ∈ x(1 + MK), the Nottingham group over κ. I will write automorphisms
and isomorphisms of fields on the right, as exponents: if xϕ = u and xψ = w, then xϕψ is
the composition u ◦ w, the result of substituting w(x) for the variable in u(x). I will use the
notation u◦n for the n-fold iterate of u, except when n = −1. And I will write 〈∗〉 for the group
generated by the element or set or list of objects represented by the asterisk.

The Nottingham group Nκ is a pro-p group, and it has for each m prime to p a useful injective
homomorphism that I will call m-dispersal, Dispm : Nκ → Nκ, which takes u(x) = xg(x), if
g ∈ 1 + MK , to

(
u(xm)

)1/m = x
(
g(xm)

)1/m, clearly a homomorphism from the first formula,
clearly well-defined from the second formula, since any principal unit may always be raised
to an exponent that is a p-adic integer. This is perhaps the first construct discussed here
that depends on the choice of the uniformizer x. Its utility comes from the obvious relation
δ
(
Dispm(u)

)
= mδ(u).

For a nonzero constant α ∈ κ, consider the fractional-linear series j1,α(x) = x/(αx+ 1) =
x− αx2 + · · · , a p-torsion element of Nκ. For m prime to p, let us define jm,α to be
Dispm(j1,mα) = x− αxm+1 + · · · , also a p-torsion element of Nκ, but now of depth m instead
of 1. The Theorem of Klopsch [5] that was mentioned before states simply that every p-torsion
element of Nκ is the conjugate in that group of a unique jm,α. Since α 6= β implies that
x+ αxm+1 + · · · is not conjugate to any x+ βxm+1 + · · · , Klopsch has given us a very clear
vision of just what the p-torsion in Nκ is.

2. Local class-field theory

In the incarnation of the subject presented here, class field theory deals with abelian
extensions of local fields. But let us first examine some aspects of local fields that are quite
general, not involving Galois theory in any way.

2.1. The multiplicative structure of a local field

For a local field in characteristic p such as F , we have two exact sequences:

1 −−−−→ 1 + MF −−−−→ O∗F −−−−→ κ∗ −−−−→ 1 (1)

1 −−−−→ O∗F −−−−→ F ∗
V−−−−→ Z −−−−→ 0 (2)

In line (1), the sequence splits because the constants are in OF already; in (2), the map V
is the additive valuation on F , nonnegative on elements of OF , and describing a splitting is
equivalent to choosing a uniformizer τ of F , that is an element with V (τ) = 1. Subject to the
choice of τ , then, we can write F ∗ ∼= 〈τ〉 ⊕ κ∗ ⊕ (1 + MF ).

When we have a finite extension K ⊃ F of fields, where F is complete and discretely valued,
then it is a consequence of Hensel’s Lemma that the unique Z-valued valuation on K satisfies
the formula VK(z) = VF

(
NK
F (z)

)/
f , where NK

F : K∗ → F ∗ is the field-theoretic norm, and f is
the residue-field extension degree, a number that is equal to 1 in the case of total ramification.
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Observation 1. Let K ⊃ F be a totally ramified extension of local fields of characteristic
p, and let z ∈ K. Then NK

F (z) ∈ OF if and only if z ∈ OK ; and if the extension is totally wild,
i.e. the degree is a power of p, then NK

F (z) ∈ 1 + MF if and only if z ∈ 1 + MK .

Little needs to be said about the proof except that for the second part, one needs to use
the fact that when the norm is restricted to the constants, its kernel is trivial, because |κ∗| is
prime to p. Note that nothing in the preceding presumes that the extension is Galois or even
separable.

Corollary 1. Let K ⊃ F be a totally wildly ramified extension of local fields with
constant field κ, let π1, π2 be uniformizers for K, and let τi = NK

F (πi). If πΦ
1 = π2 and τϕ1 = τ2,

with Φ ∈ Autκ(K) and ϕ ∈ Autκ(F ), then Φ is wild if and only if ϕ is also.

2.2. Finite subgroups of Nottingham as Galois groups

If u is a torsion element of Nκ of period pn, then we may apply the following general
considerations to the group it generates. Any finite subgroup Γ of Nκ, whether cyclic or not,
being a group of κ-automorphisms of K = κ((x)), will have a fixed field F over which K is
Galois with group Γ. The smaller field certainly has the same constant field, so the extension is
totally ramified, of degree |Γ|, and wildly ramified, since the degree is a power of p. Moreover,
the norm of x, t =

∏
u∈Γ u(x), is in F , and is a uniformizer for F . Any time we have a totally

ramified extension K ⊃ F with a pair of uniformizers (π, τ) such that NK
F (π) = τ , I will refer

to the coordinatizations as consistent.
But we have a situation where K ⊃ F is a finite abelian extension of local fields with Galois

group Γ. And for this situation there is the tool of local class-field theory, according to which
there is an exact sequence

K∗
NK

F−−−−→ F ∗
ρK

F−−−−→ Γ −−−−→ 1 ,

where NK
F is the norm, and ρKF is the norm residue map. That is, ρKF gives a canonical

isomorphism between F ∗
/
NK
F (K∗) and Γ, the Galois group AutF (K). The norms from K

are open in F ∗, and indeed if U is any open subgroup of finite index in F ∗, then there is a
canonical abelian extension K ⊃ F with NK

F K
∗ = U . The association U 7→ K is functorial: if

ψ : F → F ′ is an isomorphism, then the corresponding extension K ′ ⊃ F ′ has a corresponding
isomorphism Ψ: K → K ′ such that for z ∈ F , ρK

′

F ′

(
zψ
)

= Ψ−1ρKF (z)Ψ and as a result we have
also the fact that for ξ ∈ K∗,

(
NK
F (ξ)

)ψ = NK′

F ′

(
ξΨ
)
. It should be pointed out here that to go

from the data of F and the subgroup U to K and the map ρKF is a procedure that is well-suited
to calculation, at least with machine help, and we will do this in Section 5.

2.3. Cyclic extensions

Our concern in this paper is with cyclic extensions K ⊃ F , for which the Galois group Γ has
a specified generator γ, and in this case we may use the isomorphism Γ ∼= Z/pnZ induced by
γ ↔ 1 to define a continuous character X = Xγ : F ∗ → Z/pnZ with the property that for all
z ∈ F ∗, ρKF (z) = γX(z), as summarized here:

F ∗
ρK

F // //

Xγ ## ##GGGGGGGG ΓOO
∼=

��

3 γOO

��
Z/pnZ 3 1

(3)
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When we’ve started with a coordinatization of K, in effect giving from γ a torsion element of
the Nottingham group, there is additional information, summarized as:

Observation 2. Let u(x) ∈ Nκ be a torsion element of period pn; let t =
∏pn−1
i=0 u◦i(x);

and let F = κ((t)). Then K = κ((x)) is cyclic, totally wildly ramified over F of degree pn, and
U = NK

F (K∗) is open in F ∗, containing t and κ∗, with F ∗/U isomorphic via ρKF to 〈u〉.

The group of norms contains κ∗ because on the constants, the norm is the pn-th power map,
and |κ∗| is prime to p.

2.4. Characters on the principal units

The character X : F ∗ → Z/pnZ, where F = κ((t)), which came originally from a torsion
element of Nottingham, can always be restricted to the principal units 1 + MF , losing some
information in the process; but here, we look at the reverse process of starting with a character
χ : 1 + MF → Z/pnZ to get a torsion element of Nottingham.

Starting with a surjective continuous character χ : 1 + MF → Z/pnZ and a uniformizer t ∈
MF , we will construct a cyclic extension K ⊃ F and a generator γ of Gal(K/F ). Note that
Corollary 1 tells us that when γ is described by a power series u(x) dependent on a choice of
uniformizer x ∈MK , the conjugacy class of u in Nκ does not depend on the choice of x, as long
as (x, t) is a consistent pair. Here is our procedure, then: the given character χ extends uniquely
to all of O∗, and we extend it to all of F ∗ by letting it be zero at t. Call the extended character
X. If the kernel of χ is U0 ⊂ 1 + MF , then ker(X) =

〈
t, κ∗, U0

〉
. Call this subgroup U ; it’s open

in F ∗, and F ∗/U ∼= Z/pnZ. We apply the existence theorem of local class-field theory to get
the abelian extension field K, unique up to isomorphism, with NK

F (K∗) = ker(ρKF ) = U , and
take γ = ρKF

(
X−1(1)

)
. Since t is a norm from K, there are x ∈ K that make (x, t) a consistent

pair, to give a pn-torsion element of Nκ unique up to conjugacy in that group. I will refer to
the above process, which starts with a character on 1 + tκJtK and ends with a torsion element
u(x) of Nκ, as the standard procedure.

Observation 3. The Nottingham group Nκ acts on the group of characters defined on
1 + tκJtK with values in Z/pnZ in a natural way: if χ is such a character, and w(t) ∈ Nκ, then
wχ(f) = χ(f ◦ w), for f ∈ 1 + tκJtK. As one would expect, w

(
w′χ) = ww′χ.

When χ is a character on 1 + MF and ψ is an isomorphism from F ′ to F , I will use the
same notation, ψχ, for the corresponding character on 1 + MF ′ .

Definition 1. Let χ1 and χ2 be characters, χi : 1 + tκJtK→ Z/pnZ. We say that χ1 is
strictly equivalent to χ2 and write χ1 ' χ2 if there is w(t) ∈ Nκ such that χ2 = wχ1 and
w(t)/t ∈ ker(χ1).

One verifies without difficulty that strict equivalence is indeed symmetric and transitive.
Note, however, that if χ1 ' χ2 and χ2 = wχ1, it is not necessarily the case that w(t)/t ∈
ker(χ1). It is easily seen also that if ψ ∈ Aut1

κ

(
κ((t))

)
, with χ2 = ψχ1 and tψ/t ∈ ker(χ1), then

ψ maps
〈
t, κ∗, ker(χ2)

〉
onto

〈
t, κ∗, ker(χ1)

〉
.
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Lemma 2.1. Let K ⊃ F be a totally ramified cyclic extension of degree pn, with Gal(K/F )
generated by γ, let Xγ be the continuous character defined on F ∗ and onto Z/pnZ described
in 2.3, and let π1, π2 be uniformizers of K for which π2/π1 ∈ 1 + MK . For i = 1, 2, let τi =
NK
F (πi); let ψi : κ((t))→ F be the isomorphism taking t to τi; and let χi be the restriction to

1 + tκJtK of ψiXγ . Then χ1 and χ2 are strictly equivalent characters on 1 + tκJtK.

1 + tκJtK � � //

χ1

**TTTTTTTTTTTTTTTT

χ2 **TTTTTTTTTTTTTTTT
κ((t))

ψ1 //

ψ2

// F ∗

Xγ
��

K∗
NK
Foo

Z/pnZ

Proof. Because π2/π1 ∈ 1 + MK , we similarly have τ2/τ1 lying in 1 + MF , which means
that ψ2ψ

−1
1 ∈ Aut1

κ

(
κ((t))

)
. Thus χ2 = ψ2ψ

−1
1
χ1, so that for χ1 ' χ2, it remains to show

tψ2ψ
−1
1
/
t ∈ ker(χ1). We have:

χ1

(
tψ2ψ

−1
1

t

)
= χ1

( tψ2

tψ1

)ψ−1
1

 = Xγ

(
tψ2

tψ1

)
= Xγ

(
τ2
τ1

)
,

which is zero because both τi are norms from K.

Theorem 2.2. If u1 and u2 are torsion elements of Nκ that are conjugate in that group,
then the characters on 1 + tκJtK that correspond are strictly equivalent. Conversely if χ1 and
χ2 are strictly equivalent continuous characters on 1 + tκJtK with values in Z/pnZ, the torsion
power series that arise from them by the standard procedure are conjugate in Nκ.

Proof. Starting with two conjugate elements of Nκ, we may as well treat them as
descriptions of the same torsion element γ of Aut1

κ(K) arising from coordinatizations by
elements π1 and π2 of K. The hypothesis on the ui implies that π2/π1 ∈ 1 + MK , so that
we may apply Lemma 2.1 directly.

For the converse, let F = κ((t)) and let χ1 ' χ2, characters on 1 + tκJtK, values in Z/pnZ.
We need to show that the standard procedure produces power series that are torsion elements
of Nκ conjugate in that group. Choose u(t) ∈ κJtK, then, corresponding to ψ ∈ Aut1

κ(F ), for
which χ2 = uχ1 and u(t)/t ∈ ker(χ1). In accordance with our procedure, we extend χi to a
character Xi defined on all of F ∗ by setting Xi(t) = 0.

K∗2

NK2
F

��

Ψ //_________ K∗1

NK1
F

��
F ∗ = κ((t))∗

ψ

t 7→ u(t)
//

X2 ))RRRRRRRRRRRRRR F ∗

X1
��

Z/pnZ

At this point, we have only the lower part of the diagram, and even need to verify that X1 ◦ ψ =
X2. This is certainly true on elements of 1 + MF , since that is our hypothesis χ2 = χ1 ◦ ψ. But
X1(tψ) = X1(t tψ/t) = X1(t) + χ1(tψ/t) = 0, which is enough to prove the claim. Let us call
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Ui = ker(Xi); then we see that Uψ2 = U1, which was already remarked in the comments after
Definition 1.

Now, class-field theory tells us that corresponding to U1 and U2 there are abelian field
extensions, indeed cyclic extensions K1 and K2, such that each Ui is equal to NKi

F (K∗i ), and
that there is Ψ: K2 → K1 fitting into the preceding diagram: for each z ∈ F ∗, Ψ−1ρK2

F (z)Ψ =
ρK1
F (zψ). Recall that the standard procedure specifies an element of Gal(Ki/F ), γi =
ρKi

F

(
X−1
i (1)

)
. Thus γ1 = Ψ−1γ2Ψ. This does not yet prove anything: the desired conclusion

involves power series, not automorphisms, and the standard procedure demands that we
coordinatize the upper field in each case by a choice of uniformizer there that gives a consistent
pair: πi ∈ Ki with NKi

F (πi) = t.
Put πγi

i = wi(πi), where wi(x) ∈ κJxK, x being an indeterminate; also put $ = πΨ
2 . Then

the relations so far established give $γ1 =
(
w2(π2)

)Ψ = w2

(
πΨ

2

)
= w2($); that is, the auto-

morphism γ1 of K1 is represented by the power series w1 when the uniformizer π1 is used, but
by w2 when $ is used. To show that the the two series are conjugate in Nκ, we need only show
that $/π1 is a principal unit. But one easily sees that NK1

F ($/π1) =
(
NK2
F (π2)

)ψ/
t = tψ/t,

which is a principal unit; and so by using Observation 1, we see that w1 and w2 are conjugate
in Nκ.

3. The ramification data of a character

In view of Theorem 2.2, our attention passes from torsion elements of the Nottingham group
to continuous characters on 1 + tκJtK. Such characters are easy to construct in bewildering
profusion, and in Section 5 I will show how to use the explicit formulas of local class field
theory to write down as many terms as desired of the torsion element of Nottingham that
comes from a given character, subject only to the computing capability at our disposal.

In this section, we use a stripped-down version of higher ramification theory to give a coarse
classification of continuous characters χ : 1 + tκJtK→ Z/pnZ. I will quote many results from
Chapter 4 of [7] (or [8]), but will attempt to make the exposition comprehensible to readers
not familiar with this material.

3.1. The multiplicative fine-structure of a local field

Unlike the situation in characteristic zero, where the existence of the logarithm shows that
the principal units 1 + MF in the field F have a subgroup of finite index isomorphic to O+

F , the
situation in positive characteristic is much more interesting. The simplest case here is Fp((t)),
with constant field the prime field. One easily sees that the group 1 + tFpJtK is topologically
generated by the series {1 + tm} for m prime to p, so that 1 + tFpJtK ∼=

∏
m(1 + tm)Zp , the

indices ranging over those same values of m—because of the topology on the underlying group,
that’s a direct product, not sum. But the basis I’ve specified is arbitrary, far from natural;
the best basis is one related to the Artin-Hasse exponential—for a complete treatment of this
matter, one may refer to [4], Chapter III, Section 17. But all of these descriptions of 1 + tFpJtK
are based on the coordinatization by way of the uniformizer t: they are not in any sense
absolute.

When the constant field is not the prime field, the general picture is just as clear: if [κ : Fp] =
f , then a basis {ζ1, · · · , ζf} of κ over the prime field gives us a topological basis {1 + ζjt

m}
with all (j,m) satisfying 1 ≤ j ≤ f and gcd(p,m) = 1. Once again, the Artin-Hasse exponential
comes into its own, telling us that for each m prime to p, there is a factor of 1 + tκJtK naturally
isomorphic to W∞(κ), the ring of Witt vectors over κ. But while the action of Nκ on 1 + tκJtK is
Zp = W∞(Fp)-linear, this action does not respect the structure of 1 + tκJtK as W∞(κ)-module.
Thus we will not benefit from the use of Artin-Hasse. Suffice it to say that to describe a
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continuous character χ on 1 + tκJtK with values in Z/pnZ, it is enough to specify the value at
each 1 + ζjt

m, the indices as above, though all but finitely many of these values will be zero.

3.2. The break sequence of a character

Definition 2. Let F be a local field in which the maximal ideal of the ring of integers
is M, and let χ be a continuous character from 1 + M onto Z/pnZ. Then the break sequence
of χ is

〈
b(0), b(1), · · · , b(n−1)

〉
, where for each j, b(j) is the largest integer b for which there is

z ∈ 1 + Mb such that χ(z) = pj .

Alternatively, pn−j−1χ is trivial on 1 + Mb(j)+1 but not on 1 + Mb(j)
. A more important way

of looking at the break sequence is the following:

Observation 4. Let X : F ∗ → Z/pnZ be a continuous surjective character, and let K be
the corresponding extension of F , with Galois group generated by γ. If

〈
b(0), · · · , b(n−1)

〉
is the

ramification sequence of X, then for each j, ρKF (1 + Mb(j)

F ) = 〈γpj 〉, while ρKF (1 + Mb(j)+1
F ) =

〈γpj+1〉.

As an example over F3 with n = 2, suppose χ(1 + t) = 2 ∈ Z/9Z, χ(1 + t2) = 3, and χ(1 +
t5) = 6, but all for all other values of m prime to 3, χ(1 + tm) = 0. Then b(0) = 1 and b(1) = 5.

Observation 5. Let F be a local field of characteristic p, and χ a character from 1 + MF

onto Z/pnZ. Then the ramification sequence
〈
b(0), · · · , b(n−1)

〉
of χ satisfies the conditions:

(1) gcd(p, b(0)) = 1;
(2) For each i > 0, b(i) ≥ pb(i−1); and
(3) If the above inequality is strict, then gcd(p, b(i)) = 1.

Conversely, every sequence
〈
b(0), · · · , b(n−1)

〉
satisfying the above three conditions is the

ramification sequence of some character χ on 1 + MF .

This is easily seen, when the structure of 1 + MF is taken into account. Among the possible
forms for the sequence 〈b〉, one may be pointed out as most special: the one where b(i) = pi;
we can call these characters minimally ramified.

We will see in the next section that the classification of characters according to their
ramification sequences is the appropriate generalization to cyclic subgroups of Nκ of nonprime
order of the rough classification by depth in Klopsch’s Theorem. But at this stage, we merely
make:

Observation 6. There are only finitely many different characters χ with the ramification
sequence

〈
b(0), b(1), · · · , b(n−1)

〉
, and, a fortiori, only finitely many strict equivalence classes of

such characters.

Indeed, if r = b(n−1) + 1, then χ vanishes on 1 + Mr
F , so that χ is effectively a character on

the group (1 + M)
/(

1 + Mr), finite because κ is finite.

3.3. Upper and lower numberings: breaks and depths

Consider a character χ of the type we’ve been discussing, and the torsion element u ∈ Nκ of
period pn that has come from χ by application of the standard procedure. Since the depths of
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u and its several pj-power iterates are clearly invariant under conjugation, and similarly the
break sequence of χ is invariant under the action of Nκ, one would hope for a way of relating
these two sequences. In this paragraph, I do just that.

Definition 3. Let K ⊃ F be a totally ramified Galois extension of local fields, with
Gal(K/F ) = G. If π ∈MK is a uniformizer for K, set Gj = {γ ∈ G : vπ(πγ/π − 1) ≥ j}.

Observation 7. The filtration G = G0 ⊃ G1 ⊃ · · · does not depend on the choice of π,
and the subgroups Gj all are normal in G.

Proposition 3.1. Let K ⊃ F be a totally ramified Galois extension of local fields with
group G, and let κ be their common constant field. Then G0/G1 is injected into κ∗, and for
i > 0, Gi/Gi+1 is injected into κ+. In particular, if G is cyclic of degree pn, then (Gi : Gi+1) ≤ p
and there are precisely n values of i for which Gi 6= Gi+1.

The proof is easy, and I refer the reader not familiar with this matter to a standard reference
such as Chapter IV of [7] ([8]).

Definition 4. For a Galois totally ramified extension K ⊃ F , the lower breaks are the
finitely many values of i for which Gi 6= Gi+1. When we denote them in ascending order b0,
b1, . . . , bs−1, the upper breaks b(0), b(1), . . . , b(s−1) are defined as follows:

b(0) = b0

b(j) = b(j−1) +
bj − bj−1

(G : Gbj
)
, for j > 0

 (4)

Observation 8. When u is a torsion element of Nκ of period pn, the n lower breaks of
the Galois group Γ = 〈u〉 are exactly the depths of u, u◦p, . . . , u◦p

n−1
.

Let us return to Definition 4 for a moment: it is by no means obvious that the upper breaks
are integers, and indeed they usually are not. But the Hasse-Arf Theorem says that when the
Galois group is abelian, the upper breaks are integral. Its background and proof can be found
in §3 of Chapter IV and §7 of Chapter V, respectively, of [7].

Another result that we need, and that I can only quote and not attempt to prove here, is
to be found at the very end of [7]: it is that when an extension K ⊃ F is totally ramified and
abelian with group G, then Gbj = ρKF (1 + Mb(j)

F ). The precise reference is [7], Chapter XV, §3,
Theorem 2. The upshot is:

Proposition 3.2. If γ is an element of Autκ(K) of period pn, with fixed field F , and Xγ is
the associated character defined on F ∗, then the upper breaks of the group 〈γ〉 are the breaks〈
b(0), · · · , b(n−1)

〉
of Xγ .

For the case that we are most interested in, where the Galois group is cyclic and (G : Gbj
) =

pj , we have the relatively simple relation of Formula 4 connecting the depths of the successive
p-power iterates of the torsion element u of Nκ to the breaks of the associated character. In
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particular, for the minimally ramified case where b(j) = pj , the corresponding torsion series u
has δ

(
u◦p

j)
=
(
p2j+1 + 1

)/
(p+ 1).

4. Klopsch’s Theorem

Recall that the theorem from [5] that has prompted this paper, namely Proposition 3.3
there, states that the conjugacy classes of p-torsion elements of Nκ of depth m are represented
by the series that I called jm,a(x) ∈ κJxK in Section 1. Since these are indexed by the nonzero
elements of κ, an equivalent way of stating Klopsch’s Theorem is to say that there are precisely
|κ| − 1 strict equivalence classes of continuous characters χ defined on 1 + tκJtK and onto
Z/pZ. That the two statements are equivalent follows from Theorem 2.2, Observation 8, and
Proposition 3.2.

4.1. The proof

Our proof here of Klopsch’s Theorem is Theorem 4.2 below, and we prepare the ground with
the computational Lemma 4.1.

We call κ((t)) = F , as usual, and note that for a character χ to have its break sequence simply
〈m〉means precisely that χ is trivial on 1 + Mm+1

F but not on 1 + Mm
F , and that thus χ restricts

to a nonzero linear function χ̃ on the κ-one-dimensional space
(
1 + Mm

)/(
1 + Mm+1

)
. Note

also that for any u ∈ Nκ, ũχ = χ̃.

Lemma 4.1. Let χ and ψ be characters on 1 + MF , both with break sequence 〈m〉. Then
there is u ∈ Nκ with ψ = uχ if and only if χ̃ = ψ̃.

Proof. Let us suppose first that χ̃ = ψ̃. Our hypotheses imply that χ and ψ agree on
1 + Mm. We will need to use the nondegeneracy of the trace pairing, which implies that if
σ : κ→ Fp is Fp-linear, there is a unique a ∈ k such that for every λ ∈ κ, σ(λ) = Tr(aλ), where
Tr is the field-theoretic trace from κ to Fp. We may use the series 1 + tm as the basis element
for the one-dimensional κ-space

(
1 + Mm

)/(
1 + Mm+1

)
, and we now let a ∈ κ be such that for

every λ ∈ κ, χ(1 + λtm) = ψ(1 + λtm) = Tr(aλ). Let us show inductively, starting with n = 0,
that there is un(t) ∈ Nκ with χn := unχ and ψ agreeing on 1 + Mm−n; we take u0(t) = t,
the identity element of Nκ. Now, in case m− n− 1 is a multiple of p, it must be that no
matter what λ is in κ, χn(1 + λtm−n−1) = 0, since χn is being evaluated at a p-th power.
So in this case, we may accomplish the inductive step by taking un+1 = un, χn+1 = χn. In
the general case that m− n− 1 is not a multiple of p, set U(t) = t+ βtn+2, for β ∈ κ to be
determined. For j ≥ m− n, (1 + λtj) ◦ U(t) ≡ 1 + λtj mod (tm+1), so that for these values of
j, U (χn) and ψ agree when evaluated at 1 + λtj . Thus we need only adjust β so that for all
λ, Uχm(1 + λtm−n−1) = 0. Now, since χs and ψ agree on 1 + Mm−n, the character χs − ψ
induces a linear map from

(
1 + Mm−n−1

)/(
1 + Mm−n) to Fp, so there is c ∈ κ such that for

all λ,
(
χn − ψ

)
(1 + λtm−n−1) = Tr(cλ). Now we have(

U (χn)
)
(1 + λtm−n−1) = χn

[
1 + λ(t+ βtn+2)m−n−1

]
= χn

[
1 + λ(tm−n−1 + (m− n− 1)βtm)

]
= χn(1 + λtm−n−1) + χn

(
1 + λ(m− n− 1)βtm

)
= ψ(1 + λtm−n−1) + Tr(cλ) + Tr

(
(m− n− 1)aβλ

)
,

which necessitates c+ (m− n− 1)aβ = 0, possible because a and m− n− 1 both are nonzero
in κ. Consequently, we take un+1 = U ◦ un, and ψn+1 = U (ψn) to complete the induction and
the “if” part of the Lemma. The “only if” statement is much easier. Indeed, suppose that
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uχ = ψ for u(t) = xg(t) ∈ Nκ, and therefore
(
g(t)

)m = 1 + µt+ · · · . Then

ψ(1 + λtm) = χ(1 + λum) = χ(1 + λtm + λµtm+1 + · · · ) = χ(1 + λtm) ,

so that ψ̃ = χ̃.

Theorem 4.2. Let χ and ψ be continuous characters from 1 + tκJtK onto Z/pZ, and with
their unique break at m. Then χ ' ψ if and only if χ̃ = ψ̃.

Proof. There are only |κ| − 1 linear functions χ̃ because each of them is of the form 1 +
λtm 7→ Tr(aλ) for an a ∈ κ∗ that is determined by χ̃. If now χ̃ = ψ̃, we know from Lemma 4.1
that there’s a u(t) ∈ Nκ such that ψ = uχ, but it remains to adjust this u to a ū such that
ψ = ūχ and ū(t)/t ∈ ker(χ). Consider χ

(
u(t)/t

)
= ν ∈ Fp. Because χ̃ 6= 0, there is c ∈ κ such

that χ(1 + ctm) = −ν. Now we simply set ū(t) = (1 + ctm)u(t), which certainly satisfies the
second condition on ū above; and since u(t) and ū(t) are congruent modulo (tm+1), the first
condition is satisfied as well.

The converse follows from the easy half of Lemma 4.1.

4.2. Connecting the present approach with Klopsch’s

Let us call ωb : κ→ Fp the linear map λ 7→ Tr(λ/b). It is still incumbent on us to see which
series jm,a is conjugate to an element of Nκ that comes, via the standard procedure, from a
character χ : 1 + MF → Fp with ramification data 〈m〉, and for which χ̃ = ωb. The answer is
that a = b1/p, and the proof comes from an explicit description of the class field theory of a
ramified cyclic extension of degree p to be found in [7]. It is Proposition 5 in § 3 of Chapter XV.
I quote it here, with only light rephrasing.

Proposition 4.3. Let K/F be a cyclic, totally ramified extension of degree p equal to the
characteristic of F ; let G be its Galois group, and s a generator of G. Let π be a uniformizer
of K, and let m = vK(M), where M = (πs/π)− 1. Let x ∈ 1 + MF

m, and let c(z) = (z −
1)/TrKF (M). Then c(z) ∈ OF , and if c̄ denotes its image in the residue field κ, one has ρKF (z) =
sTr(c̄).

The trace map mentioned at the very end is the κ-over-Fp trace, as has been the established
notation for this paper. The Proposition in [7] makes use of a “super-trace” that’s definable
for any quasifinite field κ, but in our case Serre’s function boils down to the ordinary trace.

Although in principle the above Proposition could be used for a direct proof of the desired
result, it seems most efficient to use it only for the case where the unique break is at m = 1,
and use another result in local class field theory, also standard but more general, to get the
general case. This is the Norm Relation, extractable from Property (1) of § 3, Chapter XI
of [7]. It says that if K ⊃ F is a finite extension of local fields, and K and F are intermediate
fields with K abelian over F and K abelian over F , then for z ∈ K and α ∈ F ∗, the relation(
ρKF (α)

)
(z) =

{
ρKF
(
NF
F (α)

)}
(z) holds: as seen in the diagram below, restriction of elements of
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Gal(K/F ) to K corresponds to taking the norm from F to F .

K

K

}}}}}}}

abelian

F

abelian

F

}}}}}}}

Theorem 4.4. Let a ∈ κ, and let u(x) = jm,a(x) = x/(1 +maxm)1/m. Let K = κ((x)) and
F = κ((t)), where t =

∏p−1
i=0 u

◦i(x). Then the associated character χ : 1 + MF → Z/pZ has
χ̃(λ) = Tr(λ/ap) for all λ ∈ κ.

Proof. Remember that since χ has 〈m〉 for its unique break, we need to show that
χ(1 + λtm) = Tr(λ/ap), in other words that ρKF (1 + λtm) acts on x to give u◦n(x), where
n = Tr(λ/ap).

First, we prove the Theorem in the case that m = 1. Since t expands as xp/(1− ap−1xp−1),
the minimal polynomial for x over F is xp + ap−1txp−1 − t, and TrKF (x) = −ap−1t. So, in
Proposition 4.3, we have the dictionary: s is the automorphism induced by u, π = x, m =
1, M = −1 + u(x)/x = −au(x), and TrKF (M) = −aTrKF (x) = apt. If z = 1 + λt, then ρKF (z) =
u◦n(x), where n = Tr(λ/ap) ∈ Fp, as desired.

For the case of general m, we form the subfield K = κ((ξ)) of K, where ξ = xm, and note
that the automorphism of K induced by the power series u(x) restricts to K to send ξ to
w(ξ) = ξ/(1 +maξ): in other words, as series, u = Dispm(w). We put τ =

∏
i w
◦i(ξ), so that

τ = tm as well, and we set F = κ((τ)).
Say that ρKF (1 + λtm) acts on x to give u◦n(x). Then by the construction of w it acts on ξ to

give w◦n(ξ), and by the Norm Relation, it acts on ξ by application of σ = ρKF
(
NF
F (1 + λtm)

)
.

But NF
F (1 + λtm) = (1 + λτ)m, which is congruent modulo MF

2 to 1 +mλτ . Then the case
where m = 1 applies to tell us that ξσ = w◦ν(ξ) where ν = Tr(mλ/mpap), so that n = Tr(λ/ap),
as claimed.

5. Explicit computations

In this section, we will see how the explicit description of the norm residue mapping, first
described in work of Carlitz from the 1930’s (for example [1], [2], [3]), can be used to calculate
as many terms as one might like of the torsion series in Nκ corresponding to a given continuous
character on 1 + tκJtK. Rather than go back to Carlitz, however, I will use the techniques and
notation from [6], explaining these as rapidly as I can before working out any examples.

5.1. Explicit local class field theory

We work with a finite field κ ∼= Fq, and a local field F = κ((t)), where t is an indeterminate.
We fix a polynomial f(X) = tX +Xq, and note (Lemma 1 of [6]) that for every z ∈ O =
κJtK, there is a unique series [z](X) ∈ OJXK that satisfies the condition [z]′(0) = z and that
commutes with f : [z]

(
f(X)

)
= f

(
[z](X)

)
. In fact, if z =

∑
i cit

i, where the coefficients ci are
in κ, then [z](X) =

∑
i cif

◦i(X), where as usual the exponent on f denotes i-fold iteration. In
particular, for c ∈ κ, [c](X) = cX, and [tn] = f◦n. One calculates easily that [t2](X) expands
out to t2X + (t+ tq)Xq +Xq2 , and the reader may find it instructive to work out what [t3](X)
is, as well.
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The merit of the polynomials [tm](X) is this:

Proposition 5.1. The field Ft gotten by adjoining all roots of all [tm] to F enjoys the
following properties:
(1) The extension Ft ⊃ F is abelian and totally ramified; and among all abelian totally

ramified extensions of F , Ft is maximal.
(2) The uniformizer t is a norm from every finite extension K ⊃ F contained in Ft, and no

other uniformizer of F has this property.
(3) If U is the maximal unramified extension of F in an algebraic closure of Ft, then FtU is

the maximal abelian extension of F .
(4) Let n ≥ 1. The abelian extension Fn of F for which NFn

F (F ∗n) = 〈t〉·(1 + Mn
F ) is the

field gotten by adjoining all the roots of [ti] for i ≤ n, equivalently all the roots of [tn],
equivalently one root of the F -Eisenstein polynomial [tn]/[tn−1] = f◦n(X)/f◦(n−1)(X),
where f◦0(X) is understood to be X.

(5) Furthermore, Gal(Fn/F ) ∼= O∗/(1 + Mn). It is also the case that for z ∈ O∗, ρFn

F (z) sends
any root ζ of [tn] to [z−1](ζ), ρFn

F being the the norm residue mapping.

These properties may be found in [6], mostly in Theorems 2 and 3 there. The extension
Fn ⊃ F has a tame degree of q − 1, thus is not totally wildly ramified unless q = 2. It may be
worthwhile to observe that the breakpoints (bi, b(i)), for 0 ≤ i < n, are bi = qi − 1, b(i) = i.

5.2. How to proceed

With the facts from Proposition 5.1, we can build torsion elements of Nottingham. Take
a continuous character χ : 1 + tκJtK→ Z/pmZ, and assume χ surjective, so that it is of order
pm. If the breaks of χ are 〈b(0), · · · , b(m−1)〉, set n = b(m−1) + 1. Then 1 + Mn = 1 + tnκJtK is
the largest subgroup of this shape contained in ker(χ), i.e. n is the smallest integer for which
Im(χ) appears naturally as a quotient of O∗/(1 + Mn). We extend χ to be a character on O∗
by setting it to be zero on κ∗ (necessary, because |κ∗| is prime to p); this gives an intermediate
field K between F and Fn, namely the fixed field of ker(χ), as in Diagram 5 below:

Fn

ker(χ)

K

Z/pmZ

F

O∗/(1 + Mn)

7
/

'
� �

�
�

(5)

We have Gal(K/F ) ∼= Z/pnZ, with K being a local field, say K = κ((x)) for some uniformizer
x of K. And the automorphism of K that we seek is the restriction to K of the automorphism
of Fn corresponding to χ−1(1) via the norm residue mapping.

The recipe for doing this consists of the following steps:
(1) Get a uniformizer y for Fn, in fact y must be a root of f◦n/f◦(n−1), which may also be

seen as g ◦ f◦(n−1), where g(X) = f(X)/X = t+ xq−1. Then express t ∈ F as a power series in
y, t = G(y). The initial degree of G will be (q − 1)qn−1 = [Fn : F ]. This series will be calculated
up to a degree N that is suitably large. This may look like a daunting computational task,
but if we consider the relation t+

(
f◦(n−1)(y)

)q−1 = 0 as a polynomial equation in κJyK[t] for
which we seek a root in κJyK, then we see that the derivative is a unit in κJyK, and Newton’s
method can be utilized. In fact, in the example in §5.3 below, only six iterations were needed
to get accuracy modulo (y1601).



TORSION IN THE NOTTINGHAM GROUP Page 13 of 14

(2) Choose z ∈ κ[t] ∩ 1 + MF for which χ(z) = −1 (to take account of the exponent in rule
(5) of Proposition 5.1), and expand [z](X) ∈ κ[t][X]. It will be a polynomial, not an infinite
series. Then make the substitution t 7→ G(y), X 7→ y, to get an invertible series in y, say U(y),
which in fact will be a torsion element of Nottingham, valid up to degree N .

(3) List the elements of ker(χ) modulo 1 + Mn, there will be (q − 1)qn−1/pm of them, call
this number s, and say that the list is {1 = a0, a1, · · · , as−1}. Then write

∏
i[ai](X), again a

polynomial in t and X, and again substitute G(y) for t, y for X, to get N (y), a power series
in y that in fact is the norm of y down to K. As a power series in y, its initial degree is s.

(4) Call N (y) = x ∈ K. The automorphism of Fn described by U restricts to an automor-
phism of K, taking x to u(x) ∈ κJxK. This is the desired element of Nottingham, and as a
power series, it satisfies the relation u ◦ N = N ◦ U . Notice that since N is not an invertible
series, it is not routine to find u from the data of N and U . I should also point out at this
stage that the final product u is now known only up to degree N/s.

5.3. An example

As an example, let us construct an element of period 8 in characteristic two that’s a little
more interesting than a minimally ramified one. Take the ramification data 〈1, 3, 6〉, with the
constant field κ = F2, and let F be κ((t)), with the character χ : 1 + MF → Z/8Z the one for
which χ(1 + t) = −1, χ(1 + t3) = 2, and χ(1 + t5) = 0. Since χ will vanish on 1 + M7

F , the
number n in the recipe in the previous section is 7, [F7 : F ] = 64, and s = 8.

If we want accuracy in our explicitly computed torsion series u to be 200, we need to do our
computations in F7 = κ((y)) to degree 1600. The first thing to compute is the expression for t
in terms of the uniformizer y of F7. In the notation of §5.2, f(X) = tX +X2, and we need to
use the relation t+ f◦6(y) = 0 to get an expression t = G(y), and what we get is

t ≡ G(y) = y64 + y96 + y128 + · · ·+ y1593 + y1594 + y1596 mod (y1601) .

Next step is to list the elements of ker(χ) as a homomorphism defined on (1 + MF )
/

(1 +
M7
F ). The kernel is of order eight, generated by (1 + t2)(1 + t3) and 1 + t5. These eight elements

must be expanded as described in the previous section, and then the eight are to be multiplied
together to give a series for N (y) = x. We get

x = N (y) ≡ y8 + y20 + y36 + · · ·+ y1594 + y1596 + y1599 mod (y1601) .

The series N ◦ U may be computed simply by composition of power series, but I found that
it was much more direct to list the elements of the coset (1 + t) ker(χ), expand and multiply
the eight results, just as N (y) was calculated immediately above. In any event, the result is

(N ◦ U)(y) ≡ y8 + y16 + y20 + · · ·+ y1593 + y1599 + y1600 mod (y1601) .

From the givens of N and N ◦ U , getting the unique u such the u ◦ N = N ◦ U is most likely
not available as a preexisting routine in a computation package, but is easily programmed and
presents no problem. In our specific case, we get u = u100 + u200, where

u100(x) = x+ x2 + x3 + x5 + x8 + x11 + x13 + x14 + x16 + x17 + x18 + x19 + x20

+ x21 + x24 + x26 + x27 + x29 + x30 + x31 + x33 + x34 + x35 + x36 + x37 + x39

+ x42 + x44 + x45 + x47 + x48 + x49 + x51 + x52 + x55 + x58 + x59

+ x63 + x65 + x68 + x71 + x72 + x73 + x76 + x78

+ x81 + x82 + x83 + x84 + x85 + x86 + x89 + x90 + x92 + x93 + x95 + x96 + x100 ,



Page 14 of 14 TORSION IN THE NOTTINGHAM GROUP

and

u200(x) = x104 + x106 + x109 + x110 + x113 + x114 + x115 + x116 + x117 + x118 + x120

+ x122 + x123 + x124 + x125 + x127 + x129 + x135 + x136 + x139

+ x141 + x144 + x145 + x146 + x147 + x148 + x153 + x157 + x158

+ x162 + x165 + x166 + x167 + x168 + x169 + x171 + x172 + x175 + x176 + x180

+ x184 + x185 + x189 + x190 + x194 + x195 + x197 + x199 + x200 ,

and I leave it to the reader to check not only that the depths of u◦2 and u◦4 are 5 and 17
respectively, as predicted, but also that u◦8(x) ≡ x mod (x201).
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