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1 Introduction

To motivate the main construction in this paper we first describe one of
the simplest and best known averaging processes. For some fixed n ≥ 3 let
X = {x1, ..., xn} be n distinct and cyclically ordered points on the circle
R/Z. Define X ′ = {x′

1, ..., x
′
n} where x′

j is the midpoint of the segment Ij

whose endpoints are xj and xj+1, with indices (as always) taken mod n. Of
the two possibilities, Ij is chosen so that it contains no other xk. In general
let X(k+1) = (X(k))′. To understand the asymptotic behavior of {X(k)} one
defines the energy

ϕ(X) =
n∑

j=1

|Ij |2. (1)

Here |Ij| is the length of the interval Ij. The minimum value, 1/n, occurs
when the points are evenly spaced−that is, when |I1| = ... = |In|. Using the
fact that |I ′

j| = 1
2
(|Ij| + |Ij+1|) we get, after some algebra:

ϕ(X) − ϕ(X ′) =
1

4

n∑

i=1

(|Ij| − |Ij+1|)2 ≥ 0 (2)

Thus we see that ϕ(X ′) ≤ ϕ(X) with equality iff the points are evenly spaced.
Moreover, the difference ϕ(X) − ϕ(X ′) is large unless the points of X are
nearly evenly spaced. From these two observations we see that the points of
{X(k)} rapidly become evenly spaced as k → ∞.

∗ Supported by N.S.F. Grant DMS-0305047 and also by a Guggenheim Fellowship
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The averaging process we just considered uses the metric structure of
R/Z for its definition. In this paper we will consider the simplest kind of
averaging process that is based on the conformal structure of the unit circle
S1, considered as the ideal boundary of the hyperbolic plane H

2. See [B]
for basic information about H

2. The natural automorphisms of S1, the
conformal transformations, are then interpreted as extensions to the ideal
boundary of isometries of H

2.

wj−1

wj+2

wj+1 w’j wj

Figure 1

Let n ≥ 5. Let W = {w1, ..., wn} ⊂ S1 be a list of n cyclically ordered
points−i.e. an n-gon. Let Ij be as above. We define w′

j ∈ Ij by either
of the constructions shown in Figure 1. The first construction, which is
adapted to the Poincaré model of H

2, involves a configuration of circles, in
which every two circles are either disjoint or intersect at right angles. The
second construction, which is adapted to the Klein model of H

2, involves
straight lines. Let W ′ = {w′

1, ..., w
′
n}. We call W ′ the conformal average of

W . The process is conformally natural: If h is a conformal transformation
then (h(W ))′ = h(W ′). We define W (k+1) = (W (k))′. We are interested
in the asymptotic behavior of the sequence {W (k)}−which is to say, of the
conformal averaging process.

Say that W is conformally regular if there is a conformal transformation
h such that h(W ) is the vertex set of a regular n-gon. Here is our main
result:
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Theorem 1.1 For any n-gon W , there is a conformally regular n-gon W (∞)

such that {W (2k)} converges exponentially fast to W (∞).

By exponentially fast we mean that there are positive constants C1, C2, de-
pending on W , such that every vertex of W (2k) is within C1 exp(−C2k) of the
corresponding vertex of W (∞). The sequence {W (2k+1)} likewise converges
exponentially fast to (W (∞))′, and (W∞)′′ = W∞.

To prove Theorem 1.1 we introduce a conformally natural energy function
which increases under the conformal averaging process. Given 4 distinct unit
complex numbers a, b, c, d ∈ S1 we have their cross ratio

χ(a, b, c, d) =
(a − b)(c − d)

(a − c)(b − d)
(3)

If a, b, c, d come in cyclic order on S1 then χ(a, b, c, d) ∈ (0, 1). See [B]. We
define

φ(W ) =
n∏

j=1

zj ; zj = χ(wj , wj+1, wj+2, wj+3). (4)

We will see that
φ(W ′) ≥ φ(W ) (5)

with equality iff W is conformally regular. We will also see that φ(W ′)−φ(W )
is large if W is far from being conformally regular. These properties are the
main ingredients in our proof.

The conformal averaging process is a discrete analogue of a P.D.E. we
studied in [S]. Our main result 1 there is an analogue of Theorem 1.1 for
circle diffeomorphisms. The main idea there is to establish the monoticity of
the integral of the Schwarzian derivative, which is a smooth analogue of the
functional log φ. The work in [S] was motivated by the conformal averaging
process. We would have liked to prove Theorem 1.1 at the time we wrote
[S], but we didn’t know to do it.

Equation 5 has a nice consequence.

Corollary 1.2 Suppose W1 and W2 are two n-gons in S1, with W2 being

conformally regular. Then φ(W1) ≤ φ(W2), with equality iff W1 is also con-

formally regular.

1It seems worthwhile to point out an embarrassing typo we noticed, long after the
publication, in the statement of the main theorem in [S]. The derivative ∂/∂tn should
(obviously) be ∂/∂xn.
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Equation 5 is an immediate consequence of the following two equations:

φ(W ′)

φ(W )
=

[ ∏n
i=1(1 + ai + ai+1)∏n

i=1((1 + ai−1)(1 + ai+1) − a2
i )

]2

; aj =
√

zj . (6)

n∏

i=1

(1+ai+ai+1) ≥
n∏

i=1

((1+ai−1)(1+ai+1)−a2
i ) ∀(a1, ..., an) ∈ [0, 1]n. (7)

We have equality iff a1 = ... = an. As usual, indices are taken mod n.
We found Equation 7 too hard to tackle directly, so we split it up as:

n∏

i=1

(1 + ai + ai+1) ≥
n∏

i=1

(1 + 2ai) ∀(a1, ..., an) ∈ [0, 1]n; (8)

n∏

i=1

(1 + 2ai) ≥
n∏

i=1

((1 + ai−1)(1 + ai+1) − a2
i ) ∀(a1, ..., an) ∈ [0, 1]n. (9)

In both cases we have equality iff a1 = ... = an. Equation 8 has an
easy proof. We tried hard to find an easy proof of Equation 9, but couldn’t
do it. We reduce Equation 9 to the statement that a certain polynomial
P ∈ Z[

√
5](X, Y, Z) is non-negative on the unit cube; then we prove it.

P has over 500 terms, both positive and negative, but the positive terms
dominate the negative terms in a certain sense. If Equation 9 has a simple
proof we would love to see it.

From the point of view of conformal geometry there is more than one cir-
cle. Say that a conformal circle is a smooth circle−i.e. a smooth connected
closed 1-manifold−equipped with a system of coordinate charts into S1 such
that the overlap functions are restrictions of conformal maps. Such an object
is also called an RP

1-structure on a circle. Two conformal circles are equiv-

alent if there is a diffeomorphism between them, which is locally conformal
when measured in the special coordinate systems. The set of inequivalent
conformal circles is bijective with the set of conjugacy classes of elements in
S̃L2(R), the universal cover of SL2(R). See [K] and also §6 for more details.

If S is a conformal circle and w ∈ S is a point then there is a locally
conformal map devw : S − {w} → S1, unique up to composition with a
conformal automorphism of S1. We call devw a local developing map. We
call S small if devw is injective and omits more than one point, for every
w ∈ S. We call S medium if S is not small but devw is injective for all
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w ∈ S. Otherwise we call S large. When S is small or medium we can
use the local developing maps to define the conformal averaging process for
polygons in S.

When S is small, S has a canonical Riemannian metric, invariant under
its whole conformal automorphism group. In this case, it makes sense to
speak of regular n-gons on S.

Theorem 1.3 Suppose S is small. For any n-gon W ⊂ S, there is a regular

n-gon W (∞) ⊂ S such that {W (2k)} converges exponentially fast to W (∞).

Aside from S1 there is one other medium conformal circle, which we call
S1
−. This circle corresponds to a certain element of S̃L2(R) which covers a

parabolic. S1
− is a funny point in the moduli space of all conformal circles;

S1 and S1
− cannot be placed inside disjoint open sets. We think of S1

− as
being “infinitesimally smaller than” S1. Let W(S1

−, n) denote the space of
n-gons in S1

−.

Theorem 1.4 For any n-gon W ⊂ S1
−, the sequence {W (k)} exits every

compact subset of W(S1
−, n). At the same time, the list of cross ratios of

W (k) converges to the list of cross ratios for the regular n-gon.

We shall not discuss all the large conformal circles, but will concentrate
on the simplest examples. Let θ > 1. The large conformal circle S1

θ has the
following description. Let S̃1 denote the universal cover of S1 and let Tθ be
the isomorphism of S̃1 which translates by 2πθ. Then S1

θ = S̃1/Tθ. When θ
is an integer, this definition coincides with the usual definition of a covering
space. A regular n-gon in S1

θ is an n-gon whose list of cross ratios is constant.
These are unique up to conformal automorphism of S1

θ .
It turns out that the conformal averaging process is not defined for every

n-gon in a large conformal circle, as we explain in §6.3. Let W(S1
θ , n) denote

the space of n-gons in S1
θ for which all the cross ratios are defined. This

condition means that 4 consecutive points of W must lie in an arc of S1
θ of

length less than 2π, as measured in a canonical Riemannian metric on S1
θ .

See §6.3 for more details. The conformal averaging process is only defined
for polygons in W(S1

θ , n).
Let n > 4θ. As we will see in §6.4, this condition guarantees that the

regular n-gons in S1
θ belong to W(S1

θ , n). We call a polygon W ⊂ W(S1
θ , n)

excessive if φ(W ) > φ(W0), where W0 is a regular n-gon in S1
θ .
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Theorem 1.5 Let θ > 1 and n > 4θ. Suppose that W ∈ W(S1
θ , n) is

excessive. Then there is some k such that W (k) is not defined.

For excessive polygons, the conformal averaging process relentlessly dis-
orders the points until the process can no longer be defined. Theorem 1.5 is
similar to the “finite time blow-up” result of [S]. Incidentally, to show that
Theorem 1.5 is not vacuous, we prove:

Theorem 1.6 Let θ > 1 and n > 4θ. Then W(S1
θ , n) contains excessive

n-gons which are arbitrarily close to being regular.

We think that the contrasting statements in Theorems 1.1, 1.3, 1.4 and 1.5
have more to do with the nature of conformal circles than they have to do with
the specific averaging process. For instance, the main structural difference
between S1 and S1

θ , which impacts the conformal averaging process, is this:
The regular polygons in S1 are maxima for φ but the regular polygons in S1

θ

are saddle points for φ. Any non-trivial conformally natural process which
satisfies Equation 5 should behave like the process we consider. To illustrate
this principle, we will consider a modified process in §7 and reprove all our
results for it. The modified process is less symmetric than the conformal
averaging process, but its analysis avoids the pain of Equation 9 and thereby
gives a swifter proof of Corollary 1.2.

We discovered the mathematics in this paper by experimenting on the
computer. Accordingly, our proofs sometimes require some symbolic manip-
ulation, which we perform in Mathematica [W]. Specifically,

1. We take the cross ratio of the 4 quantities in Equation 17 and simplify
the result to get Equation 19. Similarly, we take the cross ratio of the
4 quantities in Equation 69 and simplify the result to get Equation 70.

2. We compute some first and second partial derivatives of the function φ
(Equation 4), the function E (Equation 28), the function F (Equation
33), and the function G (Equation 73).

3. We compute the quantities γ and δ in Equation 47.

4. We compute the polynomial P (X, Y, Z) mentioned above, and also the
auxilliary polynomials P0, P̂0, P1, P2, P3, P̂3, Π1, Π2 defined in §4.3.
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Someone who has a rudimentary knowledge of Mathematica can easily re-
produce Computations 1 and 2, and the right sort of reader can do them by
hand. For the convenience of the reader, we include in §4.4 our computer
code for Computations 3 and 4. This code can be copied (back) into a file
verbatim and run in Mathematica.

Alternatively, the reader can verify our calculations using the files in
the package www.math.umd.edu/∼res/Papers/conformal.tar. Once
downloaded, the package can be unpacked on a unix machine with the com-
mand: tar −xvf conformal.tar. This command produces the directory
Conformal, which has the relevant files.

This paper is organized as follows.

• In §2 we prove Equation 6.

• In §3 we prove Equation 8.

• In §4 we prove Equation 9.

• In §5 we prove Theorem 1.1 and Corollary 1.2.

• In §6 we prove Theorems 1.3, 1.4, 1.5, and 1.6.

• In §7 we reprove all our results for a modified process.

I thank Jeremy Kahn, whose insightful comments streamlined the method
in §4.3. I also thank the John Simon Guggenheim Memorial Foundation, the
National Science Foundation, the University of Maryland, and the Institute
for Advanced Study, for their generous support.
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2 Proof of Equation 6

2.1 The Derivation

Stereographic projection gives a conformal isomorphism between S1, the cir-
cle of unit complex numbers, and R ∪∞, the real projective line. See [B].
In this chapter we will use this isomorphism, so that our computations take
place in R ∪ ∞. This makes life a bit easier for us. The interested reader
can check our computations in this chapter using our file mapping.

For our derivation we consider sequences w−1, w0, w1, . . . , wn where

w−1 = ∞; w0 = 0; w1 = 1; w1 < w2 < . . . < wn < ∞. (10)

Given χ as in Equation 3 we define

zj = χ(wj−2, wj−1, wj, wj+1); j = 1, 2, 3, . . . (11)

First we explain how to reconstruct the w variables in terms of the z variables.
Say that a finite subset I ⊂ Z is admissible if it does not contain any

consecutive integers. Let A denote the set of nonempty admissible subsets.
Let |I| denote the cardinality of I ∈ A. Define the formal series

S = S(. . . , z1, z2, z3, . . .) = 1 +
∑

I∈A

mI ; mI = (−1)|I|
∏

i∈I

zi (12)

Here is the reconstruction formula:

wj =
S(. . . , 0, 0, 0, 0 , z2, . . . , zj−1, 0, 0, 0 . . .)

S(. . . , 0, 0, 0, z1, z2, . . . , zj−1, 0, 0, 0 . . .)
; j = 2, 3, 4 . . . (13)

(When j = 2 the notation needs to be suitably interpreted, as in Equation
14.) The first few terms are:

w2 =
1

1 − z1

;

w3 =
1 − z2

1 − z1 − z2
;

w4 =
1 − z2 − z3

1 − z1 − z2 − z3 + z1z3
;

w5 =
1 − z2 − z3 − z4 + z2z4

1 − z1 − z2 − z3 − z4 + z1z3 + z1z4 + z2z4
. (14)
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Technically, we only need the formulas in Equation 14, and these can
be verified by a symbolic manipulator. For the interested reader, we prove
Equation 13 in §2.2.

Uur basic construction in §1 produces a point w′
j between the points wj

and wj+1. By symmetry, the point w′
j is determined, up to taking the branch

of the square root function, by the equality:

χ(wj−1, wj, w
′
j, wj+1) = χ(wj, w

′
j, wj+1, wj+2). (15)

After some fooling around, we discovered that

w′
j =

S(. . . , 0, 0, 0, 0 , z2, . . . , zj,−√
zj+1, 0, 0, 0 . . .)

S(. . . , 0, 0, 0, z1, z2, . . . , zj,−√
zj+1, 0, 0, 0 . . .)

. (16)

(When j = 0, 1 the formula needs to be suitably interpreted, as in Equation
17.) The first few terms are:

w′
0 =

1

1 +
√

z1

;

w′
1 =

1 +
√

z2

1 +
√

z2 − z1

;

w′
2 =

1 − z2 +
√

z3

1 − z1 − z2 +
√

z3 − z1
√

z3

;

w′
3 =

1 − z2 − z3 +
√

z4 − z2
√

z4

1 − z1 − z2 − z3 +
√

z4 + z1z3 − z1
√

z4 − z2
√

z4
. (17)

In all cases, the positive branch of the square root is taken. Technically, we
just need Equation 17, and these 4 formulas can be verified by a symbolic
manipulator. For the interested reader, we will prove Equation 16 in §2.3

Let
z′j = χ(w′

j−1, w
′
j, w

′
j+1, w

′
j+2); j = 1, 2, 3, . . . (18)

Plugging Equation 17 into Mathematica we compute (in the file mapping)
that

z′1 =
a2a3(1 + a1 + a2)(1 + a3 + a4)

[(1 + a1)(1 + a3) − a2
2][(1 + a2)(1 + a4) − a2

3]
; aj =

√
zj . (19)

By symmetry, the formula for z′i is obtained from Equation 19 by shifting all
the indices by i− 1. Taking the product of the z′i, with indices taken mod n,
gives Equation 6.
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2.2 Proof of Equation 13

For ease of exposition we will take j ≥ 4 so as to avoid having to use special
notation for the first few cases. Let Nj and Dj denote the numerator and
denominator respectively in Equation 13. First of all, one can verify the
identities

Nj = Nj−1 − zj−1Nj−2; Dj = Dj−1 − zj−1Dj−2. (20)

directly from the definitions. The basic idea is that the above recurrence
relations never introduce monomials which involve consecutive variables, but
do introduce all other monomials, and with the correct signs.

From Equation 20 we have

Nj−2Dj − Dj−2Nj =

Nj−2(Dj−1 − zj−1Dj−2) − Dj−2(Nj−1 − zj−1Nj−2) =

Nj−2Dj−1 − Dj−2Nj−1. (21)

and
NjDj+1 − DjNj+1 =

Nj(Dj − zjDj−1) − Dj(Nj − zjNj−1) =

zj(Nj−1Dj − Dj−1Nj). (22)

We have
χ(wj−2, wj−1, wj, wj+1) =

χ
(

Nj−2

Dj−2

,
Nj−1

Dj−1

,
Nj

Dj

,
Nj+1

Dj+1

)
=∗

Nj−2Dj−1 − Dj−2Nj−1

Nj−2Dj − Dj−2Nj
× NjDj+1 − DjNj+1

Nj−1Dj+1 − Dj−1Nj+1
=

1 × zj(Nj−1Dj − Dj−1Nj)

Nj−1Dj+1 − Dj−1Nj+1
=

zj .

The starred equality just boils down to clearing denominators. The sub-
sequent equalities are consequences of Equations 22 and 21.
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2.3 Proof of Equation 16

For ease of exposition we will take j ≥ 3 so as to avoid having to use special
notation for the first few cases. Let Ñj and D̃j denote the numerator and
denominator of the fraction in Equation 16.

From Equation 20 we get

Ñj = Nj+1 +
√

zj+1Nj ; D̃j = Dj+1 +
√

zj+1Dj. (23)

This equation gives us
ÑjDj+1 − D̃jNj+1 =

(Nj+1 +
√

zj+1Nj)Dj+1 − (Dj+1 +
√

zj+1Dj)Nj+1 =
√

zj+1(NjDj+1 − DjNj+1); (24)

and
Nj−1D̃j − Dj−1Ñj =

Nj−1(Dj+1 +
√

zj+1Dj) − Dj−1(Nj+1 +
√

zj+1Nj) =

(Nj−1Dj+1 − Dj−1Nj+1) +
√

zj+1(Nj−1Dj − Dj−1Nj) =∗

(1 +
√

zj+1)(Nj−1Dj − Dj−1Nj). (25)

The starred equality comes from Equation 21. Let A = χ(wj−1, wj, w
′
j, wj+1)

and B = χ(wj, w
′
j, wj+1, wj+2). We want to prove that A = B. Using the

above equations, we compute

A = χ
(

Nj−1

Dj−1
,
Nj

Dj
,
Ñj

D̃j

,
Nj+1

Dj+1

)
=

Nj−1Dj − Dj−1Nj

Nj−1D̃j − Dj−1Ñj

× ÑjDj+1 − D̃jNj+1

NjDj+1 − DjNj+1
=

1

1 +
√

zj+1

×√
zj+1 =

√
zj+1

1 +
√

zj+1

. (26)

A similar computation gives the same result for B, but we will finish the
proof in a different way. Let f(x) = x/(1−x). Note that f(A) =

√
zj+1. For

any 5 points a, b, c, d, e there is the general, and easily checked, identity

f(χ(a, b, c, d)) × f(χ(b, c, d, e)) = χ(a, b, d, e). (27)

This equality gives us, a priori , that f(A)f(B) = zj+1. Since f(A) =
√

zj+1

we must also have f(B) =
√

zj+1. But then f(A) = f(B) and hence A = B,
as claimed.
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3 Proof of Equation 8

3.1 The Proof

Define

E(a1, ..., an) = log

∏n
i=1(1 + ai + ai+1)∏n

i=1(1 + 2ai)
(28)

Equation 8 is true iff the restriction of E to (0, 1)n is minimized precisely at
the diagonal.

Consider a sequence A = (. . . a, b, c . . .). Let Eb = ∂E/∂b. We compute

Eb(A) =
(2b2 + 2b) − (2ac + a + c)

(1 + 2b)(1 + a + b)(1 + b + c)
. (29)

See the file gradient in our package. If A does not lie on the diagonal we
can arrange that max(a, c) ≤ b and min(a, c) < b. This forces Eb(A) > 0.
But then we can decrease E(A) by slightly decreasing b. This shows that E
attains its global minimum precisely along the diagonal.

3.2 An Extra Estimate

Here we prove an estimate for Equation 8 which, later on, will quantify the
statement that φ(W ′)−φ(W ) is large when W is far from conformally regular.
Incidentally, a similar estimate is also true−and fairly easy to prove−for
Equation 9 as well. However, for our purposes it suffices to prove the result
for Equation 8.

Let ∆ be the diagonal in (0, 1)n. Let A ∈ ∆. Let Nε(A) be the ε neigh-
borhood of A. If ε is small then Nε(A) ⊂ (0, 1)n and E is everywhere defined
on Nε(A). Given any q ∈ (0, 1)n let δ(q) denote the Euclidean distance from
q to ∆.

Lemma 3.1 For any A ∈ ∆ there are positive constants C = C(A) and

ε = ε(A) with the following property: If q ∈ Nε(A) then E(q) ≥ C(δ(q))2.

Proof: It follows from symmetry that ∇E(A) = 0 when A = (a, ..., a) ∈ ∆.
Let HE(A) denote the Hessian of second partial derivatives of E, evaluated
at A. Let ∆⊥ denote the subspace of R

n which is perpendicular to ∆. We
will show, for all A ∈ ∆, that HE(A) is positive definite when restricted to
∆⊥. Lemma 3.1 follows from these two facts by integration. For ease of
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notation we will take n = 7 in our computation. The reader will be able to
see the obvious pattern from this case.

We compute that

Eab =
−1

(1 + 2a)2
; Ebb =

2

(1 + 2a)2
; Ecb =

−1

(1 + 2a)2
. (30)

Here we have set A = (. . . a, b, c . . .) = (. . . a, a, a . . .). This computation
works for every coordinate, so that

HE(A) = (1 + 2a)−2




2 −1 0 0 0 0 −1
−1 2 −1 0 0 0 0
0 −1 2 −1 0 0 0
0 0 −1 2 −1 0 0
0 0 0 −1 2 −1 0
0 0 0 0 −1 2 −1
−1 0 0 0 0 −1 2




(31)

The eigenvalues of HE(A) are

(1 + 2a)−2(2 − 2 cos(2πk/7)); k = 0, ..., 6. (32)

The 0-eigenvalue corresponds to the eigenvector (1, 1, 1, 1, 1, 1, 1). The re-
maining eigenvectors, which correspond to positive eigenvalues, span ∆⊥.
This completes the proof of Lemma 3.1. ♠
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4 Proof of Equation 9

4.1 Equation 9 Reduced to Lemma 4.2

We assume n ≥ 5 in our proof. (The case n = 12 implies the cases n = 2, 3, 4.)
Let

F (a1, ..., an) = log
n∏

i=1

((1 + ai−1)(1 + ai+1) − a2
i ) − log

n∏

i=1

(1 + 2ai) (33)

To prove Equation 9 it suffices to prove that F , restricted to (0, 1)n, attains
its maximum−namely 0−precisely on the diagonal.

We consider F (a, b, c, d, e, . . .). Using the file gradient we take some
partial derivatives:

Fc =
−2

1+2c
− 2c

(1+b)(1+d)−c2
+

1+a

(1+a)(1+c)−b2
+

1+e

(1+e)(1+c)−d2
. (34)

Fac = − b2

((1 + a)(1 + c) − b2)2
≤ 0;

Fbc =
2b(1 + a)

((1 + a)(1 + c) − b2)2
+

2c(1 + d)

((1 + b)(1 + d) − c2)2
≥ 0.

Fdc =
2c(1 + b)

((1 + b)(1 + d) − c2)2
+

2d(1 + e)

((1 + c)(1 + e) − d2)2
≥ 0.

Fec = − d2

((1 + e)(1 + c) − d2)2
≤ 0. (35)

The denominators do not vanish when (a, b, c, d, e) ∈ (0, 1)5. More generally,
these equations make sense for (a, b, c, d, e) ∈ R

5 as long as the denominators
do not vanish. Compare Lemma 4.5 and Corollary 4.10 below.

Note that Fdc > 0 if d > 0. Suppose that d > 2c. From Equation 35 and
(for the last equality) some algebra we have

Fc(a, b, c, d, e) > Fc(a, b, c, 2c, e) ≥ Fc(1, b, c, 2c, 1) ≥ Fc(1, 0, c, 2c, 1) =

4c2

(1 + c)(1 − c)(1 + 2c)(1 + 2c − c2)
≥ 0. (36)

In short, if d > 2c we can increase F by increasing c and keeping c < 1. By
symmetry, if c > 2d be can increase F by increasing d and keeping d < 1.
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Let [0, 1]n2 denote those (a1, ..., an) ∈ [0, 1]n such that ai/ai+1 ∈ [1/2, 2]
for all i. Note that Equations 33, 34, and 35 make sense for all points in the
compact set [0, 1]n2 . If Equation 9 is false then, by the analysis above, we can
find some global maximum A ∈ [0, 1]n2 such that F (A) > 0. We will assume
the existence of such an A and derive a contradiction. We begin with an easy
result:

Lemma 4.1 All coordinates of A are positive, and 4 consecutive coordinates

of A cannot coincide

Proof: If some coordinate of A is 0 then all coordinates of A are 0, since
A ∈ [0, 1]n2 . But then F (A) = 0, a contradiction. Hence all coordinates of A
are positive. We compute

Fc(t, t, t, t, e) =
t2(t − e)

(1 + 2t)((1 + e)(1 + t) − t2)
.

If e > t then Fc < 0 and we can increase F by decreasing c and keeping
c > 0. If e < t then Fc > 0 and we can increase F by increasing c and
keeping c < 1. Hence e = t. Cycling through the coordinates, we see that
they all coincide. But then F (A) = 0, a contradiction. ♠

Here is the main idea: After a huge amount of trial and error we discovered
the following result:

Lemma 4.2 Let

η(x, y) =
2 max(x2, y2)

x + y
(37)

For any U ∈ (0, 4/3] let ΩU ⊂ R
5 denote those points (a, b, c, d, e) such that

• −b < a ≤ b ≤ U ≥ c ≥ d ≥ e > −d.

• η(a, b) = η(c, d) = η(d, e) = U .

• If b ≥ c then η(b, c) ≤ U .

We have Fc(a, b, c, d, e) ≤ 0 for all (a, b, c, d, e) ∈ ΩU , with equality only if

a = b = c = d = e.
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Given Lemma 4.2 we can finish the proof of Equation 9. If (x, y) ∈ [0, 1]2

satisfy x/y ∈ [1/2, 2] and x ≤ y then

η(x, y) = y η(xy−1, 1) =
2y

1 + xy−1
≤ 2

1 + xy−1
≤ 2

1 + 1/2
= 4/3. (38)

The same bound holds when y ≤ x, by symmetry. Therefore η(x, y) ≤ 4/3
provided (x, y) ∈ [0, 1]2 and x/y ∈ [1/2, 2].

Using the dihedral symmetry of F we can cycle and/or reverse the coor-
dinates in A so as to arrange that

c ≥ d; max(η(a, b), η(b, c), η(d, e)) ≤ η(c, d) ≤ 4/3; Fc ≥ 0 (39)

The condition Fc ≥ 0 comes about as follows: If Fc < 0 then we can increase
F by decreasing c and keeping c ≤ 1, contradicting the maximality of A.

Let U = η(c, d) ∈ (0, 4/3]. We have

U = η(c, d) = 2c2/(c + d) ≥ c.

Hence U ≥ c. If b ≤ c then b ≤ U . If b ≥ c then b ≤ b2/(b + c) = η(b, c) ≤ U,
so again b ≤ U . In short, we have

0 < b ≤ U ≥ c ≥ d > 0. (40)

Lemma 4.3 Let U > 0. Suppose x ∈ (0, U ] and

y =
2x2

U
− x =

(
2x

U
− 1

)
x (41)

Then −x < y ≤ x and η(x, y) = U .

Proof: Since x ∈ (0, U ] we get −x < y ≤ x by Equation 41. Then we have
η(x, y) = 2x2/(x + y) = 2x2/(2x2/U) = U . ♠

By Lemma 4.3 we can find a′ and e′ such that

−b < a′ ≤ b; η(a′, b) = U ; d ≥ e′ > −d; η(d, e′) = U. (42)

Equations 39, 40 and 42 combine to say that (a′, b, c, d, e′) ∈ ΩU .
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Lemma 4.4 a′ ≤ a and η(α, b) < 2 provided that α ∈ [a′, b]. Likewise e′ ≤ e
and η(d, ε) < 2 provided that ε ∈ [e′, d].

Proof: We will prove the first statement. The second statement has the
same proof. If a > b then obviously a′ < a. If a′ ∈ (−b, b] then again
a′ ≤ a because η(a, b) ≤ η(a′, b) and η(x, b) = 2b2/(x + b) is decreasing for
x ∈ (−b, b]. In all cases, a′ ≤ a. We just saw that η(x, b) is monotone on
(−b, b]. Hence η(α, b) ∈ [η(b, b), η(a′, b)] = [b, U ]. Hence η(α, b) ≤ 4/3 < 2. ♠

From Equation 35 we have

Fac(α, b, c, ∗, ∗) =
−b2

((1 + α)(1 + c) − b2)2
. (43)

Before finishing our proof we have to deal with the irritating possibility that
the denominator in Equation 43 vanishes.

Lemma 4.5 Let v > 0. Suppose, for j = 1, 2, that uj > −v and either

uj ≥ v or η(uj, v) < 2. Then (1 + u1)(1 + u2) − v2 > 0.

Proof: If uj > v then uj > v2−v. If uj ∈ (−v, v] then η(uj, v) = 2v2/(uj+v)
is monotone decreasing in uj. Since η(v2 − v, v) = 2 we have uj > v2 − v.
Thus (1+u1)(1+u2)−v2 > (1+v2−v)(1+v2−v)−v2 = (v−1)2(v2+1) ≥ 0. ♠

By Lemma 4.5 the denominator in Equation 43 is nonzero for any α > −b
such that α ≥ b or η(α, b) < 2. From the second statement of Lemma 4.4
we see that these conditions hold for all α ∈ [a′, a]. Hence Fc(α, b, c, ∗, ∗) is
finite, negative, and uniformly bounded below for all α ∈ [a′, a]. Hence Fc

strictly increases as we decrease α from a down to a′. The same arguments
work for e. Hence

Fc = Fc(a, b, c, d, e) ≤ Fc(a
′, b, c, d, e′) (44)

with equality iff a = a′ and e = e′. Combining Equation 44, Equation 39,
and Lemma 4.2 we get Fc(a, b, c, d, e) = Fc(a

′, b, c, d, e′) = 0. This forces
a = a′ = b = c = d = e′ = e. In summary, at least 4 consecutive coordinates
of A coincide. This contradicts Lemma 4.1. So, Lemma 4.2 implies Equation
9.
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4.2 Lemma 4.2 Reduced to Lemma 4.9

Lemma 4.2 boils Equation 9 (for any choice of n) down to a 3-dimensional
algebra problem. To see this, we will produce a rational surjection

S : Υ = (0, 1]2 × [0, 1) −→ Ω =
⋃

U∈(0,4/3]

ΩU . (45)

S is actually a bijection, but we don’t care about this.
Given (X, Y, Z) ∈ Υ define S(X, Y, Z) = (a, b, c, d, e) as follows:

r =
1 +

√
5

4
; U =

4

3
X; b̂ = (1 − Y )rU + Y U ; b = b̂(1 − Z);

a =
2b2

U
− b; c =

2b̂2

U
− b̂; d =

2c2

U
− c; e =

2d2

U
− d; (46)

Compare Equation 41. See also §4.4.

Lemma 4.6 S(X, Y, Z) ⊂ ΩU for all (X, Y, Z) ∈ Υ.

Proof: From equation 46 we have 0 < b ≤ b̂ ≤ U . By Lemma 4.3 we have
a ≤ b and η(a, b) = U . Since b̂ ≤ U we get U ≥ c and η(b̂, c) = U by Lemma
4.3. Using the file makepoly we find that c = Xγ/3 and d = XY δ/3, where

γ = 2+(−5+3
√

5)Y +(7−3
√

5)Y 2;

δ = (−5+3
√

5)+(42−18
√

5)Y +(−80+36
√

5)Y 2+(47−21
√

5)Y 3. (47)

These two polynomials have positive coefficients. Hence c, d > 0. Since U ≥ c
we get c ≥ d and η(c, d) = U by Lemma 4.3. Since U ≥ d we get d ≥ e and
η(d, e) = U by Lemma 4.3. All in all, −b < a ≤ b ≤ U ≥ c ≥ d ≥ e > −d
and η(a, b) = η(c, d) = η(d, e) = U . Finally, if b > c then η(b, c) ≤ U . This
follows from the fact that η(b̂, c) = U and the fact that, when x > c > 0, the
function η(x, c) = 2x2/(c + x) is monotone increasing. ♠

Lemma 4.7 Suppose x ∈ (0, U ] and η(x, y) = U and y ≤ x. Then y satisfies

Equation 41. Moreover, if y > 0 then x ∈ (U/2, U ].

Proof: The first statement comes directly from Solving Equation 37 for y
in terms of x and U . The second statement is immediate from Equation 41. ♠
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Lemma 4.8 S maps Υ onto Ω.

Proof: We have S(X, 0, Z) = (∗, ∗, U/2, 0, ∗) and S(X, 1, Z) = (∗, ∗, U, U, ∗)
by Equation 47. Thus c sweeps out (U/2, U ] and d sweeps out (0, U ] as Y
ranges in (0, 1]. Furthermore, d determines e by Equation 46. By Lemma 4.7
we get all possible (∗, ∗, c, d, e) ∈ ΩU by varying Y in (0, 1]. If Y is fixed, b
sweeps out (0, b̂] as Z ranges in [0, 1). From the analysis at the end of Lemma
4.6 we see that b attains every value such that either b ≤ c or else b ≥ c and
η(b, c) ≤ U . Finally, b determines a. Thus by first adjusting Y , and then
adjusting Z, we reach all points in ΩU . Finally, by varying X ∈ (0, 1] we get
all of Ω in the image. ♠

Let (a, b, c, d, e) = S(X, Y, Z). Using the file makepoly we compute that

Fc(a, b, c, d, e) = X2 P (X, Y, Z)

Q(X, Y, Z)
. (48)

Here P and Q are polynomials such that Q(1/2, 1/2, 1/2) < 0. See the
routine ComputePolynomials[] in §4.4. Below we prove

Lemma 4.9 P (X, Y, Z) ≥ 0 on Υ, with equality only if Y = 1 and Z = 0.

Corollary 4.10 Q(X, Y, Z) < 0 for all (X, Y, Z) ∈ (0, 1)3.

Proof: By Lemma 4.5, the denominators in Equation 34 never vanish when
(a, b, c, d, e) ∈ Ω. Hence P (X, Y, Z)/Q(X, Y, Z) < ∞ for all (X, Y, Z) ∈
(0, 1)3. Since P (X, Y, Z) > 0 for all (X, Y, Z) ∈ (0, 1)3 we have Q(X, Y, Z) 6=
0, so the sign of Q never changes on (0, 1)3. Finally, Q(1/2, 1/2, 1/2) < 0. ♠

Lemma 4.9, Corollary 4.10, and Equation 48 imply that Fc(a, b, c, d, e) ≤ 0
for all (a, b, c, d, e) ∈ Ω. If Fc(a, b, c, d, e) = 0 then P (X, Y, Z) = 0. But then
Z = 0 and Y = 1. Hence c = U . Then d = U by Equation 41. Similarly
b̂ = c = U . Since Z = 0 we have b = b̂. Since b = U and η(a, b) = U we get
a = U . Similarly e = U . In short, a = b = c = d = e.

To finish the proof of Equation 9 we just have to establish Lemma 4.9.
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4.3 Proof of Lemma 4.9

Given I = (i1, ..., ik) ∈ (N ∪ {0})k we let XI = X i1
1 ...X ik

k . Any polynomial
F ∈ R[X1, ..., Xk] can be written succinctly as F =

∑
AIX

I with AI ∈ R.
If I ′ = (i′1, ..., i

′
k) we write I ′ ≤ I if i′j ≤ ij for all j = 1, ..., k. We call F

positive dominant if
∑

I′≤I AI′ > 0 for all I. When k = 0, positive dominant

means a positive number .

Lemma 4.11 If F is positive dominant then F is positive on [0, 1]k.

Proof: Write F = f0 + f1Xk + ... + fmXm
k , where fj ∈ R[X1, ..., Xk−1]. Let

Fj = f0+...+fj. The positive dominance of F implies the positive dominance
of Fj for all j. By induction, Fj > 0 on [0, 1]k−1. When Xk = 0, we have
F = F0 > 0 on {0}× [0, 1]k−1. Suppose Xk ∈ (0, 1]. Since X i

k ≥ Xj
k for i < j,

F = f0 + f1Xk + ... + fmXm
k ≥ F1Xk + f2X

2
k + ... + fmXm

k ≥

F2X
2
k + f3X

3
k + ... + fmXm

k ≥ . . . ≥ FmXm
k > 0. ♠

In the file makepoly we compute that

P = P0 + P1Z + P2Z
2 + P3Z

3; P0 = (1 − Y )P̂0; P3 = XP̂3. (49)

Here P0, P̂0, P1, P2, P3, P̂3 ∈ Z[
√

5](X, Y ). Now P0, P2, P3 are not positive
dominant, and P2 is sometimes negative on (0, 1)2. We compute that

P̂0; P1; P̂3; Π1 = P0 + P1 +
1

2
P2; Π2 = P0 + P1 + P2 +

1

2
P3 (50)

are all positive dominant. By Lemma 4.11 and Equation 49, P1, Π1, Π2 > 0
on [0, 1]2, and P0 > 0 on [0, 1] × [0, 1), and P3 > 0 on (0, 1] × [0, 1].

First we show that P > 0 on (0, 1]2 × (0, 1). If Z ∈ [1/2, 1) then

P/Z2 = P0/Z
2 + P1/Z + P2 + ZP3 ≥ P0 + P1 + P2 +

1

2
P3 = Π2 > 0.

If Z ∈ (0, 1/2] then the nontrivial case occurs when P2(X, Y, Z) ≤ 0. In this
case we have Z2P2(X, Y, Z) ≥ (Z/2)P2(Z, Y, Z), which yields

P0+P1Z+P2Z
2+Z3P3 > ZP0+ZP1+Z2P2 ≥ Z(P0+P1+

1

2
P2) = ZΠ1 > 0.

If P (X, Y, Z) = 0 for some (X, Y, Z) ∈ Υ then Z = 0. But then we have
P (Z, Y, 0) = P0(X, Y ) = 0, which forces Y = 1. This completes the proof.
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4.4 Some Mathematica Code

The code here is copied from our file makepoly.

MapToOmega[{X ,Y ,Z }]:=( Clear[a,b,c,d,e];

r=(1+Sqrt[5])/4; U = 4 X/3;

bhat=(1-Y) r U + Y U; b=bhat (1-Z);

a=2 b b/U-b; c=2 bhat bhat/U -bhat; d=2 c c/U-c; e=2 d d/U-d;

{a,b,c,d,e})

ComputePolynomials[]:=( Clear[X,Y,Z];

{a,b,c,d,e}=MapToOmega[{X,Y,Z}];
Fc = Together[-2/(1+2*c)+(1+a)/(1+a-b b+c+a*c)-

(2*c)/(1+b-c c+d+b*d)+(1+e)/(1+c-d d+e+c*e)];

P=Expand[Numerator[Fc]/X/X]; Q=Denominator[Fc];

P0=Coefficient[P,Z,0]; hatP0=Expand[Factor[P0/(1-Y)]];

P1=Coefficient[P,Z,1];

P2=Coefficient[P,Z,2];

P3=Coefficient[P,Z,3]; hatP3=Expand[P3/X];

Pi1=Expand[P0+P1+P2/2];

Pi2=Expand[P0+P1+P2+P3/2]; )

(*Note: the limits in our routines are big enough

to get all the coefficients in our polynomials.*)

GetCoeff[Q ,i ,j ]:=Coefficient[Coefficient[Q,Y,i],X,j];

CoeffList[Q ]:=Table[Table[GetCoeff[Q,i,j],{i,0,19}],{j,0,4}];
PartialSum[L ,i ,j ]:=Sum[Sum[L[[ii]][[jj]],{ii,1,i}],{jj,1,j}];
DominanceTest[Q ]:=(list=CoeffList[Q];

SUM=Table[Table[Table[PartialSum[list,i,j]],{i,1,5}],{j,1,20}];
Min[SUM])

(*The final answer*)

ComputePolynomials[];

{DominanceTest[hatP0], DominanceTest[P1],

DominanceTest[hatP3], DominanceTest[Pi1],

DominanceTest[Pi2]}
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5 Proof of Theorem 1.1 and Corollary 1.2

5.1 A Compactness Result

We fix n ≥ 5 for this entire chapter. Let φ be the energy function from
Equation 4. Let W ⊂ S1 be an n-gon, as in §1. We begin this chapter with
two short technical results, which will be used below.

Lemma 5.1 Let Z = (z1, ..., zn) be the list of cross ratios for an n-gon W
in S1, with n ≥ 5. Then zj + zj+1 < 1 for all j.

Proof: We write W = (w1, ..., wn). We will show that z1+z2 < 1, the general
case being the same. An easy computation shows that

z1

1 − z2
=

χ(w1, w2, w3, w4)

1 − χ(w2, w3, w4, w5)
= χ(w1, w2, w3, w5) < 1. (51)

The last inequality comes from the fact that the points w1, w2, w3, w5 appear
in cyclic order on S1. This lemma is immediate from Equation 51. ♠

Let Y denote those n-gons such that w1, w2, w3 are consecutive vertices of
a regular n-gon, with w1 = 1. Then w2 = exp(2πi/n) and w3 = exp(4πi/n).
Every n-gon is conformally equivalent to an element of Y . The space Y
is homeomorphic to (0, 1)n−3. To see this note that there is an interval of
choices for w4. Once w4 is chosen, there is an interval of choices for w5. And
so forth. The only conformally regular element of Y is the regular n-gon.
The energy function φ gives us a map φ : Y → (0, 1).

Lemma 5.2 If {Wk} is a sequence in Y which exits every compact subset of

Y then φ(Wk) → 0.

Proof: Let zk1, ..., zkn be the set of cross ratio invariants for Wk. Since
zkj ∈ (0, 1) for all indices we have φ(Wk) < minj(zkj). If {Wk} exits every
compact subset of Y then by passing to subsequence we arrange that some
cross ratio zkj either tends to 0 or to 1. In the latter case, zk,j+1 tends to 0
by Lemma 5.1. Hence, in all cases, minj zkj → 0. Hence φ(Wk) → 0. ♠
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5.2 The Convergence of Cross Ratios

Combining Equations 6, 8 and 9 we get Equation 5: φ(W ′) ≥ φ(W ) for any
n-gon W ⊂ S1, with equality iff W is conformally regular.

Lemma 5.3 Let W ′, W (2), W (3), ... be as in §1. Let Zk = (zk1, ..., zkn) be the

list of cross ratios of W (k). Then {Zk} converges to the sequence of cross

ratios associated to the regular n-gon.

Proof: Let Ak = (ak1, ..., akn) be such that akj =
√

zkj. Let φk = φ(W (k)).
Then {φk} is a monotone increasing sequence, bounded above by 1. Thus φk

converges to some φ∞. Hence φk+1/φk → 1. Let Z∞ be any subsequential
limit of {Zn}. Let A∞ be the corresponding subsequential limit of {An}.
Both Equations 8 and 9 hold for A∞. Since φk+1/φk → 1 we must have
equality in both Equations 8 and 9 when they are applied to A∞. But this
is only possible if A∞ is a constant sequence. But then Z∞ is a constant se-
quence. By Lemma 5.2 there is a compact subset of Y which contains some
conformal image Vk of W (k) for each k. By compactness, Z∞ is actually a
list of cross ratios for an n-gon. Since Z∞ is a constant sequence, Z∞ must
be the list of cross ratios of the regular n-gon. Hence all subsequential limits
of {Zk} coincide and {Zk} converges to Z∞. ♠

Corollary 5.4 There is a sequence of conformal transformations {Tk} such

that Tk(W
(k)) converges to the regular n-gon.

Proof: Let Tk be the conformal map such that Vk = Tk(W
(k)) ∈ Y . Since

the list of cross ratios of Vk converges to the list for the regular n-gon, and the
first three vertices of Vk coincide with the first three vertices of the regular
n-gon, it follows by induction on n that the remaining vertices of Vk converge
to the remaining vertices of the regular n-gon as well. ♠

Proof of Corollary 1.2: Since φ(W ) only depends on the conformal equiv-
alence class of W it suffices, for our proof of Corollary 1.2, to prove that the
restriction of φ to Y is maximized precisely at the regular element. By Lemma
5.2, the function φ attains its global maximum for some polygon W . If W ∈ Y
is not regular then W is not conformally regular and φ(W ′) > φ(W ). This
is a contradiction. Hence W is regular. ♠
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5.3 An Embedding Result

Before we finish our proof of Theorem 1.1 we need more technical results.
Say that a proper submanifold of (0, 1)n is a subset of the form f(U),

where U is an open subset of R
k and f : U → (0, 1)n is a smooth non-

singular map such that f : U → f(U) is a homeomorphism. Here f(U) is
equipped with the subspace topology.

Let Z ⊂ (0, 1)n denote those sequences (z1, ..., zn) which arise as cross
ratios of n-gons in S1. Let Z∞ be the list of cross ratios of the regular n-gon.

Lemma 5.5 Z is a proper submanifold of (0, 1)n. Moreover the tangent

space to Z at Z∞ is perpendicular to the vector (1, ..., 1).

Proof: Let Y be as in §5.1. Then Y is a smooth manifold, diffeomorphic
to (0, 1)n−3, as we already mentioned. Every n-gon is equivalent to a unique
n-gon in Y , so the cross ratio map gives a smooth surjective map f1 : Y → Z .
On the other hand, the positions of w2, w3, ..., wn−2 are determined by, and
depend smoothly on, the cross ratios (z1, ..., zn). Hence f1 has a smooth
inverse, f2. The compositions f1 ◦ f2 and f2 ◦ f1 are both the identity maps,
so that df1 is everywhere nonsingular, continuous, and injective.

It remains to show that f1 is a homeomorphism onto its image. The map
f2 is continuous with respect to the subspace topology. In other words, if
Z1, Z2 ⊂ Z are close in terms of the ambient Euclidean distance on (0, 1)n,
then f2(Z1) and f2(Z2) are close as polygons. Given all the other properties
above, the kind of continuity enjoyed by f2 implies that f1 is a homeomor-
phism onto its image. Hence Z is a proper submanifold.

By symmetry, the tangent space to Z at Z∞ either contains (1, ..., 1) or
is perpendicular to (1, ..., 1). The fact that φ, restricted to Z, is maximized
at Z∞ rules out the former possibility: Otherwise we could increase φ, while
staying in Z, by moving in the direction of (1, ..., 1). ♠

Corollary 5.6 Let {Zk} ∈ Z be a sequence of points which converges to Z∞.

Let ε̂k denote the distance from Zk to the diagonal ∆. Then ‖Zk−Z∞‖ < 2ε̂k

for k sufficiently large.

Proof: This follows from the fact that Z is a proper submanifold, perpen-
dicular to ∆ at Z∞, and from the fact that the tangent space to Z at Z∞

approximates Z to first order. ♠
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5.4 The End of the Proof

Let Zk, Ak, etc. be as in Lemma 5.3. Recall that φk =
∏

j zkj. We define
εk = φ∞ − φk. By Corollary 1.2 we have εk ≥ 0 for all k. Let ε̂k be as in
Corollary 5.6. Below, C1, C2, C3, C4 are positive constants which depend on
the initial n-gon W .

Lemma 5.7 (ε̂k)
2 ≥ C1εk. for k sufficiently large.

Proof: Let Z be as in Lemma 5.5. We have Zk ∈ Z. By Corollary 5.6 we
have ‖Zk − Z∞‖ < 2ε̂k once ε̂k is sufficiently small. We can interpret φ as a
map from (0, 1)n → (0, 1). Namely, we have φ(z1, ..., zn) =

∏
zj . Obviously φ

is smooth. The gradient ∇φ, evaluated at Z∞, is parallel to (1, ..., 1). Hence
Z is perpendicular to ∇φ at Z∞. From Taylor’s theorem applied to φ, we
get

εk = φ(Z∞) − φ(Zk) ≤
1

4
C−1

1 ‖Z∞ − Zk‖2 ≤ C−1
1 (ε̂k)

2 (52)

provided k is large. ♠

Lemma 5.8 εk − εk+1 ≥ C2(ε̂k)
2 for k sufficiently large.

Proof: Let A = A∞ = (a∞, ..., a∞), as in Lemma 5.3. Let qk = (ak1, ..., akn),
with akj =

√
zkj. Since qk → A we can apply Lemma 3.1 for k large enough.

The map f(x) =
√

x is bi-Lipschitz in a neighborhood of z∞ = a2
∞ and hence

δ(qk) ≥ C3ε̂k. By Lemma 3.1 we have E(qk) ≥ C4(ε̂k)
2. From Equations 28

and 33, and the definitions, we have

log φk+1 − log φk = 2E(qk) − 2F (qk) ≥∗ 2E(qk)) ≥ 2C4(ε̂k)
2. (53)

The starred inequality comes from the fact that F ≤ 0 on (0, 1)n by Equation
9. Since the function log is bi-Lipschitz in a neighborhood of φ∞ we get that
φk+1 − φk ≥ C2(ε̂k)

2 for k large enough. But φk+1 − φk = εk − εk+1. ♠

By Lemmas 5.7 and 5.8 we have

εk − εk+1 ≥ C1C2εk, (54)
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for k sufficiently large. Since εj ≥ 0 for all j we have C1C2 ≤ 1. Setting
D = 1 − C1C2 ∈ [0, 1), we have

εk+1 ≤ Dεk; D ∈ [0, 1) (55)

Since this holds true for all k sufficiently large we see that εk decays expo-
nentially. Lemma 5.8 now says that ε̂k decays exponentially. Corollary 5.6
gives ‖Zk − Z∞‖ < 2ε̂k for large k. Hence ‖Zk − Z∞‖ also decays expo-
nentially. The points of Vk are smooth functions of the coordinates in Zk.
Since ‖Zk−Z∞‖ decays exponentially, Vk converges exponentially fast to the
regular n-gon V∞.

For the moment we fix k. Let (v′′
1 , ..., v

′′
n) be the successive points of V ′′

k−2

labelled so that (v′′
1 , v

′′
2 , v

′′
3) are, respectively, close to (v1, v2, v3), the first three

points of V∞. The points of V ′′
k−2 depend smoothly on the points of Vk−2,

which converge exponentially fast to the points of the regular n-gon. Hence
v′′

j converges exponentially fast to vj for j = 1, 2, 3.
For any conformal transformation T let |T | denote the maximum Eu-

clidean distance T moves a point on S1. Let Tk be as in Corollary 5.4. Let
Gk = TkT

−1
k−2. For k ≥ 1 we have

T2k = G2k ◦ G2k−2 ◦ . . . ◦ G2. (56)

We compute

Gk(V
′′
k−2) = TkT

−1
k−2(V

′′
k−2) =∗ Tk((T

−1
k−2(Vk−2))

′′) =

Tk((W
(k−2))′′) = Tk(W

(k)) = Vk. (57)

The starred equality comes from the naturality of the conformal averaging
process. Equation 57 says, in short, that Gk(V

′′
k−2) = Vk. A conformal trans-

formation is determined by its action on 3 points. Hence Gk is determined by
the action (v′′

1 , v
′′
2 , v

′′
3) → (v1, v2, v3). Given that v′′

j converges exponentially
fast to vj , for j = 1, 2, 3, and the points v1, v2, v3 are distinct and independent
of k, we see that |Gk| decays exponentially.

Since |Gk| decays exponentially, the maps T2k converge exponentially fast
to a conformal transformation T∞. See Equation 56. As above, we know
that Vk → V∞ exponentially fast. Therefore, W (2k) = T−1

2k (V2k) converges
exponentially fast to W (∞) = T−1

∞ (V∞). This completes the proof of Theorem
1.1.
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6 Proof of Theorems 1.3, 1.4, 1.5 and 1.6

6.1 Small Conformal Circles and Theorem 1.3

[K] has the classification of conformal circles. Here is the list of small ones.

• The parabolic circle: R/Z is a small conformal circle. The canonical
Riemannian metric on R/Z is, of course, given by dx.

• The elliptic circles: Let S ⊂ S1 be a proper arc. Let I : S1 → S1 be
an isometric rotation which identifies the endpoint of S. Then S/I is a
conformal circle. Arc-length ds on S1 gives the canonical Riemannian
metric on S/I. These circles are parametrized by their length.

• The hyperbolic circles: Let Tλ be the map x → λx, with λ > 1. Then
(0,∞)/Tλ is a small conformal circle. The metric dx/x on (0,∞) is
preserved by Tλ and gives a canonical Riemannian metric on (0,∞)/Tλ.
These circles are parametrized by their length, log(λ).

Proof of Theorem 1.3: Let S be a small conformal circle. The proof of
Lemma 5.3 is the same here. The proof of Corollary 5.4 goes through word for
word, once we redefine the space Y to be the set of n-gons W = (w1, ..., wn)
where w1 is some pre-chosen origin in S. Every automorphism of a small
conformal circle is a Riemannian isometry, so every n-gon is conformally
equivalent to a unique n-gon in Y . Lemma 5.1 goes through, because the
local developing maps are injective.

It is worth explaining the details of Lemma 5.2. Suppose {Wk} exits
every compact subset of Y . Let Ikj be the interval between wkj and wk,j+1.
Here {wk1, ..., wkn} are the successive points of Wk. After relabelling we can
arrange that Ik2 shrinks to a point but Ik3 does not. Let devk = devwk1

.
We can choose devk to lie within a compact set of maps. By compactness,
both Uk = devk(Ik3) and Vk = S1 − devk(S − wk1) have length uniformly
bounded away from 0. For j = 2, 3, 4, 5 let skj = devk(wkj). Then sk2 and
sk3 converge to a single point in S1 whereas sk4 and sk5 are separated from
sk2 and sk3 on one side by the large arc Uk and on the other by the large arc
Vk. This shows that χ(wk2, wk3, wk4, wk5) → 0. Hence φ(Wk) → 0.

The rest of §5 goes through pretty much word for word. ♠
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6.2 Medium Conformal Circles and Theorem 1.4

Here we describe S1
−. Let X = R∪∞. Let X̃ denote the universal cover of X.

Let p : X̃ → X denote the projection map. Let (0, 0) ∈ X̃ be a lift of 0 and
let R0 ⊂ X̃ be the lift of R which contains (0, 0). Let (x, 0) = p−1(x) ∈ R0.

Let G be the deck transformation group of X̃. Then G is isomorphic to
Z, the group of integers. Of the two generators of G let T be the generator
which has the following property: The two sequences {(n, 0)} and {T (−n, 0)}
converge to the same point of X̃ as n → +∞.

Let P− be the parabolic automorphism of R ∪ ∞ given the equation
P−(x) = x − 1 and P−(∞) = ∞. Let P̃− be the lift of P− to X̃, such that

P̃−(x, 0) = (x − 1, 1). (58)

Equation 58 is enough to determine the action of P̃ on all of X̃. Then S1
− is

the quotient X̃/P−. The distintuished point of S1
− is ∞.

Note that dev∞ maps S1
−−∞ onto R. If x ∈ S1

− is any other point then
devx maps S1

− −{x} onto (x∪∞)∪∞∪ (−∞, x− 1), which is a proper arc
of S1 = R ∪∞. This shows that S1

− is a medium conformal circle.
It is worth pointing out that Lemma 5.2 is false for S1

−. The proof given
in the previous section relies crucially on the local developing maps omitting
more than one point, and there is no replacement proof. Indeed, Theorem
1.4 implies that Lemma 5.2 is false.

Proof of Theorem 1.4: The same argument as in Lemma 5.3 shows that
the list Zk of cross ratios of W (k) converges to a constant list Z∞. This con-
stant list lies in the closure of lists which correspond to actual n-gons in S1

−.
There is only one constant list with this property, and this is the list of cross
ratios associated to the regular n-gon in S1. Hence Z∞ must be the list of
cross ratios of the regular n-gon. This is half of Theorem 1.4.

For the other half, suppose that {W (k)} does not exit every compact sub-
set of the space W(S1

−, n). Then some subsequence of {W (k)} converges to
some n-gon W∞ of S1

−. But the list of cross ratios of W∞ is the same as the
list for conformally regular n-gons. But no n-gon in S1

− has the same list
of cross ratios as an n-gon in S1; otherwise we could work three points at a
time and produce a conformal isomorphism between S1 and S1

−. ♠
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6.3 Large Conformal Circles and Theorem 1.5

To see what can go wrong with the conformal averaging process for large
conformal circles we consider an example. Let S1

4 be the 4-fold cover of S1.
If w1, w2, w3, w4 ∈ S1

4 all project to the same point in S1 then there is no
way to make a conformally natural assignment of a point w∗ ∈ (w2, w3). The
problem is that there is a conformal automorphism of S1

4 which fixes each wj

but moves any other point. Thus, the conformal averaging process can break
down on large conformal circles.

If S is a large conformal circle, we say that an n-gon W = (w1, ..., wn) ⊂ S,
with n ≥ 5 is tame if, for every 4 consecutive points wj, wj+1, wj+2, wj+3,
there is another point x ∈ S − (wj , wj+3) such that devx((wj, wj+3)) is con-
tained in a proper arc of S1. Here (wj, wj+3) is the arc of S bounded by wj

and wj+3 which contains wj+1 and wj+2. If W is tame then the conformal
average W ′ is defined and also the list of cross ratios of W is defined. How-
ever, W ′ need not be tame. The conformal averaging process can be started
for any tame n-gon, but it might break down eventually.

Let S1
θ be as in the introduction. This space has a natural Riemannian

metric, inherited from the round metric on S1. The tameness condition trans-
lates into the statement that every 4 consecutive points of W lie in an arc of
S1

θ of length less than 2π. For a regular n-gon on S1
θ to have this property

we must have n > 4θ. We discuss this more in the next section.

Proof of Theorem 1.5: Let W0 ∈ W(S1
θ , n) be the regular n-gon. Suppose

W ∈ W(S1
θ , n) is excessive: φ(W ) > φ(W0). Let Z0 = (z01, ..., z0n) be the

list of cross ratios of W . Let (ζ, ..., ζ) be the list of cross ratios of W0. We
will suppose that W (k) is defined for all k and derive a contradiction. If
W (k) is defined for all k then the list Zk of cross ratios of W (k) must con-
verge to some constant list Z∞ = (ζ ′, ..., ζ ′), as in Lemma 5.3. Given that
φ(W∞) ≥ φ(W ) > φ(W0) we must have ζ ′ > ζ .

Now, let W̃ (k) denote a lift of W (k) to S̃1. Imitating the proof of Corollary
5.4, we can find a sequence {T̃k} of conformal automorphisms of S̃1 such that
Ṽk := T̃k(W̃

(k)) converges to an infinite collection Ṽ∞ of evenly spaced points
in S̃1. Every n consecutive points of Ṽk lie in an arc of S̃1 having length
precisely 2πθ. By continuity, the same goes for every n consecutive points of
Ṽ∞. But then the even spacing forces Ṽ∞ to be a lift of W0. Hence ζ ′ = ζ .
This contradiction finishes our proof. ♠
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6.4 Proof of Theorem 1.6

We first explain our method of describing n-gons in S1
θ . Let f : Z → R be an

increasing map such that f(i + n) = 2πθ + f(i) for all i. Let ẽxp : R → S̃1

be the lift of the exponential map to the universal cover. Let Tθ be the
translation of S̃1 by 2πθ, as in §1. Then ẽxp ◦ f : Z → S̃1 defines a map
which has the following two properties:

• The points ẽxp ◦ f(1), ẽxp ◦ f(2), ẽxp ◦ f(3) etc. occur in order in S̃1.

• ẽxp ◦ f(i + n) = Tθ(ẽxp ◦ f(i)) for all i.

In other words, ẽxp ◦ f(Z) is naturally the lift of an n-gon Wf on S1
θ .

If f(i+4)− f(i) < 2π for all i then Wf is tame and Wf ∈ W(S1
θ , n). The

regular polygon corresponds to the map ρ, with the action ρ(k) = 2πθk/n
for all k. If n > 4θ then ρ(i + 4) − ρ(i) < 2π and Wρ is tame. In this case,
small perturbations of Wρ are also tame.

The function f above is determined by f(1), ..., f(n). Thus W(S1
θ , n) can

be identified with an open subset U ⊂ R
n. When n > 4θ, this set contains

the point ρ corresponding to the regular n-gon. We think of φ as a map from
U to R.

Since we are only considering tame n-gons, we can compute φ using the
ordinary exponential function rather than its lift, ẽxp. We have

φ(f) =
n∏

i=1

χ(exp(f(i), f(i + 1), f(i + 2), f(i + 3))). (59)

As usual with products, it is easier to work with log φ. It follows from sym-
metry, or else from an explicit computation, that the gradient ∇φ vanishes
at ρ. Thus, the behavior of φ in a neighborhood of ρ is determined by the
Hessian H(ρ). We can finish the proof of Theorem 1.6 by showing that H(ρ)
has a positive eigenvalue.

By symmetry H(ρ) is a circulent matrix. Thus, to compute H(ρ) we
need only compute, for instance, the entries Hj3 = ∂xj

∂x3
φ|ρ for j = 1, ..., n.

We do this computation symbolically in the file excess. It turns out that
the derivative ∂x3

φ only depends on x1, x2, x3, x4, x5. Thus Hj3 = 0 unless
j = 1, 2, 3, 4, 5. Also, we have H13 = H53 and H23 = H43. Setting s = 2πθ/n
we compute

H13 =
2 exp(2is)

(1 − exp(2is))2
; H23 =

−2 exp(is)

(1 − exp(2is))2
;
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H33 =
4 exp(is)(1 + exp(is) + exp(2is))

(1 − exp(2is))2
.

Though it doesn’t look like it, these quantities are all real, and H13 < 0.
Setting As = −H13 > 0 and simplifying we have

A−1
s H13 = −1; A−1

s H23 = 2+2 cos(s); A−1
s H33 = −2− 4 cos(s). (60)

Since s ∈ (2π/n, π/2) there is a positive constant Bs such that

cos(s) = cos(2π/n) − Bs. (61)

Combining Equations 60 and 61 and using the symmetry above we have




H13

H23

H33

H43

H53




= As




−1
2 + 2 cos(2π/n)
−2 − 4 cos(2π/n)
2 + 2 cos(2π/n)

−1




+ Bs




0
−1
2
−1
0




(62)

Let ω = exp(2π/n). Like all circulent matrices, H(ρ) has eigenvectors

Ej = (1, ωj, ω2j, ..., ω(n−1)j); j = 1, ..., n. (63)

with corresponding eigenvalues

λj =
n∑

i=1

ωijH1i = ω−2jH13 + ω−jH23 + H33 + ωjH43 + ω2jH53. (64)

The second equality uses the circulent property of the matrix.
By symmetry λj is real. Thus, taking j = 1, we have

λ1 = As




−1
2 + 2 cos(2π/n)
−2 − 4 cos(2π/n)
2 + 2 cos(2π/n)

−1



·




cos(4π/n)
cos(2π/n)

1
cos(2π/n)
cos(4π/n)




+Bs



−1
2
−1


 ·




cos(2π/n)
1

cos(2π/n)


 (65)

The first summand in Equation 65 is 0, by basic trigonometry! Therefore

λ1 = Bs(2 − 2 cos(2π/n)) > 0. (66)

We have found a positive eigenvalue, and our proof is done.
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7 A Modified Process

The conformal averaging process is natural in the sense that it commutes with
all the conformal automorphisms of S1, whether they preserve or reverse the
orientation of S1. We can give up some of this symmetry and ask about
processes which commute with orientation preserving conformal symmetries
of S1. Here we will describe such a process.

Let W = {w1, ..., wn} be a polygon in S1, as in §1. For each j there is a
unique point w∗

j such that the geodesic joining wj−1 to w∗
j is perpendicular

to the geodesic joinint wj to wj+1. Algebraically, w∗
j is determined by

χ(wj−1, wj, w
∗
j , wj+1) =

1

2
. (67)

We define W ∗ = {w∗
1, ..., w

∗
n}. Inductively we define W [k+1] = (W [k])∗. The

process {W [k]} is simpler than the process {W (k)} in the sense that each
point of W [k+1] is defined in terms of 3 consecutive points of W [k] whereas
each point of W (k+1) is defined in terms of 4 consecutive points of W (k). On
the other hand, the process {W [k]} is less symmetric than the process {W (k)},
as we mentioned above.

After some fooling around we get

w∗
j =

S(. . . , 0, 0, 0, 0 , z2, . . . , zj−1,
1
2
zj , 0, 0, 0 . . .)

S(. . . , 0, 0, 0, z1, z2, . . . , zj−1
1
2
zj, 0, 0, 0 . . .)

; j = 1, 2, 3... (68)

(When j = 1, 2 this equation must be interpreted as in Equation 69.) Here
are the first few terms.

w∗
1 =

1

1 − 1
2
z1

;

w∗
2 =

1 − 1
2
z2

1 − z1 − 1
2
z2

;

w∗
3 =

1 − z2 − 1
3
z3

1 − z1 − z2 − 1
2
z2 − 1

2
z1z3

;

w∗
4 =

1 − z2 − z3 − 1
2
z4 + 1

2
z2z4

1 − z1 − z2 − z3 − 1
2
z4 + z1z3 + 1

2
z1z4 + 1

2
z2z4

(69)

Equation 68 has a proof which is quite similar to the proof of Equation 17
given in §2.3. We omit this proof.
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In the file mapping we compute

χ(w∗
1, w

∗
2, w

∗
3, w

∗
4) =

(2 + z2)(2 + z4)z3

(2 + 2z2 − z2)(2 + 2z3 − z4)
(70)

From this formula we see that

φ(W ∗)

φ(W )
=

[ ∏n
j=1(2 + zj)∏n

j=1(2 + 2zj − zj+1)

]2

(71)

As usual, indices are taken mod n.
We now derive the inequality

n∏

j=1

(2 + zj) ≥
n∏

j=1

(2 + 2zj − zj+1); ∀(z1, ..., zn) ∈ [0, 1]n, (72)

with equality iff z1 = ... = zn. The proof is almost exactly like the proof for
Equation 8 given in §3. We define

G(z1, ..., zn) = log
n∏

j=1

(2 + zj) − log
n∏

j=1

(2 + 2zj − zj+1); (73)

Given Z = (a, b, c, ...) we compute

Gb =
(8b + 2b2) − (4a + 4c + 2ac)

(2 + 2a − b)(2 + b)(2 + 2b − c)
. (74)

If max(a, c) ≤ b and min(a, c) < b then Gb > 0. This shows that G attains
its global minimum−namely 0−precisely along the diagonal. This proves
Equation 73. At this point, all the arguments in §4.1 and §4.2 go through.
In particular, we have an alternate proof of Corollary 1.2.

To complete the proof of Theorem 1.1 for the modified process we just
need to establish Lemma 3.1 for G. We compute that

Gab =
−1

(2 + a)2
; Gbb =

2

(2 + a)2
; Gcb =

−1

(2 + a)2
. (75)

Here we have set (a, b, c) = (a, a, a). This computation works for every
coordinate, and so HG has the same form as in Equation 31, except with
(2 + a)−2 replacing (1 + 2a)−2. Thus, Lemma 3.1 remains true.

Now that we have assembled all the ingredients, the proofs of Theorems
1.1, 1.3, 1.4, and 1.5 go through essentially word for word.
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