
Obtuse Triangular Billiards II: 100 Degrees

Worth of Periodic Trajectories

Richard Evan Schwartz ∗

August 19, 2008

Abstract

We give a rigorous computer-assisted proof that a triangle has a

periodic billiard path provided all its angles are at most 100 degrees.

1 Introduction

1.1 Background

The theory of billiards on rational polygons – i.e. polygons whose angles are
all rational multiples of π – is a well-studied subject with deep connections
to areas such as Teichmuller theory. See [G], [MT], and [T] for some surveys
on billiards, mainly rational. Very little is known about irrational polygonal
billiards. Here is a basic conjecture.

Conjecture 1.1 (Triangular Billiards Conjecture) Every triangle has

a periodic billiard path.

By triangle we mean a solid triangular region of the plane. I think it is fair
to say that this 200-year-old problem is widely regarded as impenetrable.

In order to survey some results related to the Triangular Billiards Con-
jecture, we introduce a bit of notation. Let T be a triangle, with the shortest
edge labelled 1, the next shortest edge labelled 2, and the longest edge la-
belled 3. Any periodic billiard path in T gives rise to an infinite repeating

∗ This research is supported by N.S.F. Grant DMS-0305047 and by a Guggenheim

Fellowship

1

word, which records the succession of sides encountered by the billiard path.
This periodic word is called the combinatorial type of the path.

• In 1775 Fagnano proved that the combinatorial type 123 (repeating)
describes a periodic billiard path on every acute triangle.

• It is an exercise to show that 312321 (repeating) describes a periodic
billiard path on all right triangles. See [GSV], [H], and [Tr] for some
deeper results on right angled billiards.

• Any given rational polygon has a dense set of periodic billiard paths
[BGKT]. See also [M]. See [V], or the surveys above, for the connec-
tions to Teichmuller theory.

• The papers [GSV] and [HH] produce some infinite families of com-
binatorial types which describe periodic billiard paths on some obtuse
triangles.

• A periodic billiard path on a triangle is called stable if a periodic billiard
path of the same combinatorial type exists on all nearby triangles. In
§2 we explain that stability is a combinatorial property of the word.
In [H] it is shown that no right triangle has a stable periodic billiard
path.

• My paper [S] proves that any triangle sufficiently close to the 30-60-90
triangle has a periodic billiard path. At the same time, the follow-
ing “pessimistic” result is proved: For any ǫ > 0 there is a triangle
within ǫ of the 30-60-90 triangle that has no periodic billiard path of
combinatorial length less than 1/ǫ.

• The paper [HS] shows that any sufficiently small perturbation of an
isosceles triangle has a periodic billiard path. This result is deceptively
hard: we require several infinite families of combinatorial types.

The purpose of this paper is to prove the following result.

Theorem 1.2 (100 Degree Theorem) Let T be an obtuse triangle whose

big angle is at most 100 degrees. Then T has a stable periodic billiard path.

2

I discovered this result operating McBilliards, a graphical user interface that
Pat Hooper and I wrote for the purpose of studying the Triangular Billiards
Conjecture. (McBilliards also inspired [H], [S] and [HS].)

We will prove the 100 Degree Theorem rigorously, using a combination
of traditional mathematics and exact integer computation. We recommend
that the reader of this paper operate McBilliards while reading the paper.
McBilliards really brings the ideas in the paper to life, and also allows the
reader to survey the computer-parts of our proof to a very fine level of detail.
In §7 we give the reader instructions for accessing and operating McBilliards.
For the reader who doesn’t want to learn McBilliards, but who still would like
a visual guide to the paper, we have written a simple-to-use and stand-alone
Java applet that illustrates our proof. See §7 for details.

For the reader who does not want to use either of our programs, I have
tried to make the mathematics stand on its own. Also, I have tried to ex-
plain the methods sufficiently well that the interested reader could start
from scratch and reproduce the result in its entirety. As I explain in the next
section, my method of finding the needed periodic billiard paths is rather
simple-minded. Someone reproducing the experiment would probably not
find exactly the same list of combinatorial types I use, but I would bet that
the hypothetical new list would have a lot of overlap with my list. I think
that my list is pretty efficient.

My method of verifying that these combinatorial types do the job is rather
complicated and idiosyncratic. Some of the complexity in the verification
process is probably necessary, but some of it is a result of my needing to get
a feasible computation. (I worked quite hard to develop an efficient method.)
On much faster computers, the verification algorithms would be simpler. See
§4.2, for instance. Perhaps the main point of my verification process is to
convince the reader that the result can be proved by a finite computation.

One might wonder whether 100 degrees is a natural cutoff for our result.
It is not. We stopped at 100 degrees because it is a nice round number. With
a lot more effort, we would perhaps get to 105 or 110 degrees. Below we will
explain why 112.5 degrees (= 5π/8 radians) is a very hard barrier to pass.
To use an analogy, our approach to the Triangular Billiards Conjecture is a
bit like trying to ride a bicycle to the North Pole. It is pretty clear that the
approach will come to grief, but it is hard to say in advance exactly where or
how. Results like the “pessimistic result” in [S] mentioned above, and also
the deeper complications revealed in [HS], indicate some of the difficulties.

3

1.2 Discussion of the Experiment and the Proof

Let ∆ denote the parameter space of obtuse triangles. The point (x, y) ∈ ∆
represents a triangle with small angles x and y radians. To each combinatorial
type W , we can associate the region O(W) consisting of points (x, y) ∈ ∆
such that W is the combinatorial type of a periodic billiard path on the
triangle corresponding to (x, y). When O(W) is non-empty, we call O(W)
an orbit tile, or tile for short. The periodic billiard path represented by W
is stable iff O(W) is a non-empty open set. When O(W) is not an open set,
O(W) is contained in a straight line segment. See §2 for details.

Let S100 ⊂ ∆ denote the region corresponding to triangles whose big an-
gle is at most 100 degrees. For convenience we also assume x ≤ y. Our
general method of proof is to cover S100 with orbit tiles. We use stable words
because the orbit tiles are much larger. Two problems emerge.

Problem 1: Consider a boundary point (0, y) ∈ ∂∆, with y ∈ (0, π/2).
A triangle very near such a point has no short periodic billiard path. See
Lemma 3.1 for a proof. Thus, the covering we seek is necessarily infinite.

Problem 2: Our “pessimistic result” from [S] can be restated like this:
No neighborhood of the point p6 := (π/6, π/3) has a finite covering by orbit
tiles. This point corresponds to the 30-60-90 triangle.

While there is no hope of finding a finite cover of S100, because of these
two problems (and a priori other problems) we nonetheless used McBilliards
to find an infinite cover. McBilliards essentially does two things

1. Given (x0, y0) ∈ ∆, and some N , McBilliards finds all stable combina-
torial types W of length at most N such that (x0, y0) ∈ O(W). The
program makes a depth-first search through the tree of words, pruning
any branch of the tree as soon as it is clear that no completion of the
corresponding word prefix can result in a periodic billiard path. Setting
N = 50 gives a quick answer and setting N = 1000 takes all day.

2. Given a stable combinatorial type W , McBilliards computes, to spec-
ified precision, the orbit tile O(W). As we will discuss in the paper,
O(W) is a “finite sided” region, bounded by analytic arcs. We think
that O(W) is always connected and simply connected, but we have no
proof.

4

Our experimental method works like this. We initially set (say) N = 50
and sample many points in ∆. We first search for all the stable combinatorial
types of length at most N corresponding to some given point. Assuming that
we find some words, we then plot the corresponding tiles. Now we repeat.
Roughly speaking, at any stage of the process, we choose a point that is right
in the center of the largest region we have not covered by orbit tiles. When it
seems that our searches for N = 50 are no longer meeting with any success,
we increase N to 100. And so on. One could perhaps automate this process,
but we have not done this.

Sometimes, guided by a hunch, we focus on a small “hole” around a
particular point. (Other users are likely to develop similar hunches.) In
this case, we steadily increase N while zooming into the region of interest.
Sometimes we find a finite cover; sometimes we find the initial portion of an
infinite sequence of tiles whose union seems to cover the hole; and sometimes
we have to give up without being able to draw any conclusion.

Let

pk =
(

π

k
,
π

2
− π

k

)
∈ ∂∆. (1)

pk corresponds to a right triangle. Our search reveals 5 features.

1. Solving Problem 1, we found an infinite union of tiles that covers a
neighborhood P3 of the segment {0} × [5π/9, π/2]. Here 5π/9 radians
is 100 degrees.

2. The point p4 presents a minor inconvenience. It seems that no neigh-
borhood of this point in ∆ is contained in an orbit tile. However, we
cover a neighborhood P4 of this point by a union of 9 orbit tiles. (For
P4 ∩ S100 we just need 5 orbit tiles.)

3. The point p5 presents a similar inconvenience. We cover a neighborhood
P5 of this point by a union of 2 orbit tiles.

4. Solving Problem 2, we found an infinite family of orbit tiles whose
union covers a neighborhood P6 of p6. We establish this result in [S].

5. Any point in S100 − (P3 ∪P4 ∪P5 ∪P6) is contained in one of 215 orbit
tiles O(W7), ..., O(W221). The maximum word-length is 184.

5

Once we have established the listed results, we just have to show that

S100 ⊂
221⋃

i=3

Pi. (2)

We introduce “dummy” polygons P1 and P2 that cover ∆ − S100. Thus,
Equation 2 is equivalent to

∆ ⊂
221⋃

i=1

Pi. (3)

Establishing this result is a purely combinatorial result. We have a finite
number of polygons and we want to see that they form a covering of ∆.

Referring to Item 1 above, P3 is a certain triangular region in the param-
eter space. The infinite family of words corresponding to the tiles covering
P3 grows in a very predictable way, and we will use analytic techniques to
deal with all the words at once. The method we use here for P3 is similar to
the method we use for P6 in [S].

The computer-aided portion of our proof deals with Items 2,3 and 5. To
explain the general idea, we concentrate on Item 5. For each word Wj we will
produce a polygon Pj ⊂ O(Wj). We choose Pj so that it has dyadic rational
vertices. We also choose the polygons P1, ..., P6 to have dyadic rational ver-
tices. Choosing dyadic rational coordinates is useful for technical purposes,
as we somewhat explain below.

In §4 we will explain how we check, with a finite amount of computation,
that Pj ⊂ O(Wj). Without giving much of an idea of the actual method, per-
haps we can explain why this really is a finite computation. Starting in O(Wj)
and moving towards ∂O(Wj), the corresponding billiard path “disappears”
in one of finitely many ways. Essentially, some portion of the (geometrically
changing) path has to crash into a vertex of the (geometrically changing)
triangle. We just have to show that none of these finitely many bad events
occurs when we move around the smaller Pj.

For the purposes of giving a proof, it doesn’t matter how we produce our
polygons. However, it seems worthwhile to explain the general idea behind
our choices. We plot O(Wj) to high precision. We then select a dyadic
rational polygon Pj ⊂ O(Wj) roughly according to 3 criteria.

• Pj must be fairly well contained inside O(Wj), so that a relatively small
amount of computation reveals that Pj ⊂ O(Wj). It is usually quite
hard to varify that points very near the boundary of O(Wj) are actually
contained in O(Wj).

6

• Pj should be a sufficiently close approximation to O(Wj) so that (con-
sidering pairs of polygons) Pi and Pj have about the same overlap as
Wi and Wj. This condition guarantees what we retain the covering
property when we replace O(Wj) by Pj.

• The demominators of the vertex-coordinates are not too large. The
largest denominator we use is 217. Having fairly simple coordinates
involved turns out to be useful for our rigorous calculations. The tech-
nical difficulty is that we want to make exact integer calculations, but
we also need to evaluate trig functions on the vertices of our polygons.
To solve the problem, we create a look-up table of rational approxima-
tions to cos(πk/2n) for the relevant pairs (k, n).

It takes some work to satisfy all these requirements. What helps us
tremendously is that the orbit tiles, especially the small ones, are extremely
close to being convex polygons. Thus, we can get very nice inner approxima-
tions. We produced the final polygons “by hand”, using a special feature of
McBilliards designed to help us select, manage, and modify such polygons.
We got lucky in that the whole business worked out to a feasible computation.

Now we explain why 5π/8 is a hard barrier to pass. Our region P3 actually
covers a neighborhood of the larger segment {0}× (5π/8, π/2]. However, we
have no idea how to cover the neighborhood of any point (0, y) with y ≥ 5π/8.
Fairly deep searches by McBilliards reveal interesting infinite patterns of orbit
tiles that stop well short of covering any such neighborhood.

1.3 Plan of the Paper

This paper is organized as follows.

• In §2 we will present some basic material about triangular billiards.
Some of this theory is well known, and some of it is (probably) new.

• In §3 we deal with P3, proving that this polygonal region can be covered
by infinitely many orbit tiles. This part of the proof is purely tradi-
tional, but of course is heavily inspired by computer experimentation.

• In §4 we explain our basic computational algorithm which verifies an
equation of the form

P ⊂ O(W), (4)

7

where P is a polygon with dyadic rational vertices and W is a word.
Running this algorithm, we verify that Pj ⊂ O(Wj) for j = 7, ..., 221.

• In §5 we deal with P4 and P5. For the most part, our treatment of P4

and P5 uses the algorithm presented in §4, but we need to intervene
occasionally and do some hands-on analysis. For the sake of complete-
ness, we briefly review how we covered the region P6 in [S].

• In §6 we discuss the main computational issues in the paper. In par-
ticular, we explain how we verify Equation 3. We also explain how we
reduce all our calulations to integer arithmetic.

• In §7 we provide some operating instructions for McBilliards.

The list of all polygons and words we use seems too long to include in this
paper. The complete list resides both in McBilliards and in our companion
java applet. Also, our website has a written list of all polygons and words.

1.4 Acknowledgements

I did the initial experiments for this project at the Max Planck Institute in
Bonn, during July 2004. I would like to thank the M.P.I. for their hospitality
and generous support, and also the Guggenheim Foundation. I would like
to thank Mike Boyle, Curt McMullen, Dan Rudolph, Martin Schmoll, Serge
Troubetzkoy, and Sergei Tabachnikov for their encouragement, and also for
helpful conversations related to this work. I would especially like to thank
Pat Hooper, who is my collaborator on McBilliards, for an infinite number
of helpful conversations about triangular billiards.

8

2 Unfoldings and Stability

In this chapter we develop some of the basic theory of triangular billiards.
Some of this material is well known, and some of it appears in [S] and [HS].

2.1 Unfoldings

We always work with even-length words. Our convention is that a finite word
is meant to be a portion of an infinite periodic word. The infinite periodic
word is obtained from the given portion just by repeating it endlessly.

Given a word W = w1, ..., w2k we define a sequence T1, ..., T2k of triangles,
by the rule that Tj−1 and Tj are related by reflection across the wjth edge of
Tj. Here j = 2, ..., 2k. The set U(W, T) = {Tj}2k

j=1 is known as the unfolding

of the pair (W, T). This is a well known construction; see [T]. Figure 2.1
shows an example.

a8

b8

a1

a2

b1

b2

b3 b4

b5 b6

b7

a3

a4
a6

a7

Figure 2.1: The unfolding for W = (1232313)2.

U(W, T) has a first edge and a last edge. The first edge lies on T1 and has
label w1. The last edge lies on T2k and has label w1 as well. In Figure 2.1,
the first edge is the segment joining a1 to b1 and the last edge is the segment
joining a8 to b8.

W represents a periodic billiard path in T iff the following holds.

1. The first and last edge of U(W, T) are parallel.

2. There is a line segment L joining equivalent interior points on the first
and last edges, that remains entirely inside U(W, T). the points.

9

Here, by equivalent points we mean that the translation carrying the one edge
to the other identifies the points. When we fold up the line segment, so to
speak, it becomes a periodic billiard path on the original triangle. Conversely,
a periodic billiard path unfolds into a segment as we have described. The line
segment L is never unique. Small parallel translations of L will also satisfy
all the hypotheses. We call L a centerline for the unfolding. Sometimes we
will abuse the terminology and call L the centerline even though it is never
unique when it exists.

We now describe a labelling convention for the vertices of U(W, T). We
can think of U(W, T) as the image in the plane of a polygonal disk U∗(W, T)
made by abstractly gluing together triangles as indicated above. The first
and last edges of U∗(W, T) make sense as we described them above. Deleting
the first and last edges on U∗(W, T), we have two remaining arcs on the
boundary ∂U∗(W, T). On one of the arcs we label all the vertices as a1, a2...
going from the first edge to the last edge. On the other arc we label the
vertices as b1, b2... going from the first edge to the last edge.

In case the centerline exists, we can rotate so that the centerline is hori-
zontal. In this case our labelling scheme is exactly as in Figure 2.1. All the
a vertices lie above the centerline and all the b vertices lie below it. For cer-
tain choices of W , called stable words, the first and last sides of U(W, T) are
always parallel. In this case, we will rotate so that a horizontal translation
carries one of these edges to the other. In this case, a centerline exists if and
only if all the a vertices lie above all the b vertices.

Remarks:
(i) Given that our labelling is determined in a combinatorial way, we don’t
actually need a point in O(W) in order to plot (or estimate) this tile. In
practice, we always have such a point, but we don’t use it.
(ii) In the end, we always rotate U(W, T) so that a horizontal translation in
the positive horizontal direction carries the first edge to the last. We call this
horizontal position. However, when we compute certain quantities associated
to U(W, T), we initially have U(W, T) in a potentially different position that
we call first position below.
(iii) The unfolding window on McBilliards shows the unfoldings we have dis-
cussed in this section.

10

2.2 Stability

Recall that a periodic billiard path on a triangle is stable if nearby triangles
have a periodic billiard path of the same combinatorial type. As a related
notion, we say that a combinatorial type W is stable if the first and last sides
of U(W, T) are parallel for any triangle T .

Lemma 2.1 If W is the combinatorial type for a stable billiards path, then

W is a stable word. Conversely, if W is a stable word, then any periodic

billiard path described by W is stable.

Proof: Suppose that W describes a stable periodic billiard path on T . Then
U(W, T) has a centerline, and the first and last sides are parallel, as discussed
above. When we perturb T slightly to a new triangle T ′, we still have a
periodic billiard path with the same combinatorics. Hence, U(W, T ′) still
has a centerline. In particlar, the first and last sides of U(W, T ′) are still
parallel. We have shown that the first and last sides of U(W, ∗) are parallel
for an open set of triangles. But then, by analytic continuation, these sides
are always parallel.

Conversely, suppose that W describes a periodic billiard path on T and
W is a stable word. When we perturb T slightly, the first and last sides are
still parallel, and all the a vertices still lie above all the b vertices. Hence,
a centerline still exists. Hence, nearby triangles still have a periodic billiard
path described by W . ♠

Remarks:
(i) In our proof, we used analytic continuation as a hammer to smash a pea.
Just below, we will see that the parallelism of the first and last sides is a
combinatorial condition.
(ii) One can certainly have stable words that describe no periodic billiard
paths on any triangle. However, given our method of “search, then plot”,
the stable words we find always describe periodic billiard paths on triangles.
That is, all the orbit tiles are guaranteed to be nonempty.

The well-known condition that W is a stable word is a combinatorial one.
We will describe the stability condition in three equivalent ways. First, we
break W into couplets, as we illustrate using the example from the previous
section.

W = 12 32 31 31 23 23 13.

11

Let Nij denote the number of couplets having type ij. In our example, we
have

N12 = 1; N21 = 0; N23 = 2; N32 = 1; M31 = 2; N13 = 1.

Lemma 2.2 W is stable if and only if

N12 − N21 = N23 − N32 = N31 − N13.

Proof: Let T1, ..., T2k be the triangles in the unfolding U(W, T). We put one
more triangle T0 at the beginning of our unfolding, so that reflection across
the first edge maps T0 to T1. The first and last sides (both oriented the same
way) are parallel if and only if T0 and T2k are related by a translation. Let
αj be the angle of our triangle T opposite side j. Looking only at the even
triangles of the unfolding, N12 counts the number of times a triangle Tj is
rotated counterclockwise by 2α3 into Tj+2. Likewise N21 represents the same
thing, but in the clockwise direction. The situation is similar for the other
quantities. Thus, the angle we rotate T0 to get to T2k is

2(N12 − N21)α3 + 2(N23 − N32)α2 + 2(N31 − N13)α1. (5)

The map carrying T0 to T2k is a translation iff the sum above is an integer
multiple of 2π. If our criterion holds, this quantity always equals in integer
multiple of 2π. The point here is that 2α1 + 2α2 + 2α3 = 2π. If our criterion
fails, then we can produce triangles where the corresponding sum is not an
integer multiple of 2π. ♠

Now we will describe stability in a second way. Let H denote the 1-
skeleton of the usual regular hexagonal grid in the plane. H has 3 parallel
families of edges. Given a word, we can draw a path in H by following
the edges as determined by the word: we move along the dth family when
we encounter the digit d. We call this path the hexpath associated to the
word. Figure 2.2 shows the hexpath corresponding the example we have been
considering. Note that the hexpath is closed in this case.

12

33

31

1

1

2

2

2

2

3

31

3

Figure 2.2: The hexpath for W = (1232313)2.

Lemma 2.3 A word is stable if and only if its hexpath is closed.

Proof: For this proof, we identify the plane with C and scale the picture so
that opposite sides of each hexagon are 1 unit apart. Considering the hex-
path two edges at a time, we see that the location of the final point has the
same formula as in Equation 5 except that we replace the angles α1, α2, α3

by 3 unit complex numbers, z1, z2, z3, forming the vertices of an equilateral
triangle on the unit circle. An easy exercise shows that the corresponding
sum vanishes exactly when our stability condition holds. ♠

Remark: The word window in McBilliards draws the hexpaths for the com-
binatorial types that the search engine finds.

Here we mention one last formulation of the stability condition.

Lemma 2.4 Let W = w1, ..., w2n. Let ndj denote the number of solutions to

the equation wi = d with i congruent to j mod 2. Let nd = nd0 − nd1. Then

W is stable iff nd(W) is independent of d.

Proof: Interpreted in terms of the hexpath, the condition here again says
that the hexpath is closed. ♠

13

2.3 Special Palindromes

We call W a special palindrome if W is stable and has the form

W = dwd(w−1) (6)

Here d ∈ {1, 2, 3} and w is a subword, and w−1 is the reverse of w. In this
case, U(W, T) has bilateral symmetry, and the translation carrying the first
side to the last side of U(W, T) moves perpendicular to these sides.

If U(W, T) has a centerline, then the centerline is necessarily perpendicu-
lar to the first and last side. Hence, the corresponding periodic billiard path
on T starts and ends perpendicular to one of the sides of T . Conversely, a
stable periodic billiard path in T with this property has a combinatorial type
that is a special palindrome.

Note that there are unstable words that satisfy some but not all of the
mentioned properties. For instance 123132 describes an unstable periodic
billiard path in any right triangle, and this path starts and ends perpendicular
to side 3.

2.4 Turning Angles and Turning Pairs

2.4.1 Definition

Let U(W, T) be the unfolding. Let e1 be the first edge, oriented so that it
points from b1 to a1. We say that U(W, T) is in first position if e1 is parallel
to (0, 1). That is, e1 points in the direction of the positive Y -axis.

Given any oriented edge e of U(W, T), we let θ(e) denote the angle that
one must rotate the positive y-axis counterclockwise so that it coincides with
e. Thus, θ(e1) = 0. In general, θ(e) is defined mod 2π. The function θ(e) is
really a function of (x, y) ∈ ∆, and we write this dependence as θ(e; x, y). It
is not hard to see, by induction, that there are integers M(e) and N(e) such
that

θ(e; x, y) = M(e)x + N(e)y + ǫπ mod 2π. (7)

Here ǫ ∈ {0, 1}. It is sometimes more convenient to consider unoriented
edges, in which case we have

θ(e; x, y) = M(e)x + N(e)y mod π. (8)

We call (M(e), N(e)) the turning pair for e. The rest of this section is devoted
to explaining how one computes the turning pairs algorithmically.

14

2.4.2 The Angular Correspondence

First we will give an abstract formulation of how the turning pairs are de-
fined. There is a canonical map from the set of triangles of the unfolding to
the set of vertices of the hexpath: We simply map Ti to the ith vertex vi of
the hexpath. The edge of U(T, ∗) between Ti and Ti+1 corresponds naturally
to the midpoint of the edge joining vi and vi+1. The other two edges of Ti

correspond naturally to the midpoints of the other two edges of H emanating
from vi. We call this correspondence the angular correspondence. For any
object of the unfolding X, we let Θ(X) denote the point in the plane corre-
sponding to X under the angular correspondence. It turns out that there is a
real affine transformation R of the plane such that (M(e), N(e)) = R(Θ(e)).
This is the abstract formulation.

2.4.3 A Concrete Algorithm

Let d be the first digit of W . For ǫ ∈ {−1, 0, 1} let dǫ ∈ {1, 2, 3} denote the
congruence class of (d + ǫ) mod 3. We define

α0(dǫ) = ǫ; (9)

Suppose that we have determined αi−1(1), αi−1(2) and αi−1(3). Let d be the
ith digit of W . Define

αi(dǫ) = αi−1(dǫ) + (−1)i2ǫ. (10)

In this way we produce a triple of labels for each triangle in the unfolding. If
the plane is suitably coordinatized by variables (x, y, z) such that x+y+z = 0
then the triple associated to Ti is precisely the coordinates of Θ(Ti), the ith
vertex of the hexpath.

Let e be an edge of U(W, T). Suppose that e is the dth edge of Ti. We
define

β(e, dǫ) = αi(dǫ) − (−1)iǫ. (11)

Note that e could also be an edge of another triangle of U(W, T). This
happens when Ti−1 and Ti are related by a reflection through e. In other
words d is the ith digit of W . In this situation Equation 11 gives the same
answer whether we use i−1 or i in the formula. This can be seen by comparing
Equations 10 and 11.

15

Lemma 2.5 We have the general formula

θ(e) = −β(e, 1)x + β(e, 2)y + β(e, 3)z

3
(12)

Here z is such that x + y + z = π.

Proof: We first check our formula on the edges of T1. If 1 is the first digit
of W then the edge labels of e1 are (0, 0, 0) and hence both sides of Equation
12 are 0. The edge labels of e2 are (−1,−1, 2). In this case Equation 12 gives
θ(e2)−θ(e1) = −(−x−y+2z)/3 = −z, as it should. The edge labels of e3 are
(1,−2, 1). In this case Equation 12 gives θ(e3)−θ(e1) = −(x−2y+z)/3 = y,
as it should.

(0,0,0)

(−2,−2,4)

e1
z

y

z (−3,0,3)

x
x

y

(1,−2,1)

edge labels

(−2,−1,3)

(0,−1,1)

T1

T2

triangle labels

(−1,−1,2)

Figure 2.3: Labels for W = 12...

Given the simple nature of the formulas in Equation 10 and 11 it suffices
to check the induction step for i = 2. In other words, we just have to see
that Equation 12 works for the edges of T2. Again, we can suppose that 1
is the first digit of W . Suppose that 2 is the second digit. Figure 2.4 shows
a picture of the situation. One easily checks that Equation 12 holds for all
these edges. When the second digit of W is a 3 the verification is similar. ♠

It is useful to have a formula that doesn’t involve the angle z. We define

M(e) =
β(e, 3) − β(e, 1)

3
; N(e) =

β(e, 3) − β(e, 2)

3
. (13)

If follows from Lemma 2.5 that (M(e), N(e)) is the turning pair for e.

16

2.5 Defining Functions

Given two points v, w ∈ R
2 we write

v ↑ w; v l w; v ↓ w

iff the y coordinate of v respectively is greater than, equal to, or less than the
y coordinate of w. In this section we will explain how to define a function fuv

such that fuv > 0 iff u ↑ v. Here fuv is a function of (x, y) ∈ ∆. The function
fuv has a combinatorial definition, in terms of the positions of u and v on
the unfolding. Given these functions, we are left with the following general
problem. If Q ⊂ ∆ is some region and we want to show that Q ⊂ O(W),
we just have to show that fai,bj

> 0 throughout Q, for all pairs (ai, bj). This
explains why the orbit tiles are “finite sided” regions with sides defined by
(as we will see) analytic functions.

Let U(W, T) be in first position. Let Ũ(W, T) be the bi-infinite periodic
continuation of U(W, T). For any d ∈ {1, 2, 3} there is an infinite, periodic
polygonal path made from type-d edges in Ũ(W, T). The image of this path
in U(W, T) is what we call the d-spine. Figure 2.4 shows the 3-spine for
U(W, T) where T is some triangle of no interest to us. When the first and
last sides of U(W, T) are glued together, the d-spine is a closed polygonal
loop.

a1

b1
b4

Figure 2.4: The 3-spine for W = 123231323123232313.

Let e1, ..., en be a complete and irredundant list of the edges which appear
in the d-spine. We label so that e1 is the leftmost edge. We introduce the
function

gd(x, y) =
n∑

k=1

(−1)k−1 exp(i(M(ek)x + N(ek)y)). (14)

17

Lemma 2.6 Suppose that U(W, T) is in first position. The translation di-

rection of U(W, T) is parallel to ±igd(x, y) for any d ∈ {1, 2, 3}.

Proof: Suppose e1 and e2 are oriented edges of U(W, T), incident to a
common vertex v, and oriented the same way with respect to v. See Figure
2.4. Suppose that e2 lies to the right of e1. Then

Mx + Ny mod 2π; M = M(e2) − M(e1); N = N(e2) − N(e1) (15)

represents the counterclockwise angle through which which e1 is rotated to
produce e2.

e2

v

e1 e2ve1

Figure 2.4: Two edges

We identify the plane with C. We scale so that the vectors e1, ..., en of
the spine are all unit vectors and the tail vertex of e1 is 0. We consider
two orientations on these edges. Say that the red orientation is the one in
which the head of each edge hits the tail of the next one. Say that the blue

orientation is the one where incident edges both point either away or towards
the vertex of incidence, as in Figure 2.4.

Let ρk ∈ C denote the head of ek minus the tail of ek, when this edge
is oriented according to the red orientation. Likewise define βk for the blue
orientation. The initial point e1 is 0. The translation we seek carries 0 to the
endpoint z of en with the red orientation. Thus, our translation carries 0 to

n∑

k=1

ρk =
n∑

k=1

(−1)k−1βk. (16)

On the other hand, it follows from induction and Equation 15 that

ρk = ǫ exp(iθ̃k); θ̃k = M(ek)x + N(ek)y. (17)

Here ǫ ∈ {−1, 1} is a global sign that does not depend on k. Combining
Equations 16 and 17 gives us our result. ♠

18

Let v and w be two vertices of U(W, T). We say that v and w are d-
connected if there is a polygonal path of type-d edges connecting v to w, and
d is as large as possible. For instance, if there is a path of type 1 connecting
v to w and also a path of type 2 connecting v to w (but no such path of type
3) then we would say that v and w are 2-connected.

Lemma 2.7 Any pair of vertices are d-connected for a unique d ∈ {1, 2, 3}.

Proof: If d exists, then by definition d is unique. For the existence, let v
and w be our vertices. v and w are each incident to two types of vertices.
Hence, there is some type, say d, such that v and w are both incident to an
edge of type d. We take d as large as possible. Either v lies on the d-spine or
else we can connect v to the d-spine with an edge of type d. The same goes
for w. Thus, we form our path by connecting v to the d-spine, by travelling
along the d-spine, and then by connecting to w. ♠

Let e′1, ..., e
′
m be the set of type-d edges joining v to w, ordered from left

to right. We define

h(x, y) =
m∑

k=1

(−1)k−1 exp(i(M(e′k)x + N(e′k)y)). (18)

Lemma 2.8 Suppose that U(W, T) is in first position. The vector pointing

from p to q is parallel to ±h(x, y).

Proof: This has almost exactly the same proof as Lemma 2.6. ♠

Letting d be such that v and w are d-connected, we set g = gd.

Lemma 2.9 Let T be the triangle corresponding to (x, y) ∈ ∆. Suppose that

U(W, T) is in horizontal position. Then the function

f(x, y) = ±Im(gh) (19)

vanishes iff v l w.

Proof: v l w when U(W, T) is in horizontal position if and only if g = g(x, y)
and g = h(x, y) are real multiples of each other, which happens iff gh ∈ R,
which happens iff f(x, y) = 0 ♠

19

2.6 Getting the Sign Right

Now we discuss the sign in front of Equation 19. We want to use our function
to determine when a given vertex lies above another one, and not just when
two given vertices are at the same height. That is, we would like to know
which sign choice guarantees that f(x, y) > 0 iff v(x, y) ↑ w(x, y). Here we
emphasize that the positions of v and w depend on a parameter (x, y) ∈ ∆.

There are two approaches we might take. One approach is to just make a
guess in any given case, and then to use a single auxilliary computation for
some point (x0, y0) to correct the guess if necessary. By continuity, if the sign
is right (or wrong) at one parameter it is right (or wrong) at all parameters.
Given that the computer aided portion of our proof only involves a finite
number of these functions, we could easily have taken this approach.

The approach we actually take is to establish some general sign conven-
tions and follow them. After an embarrassingly huge amount of trial and
error we discovered the general rule that allows us to establish and imple-
ment our sign conventions. The proof that the sign formula is correct is a
matter of induction. We omit the details.

Recall that v lies to the left of w, and e′1, e
′
2, ... are the edges of our chosen

path connecting v to w. Finally, we note that there is a canonical left-to-right
ordering on all the edges of the same type.

The d-spine gives a natural ordering to the edges e1, ..., en – the red or-
dering in our proof of Lemma 2.6 – and so it makes sense to speak of the left
vertex of e1. This is the tail vertex of e1 relative to the red ordering. The
left vertex of e1 is either a1 or b1.

The Sign Rule: Let s be the number of edges on the list e1, ..., en which lie
to the left of e′1.

• Suppose the left vertex of e1 is a1. Then (−1)sIm(gh) > 0 iff v ↑ w.

• Suppose the left vertex of e1 is b1. Then (−1)sIm(gh) > 0 iff v ↓ w.

McBilliards uses the Sign Rule as a basis for establishing the following sign
conventions:

1. Suppose v = ai and w = bj . Then f > 0 iff v ↑ w.

2. Suppose v = ai and w = bj and i < j. Then f > 0 iff w ↑ v.

3. Suppose v = bi and w = bj and i < j. Then f > 0 iff w ↑ v.

20

2.7 Notation

We introduce a shorthand notation for the function f . It suffices to list the
turning pairs defining h and then the turning pairs defining g. For instance,
in the example above the defining function for the pair (a1, b4) is recorded as

0 1
4 1
4 −1
6 −1
6 −3
0 −3

0 1 (+)
4 1

Here m = 2 and n = 6. The (+) indicates the sign choice. From the notation
we read off that

g(x, y) = exp(i(y)) − exp(i(4x + y)) + exp(i(4x − y)) − . . . − exp(i(−3y)).

h(x, y) = (+1) × (exp(i(y)) − exp(i(4x + y)));

We call this form 1 for the defining function.
To arrive at a second convenient form for our function we multiply g and

h together, collect the terms, and use the fact that sine is an odd function.
This gives us what we call Form 2 of the defining function:

f(x, y) =
∑

k

Jk sin(Akx + Bky); Jk ∈ N ; Ak, Bk ∈ Z. (20)

Remark: Using the Unfolding Window on McBilliards, the reader can see
computations of the turning pairs and defining functions for any given ex-
ample.

21

3 The Infinite Families

3.1 The Region of Interest

The region P3 ⊂ ∆ has coordinates

(
0,

π

2

)
;

(
0,

3π

8

)
;

(
π

8
,
3π

8

)
(21)

The lightly shaded region in Figure 3.1 is ∆. The darkly shaded region is
P3. The dotted line indicates roughly the boundary of S100.

(0,0)
Figure 3.1: The region P3.

Lemma 3.1 P3 has no covering by finitely many orbit tiles.

Proof: Let T be a triangle whose largest angle is 90 + ǫ and whose smallest
angle is δ, where δ ≪ ǫ. Any billiard path P in T must eventually hit the
short side of T at a point x. But then at least one of the segments S of P ,
incident to x, will make an angle comparable to ǫ with one of the long sides.
Tracing P out from x in the direction of this segment, we see that P has to
make about ǫ/δ bounces, moving roughly away from the short side, before
its direction can change enough for it to turn around. This shows that T
supports no short periodic billiard paths. Hence, we need infinitely many
orbit tiles to cover P3. ♠

22

We introduce the words An and Bn for n = 1, 2, 3...

An = 3wn3w
−1

n ; Bn = 3wn+13w
−1

n ; wn = 1(32)n+11(23)n2 (22)

We break P3 into subregions, each of which is covered by a single tile.
Let Nn denote the open triangle bounded by

• The bottom edge of P3, namely the line y = 3π/8;

• The line through (0, π/2) having slope −(n + 1)/2.

• The line through (0, π/2) having slope −(n + 2)/2.

Let N ′
n denote the open line segment which is the common boundary of Nn

and Nn+1. We will prove

Nn ⊂ O(An); N ′
n ⊂ O(Bn); n = 1, 2, 3... (23)

Figure 3.2 shows the tiles O(A1), ..., O(A6) and the right hand side shows
O(B1), ..., O(B6) superimposed over the left hand side. The tiles continue
sweeping out to the left, covering P3.

Figure 3.2: Some orbit tiles

We deal with the A tiles first, then the B tiles.

23

3.2 The A Unfoldings

Figures 3.3-3.5 show unfoldings for A1, A2, and A3 respectively, for various
choices of triangle. The pattern continues in the obvious way.

Figure 3.3: Unfolding for A1.

Figure 3.4: Unfolding for A2.

Figure 3.5 Unfolding for A3.

24

3.3 A Special Case

We will concentrate on the case n = 2, which is sufficiently complex to
contain all the ideas in the proof. At the end we will explain the general
case.

Here we analyze the vertices of U(A2, T), when T corresponds to a point
in N2. By symmetry it suffices to consider the vertices on the right half of
the unfolding. We change our labelling scheme somewhat, and start counting
our vertices from the center, as in Figure 3.6. Figure 3.6 shows an enlarged
version of Figure 3.4.

b1
b3

b5

b8

a8

a1

a2
a4 a6

Figure 3.6: Unfolding for A2.

Lemma 3.2 For any T ∈ N2, and any j, we have aj ↑ a2 or aj ↑ a7. In

other words, the lowest top vertex is either a2 or a7 in all cases.

Proof: Let θ(e) denote the turning angle of an edge e, as discussed in the

previous chapter. We write (for instance) θ(a1b2) = θ(
−−→
a1b2). We let z denote

the angle opposite edge 3, so that x + y + z = π. Here are the angles of
importance to us.

θ(a1a2) = 6x + π; θ(a7a8) = −x; θ(b7a5) = π + 3x + 2y (24)

We derive the third equation, which is the least obvious. We rotate
−−→
b1a1 by

6x to get −−→a2a1. Then we rotate −−→a2a1 by 2y to get to
−−→
a2b7. Then we rotate−−→

a2b7 by −3x to get to
−−→
a5b7. Then we rotate by π to reverse the direction.

25

The conditions (x, y) ∈ N2 give rise to the angle constraints

x ∈ (0,
π

12
); y ∈ (

3π

8
,
π

2
). (25)

See Figure 3.3. From Equation 24 we now get

θ(a1a2) ∈ (π, π + π/2); θ(a7a8) = x ∈ (−π/2, 0) (26)

But this means that a1 ↑ a2 and a8 ↑ a7.
Consider the polygonal “fan” F whose vertices are b7 and a3, ..., a7. Note

that b7a5 is the line of bilateral symmetry for F . Our constraint (x, y) ∈ N2

gives
π − π/4 < 2y < π − 3x; 3x < π/4. (27)

Combining these bounds with Equation 24 we get

θ(b7a5) ∈ (
7π

4
, 2π) (28)

Hence b5a7 has positive slope.
Equation 27 guarantees that F is contained in a halfplane. We can write

F = F1 ∪F2 where F1 is the convex hull of b7 and the odd vertices a3, a5, a7.
Then F2 is a union of 2 small triangles., as shown in Figure 3.7. Given the
conditions on F we see that a3 ↑ a7 and a5 ↑ a7.

b7

a3
a4

a5
a6

a7

Figure 3.7: The Fan

Since the line of symmetry of F has positive slope and F lies in a half-
plane, each even a vertex of the fan lies above one of the adjacent odd a
vertices. The point here is that the line segments connecting b7 to the even
vertices are longer than the line segments connecting b7 to the odd vertices.
All in all aj ↑ a7 for j = 3, 4, 5, 6. ♠

Now we deal with the bottom vertices.

26

Lemma 3.3 In all cases, the highest bottom vertex is either b6 or b8.

Proof: The proof is almost the same as for the top vertices. Let (x, y) ∈ N2,
as above. Since y < π/2 the line b1b2 has positive slope. Hence b2 ↑ b1.
To understand the vertices b2, ..., b4 we consider the “fan” whose vertices
are a1, b2, b3, b4, b5, b6. This polygon is isometric to the one considered in
the previous subsection. The line of symmetry of F is a1b4. This line has
negative slope because of the fact that 3x < π/2. The same argument as

above now shows that b6 ↑ bj for j = 2, 3, 4, 5. The angle between
−−→
b7b6 and−−→

b7a5 is 4x < π/3. Combining this information with Equation 28 we see that

θ(b7b6) ∈ (
7π

4
,
5π

2
) ≡ (−π

4
,
π

3
). (29)

From this we see that b6 ↑ b7. ♠

To finish the proof that N2 ⊂ O(A2), we prove the following result.

Lemma 3.4 When T corresponds to a point in N2, we have ai ↑ bj for

i ∈ {2, 7} and j ∈ {6, 8}.

Proof: Consider first (a7, b8). We have

θ(b8a7) = y ∈ (0, π/2).

Hence a7 ↑ b8.
Now consider (a2, b6). We have θ(a2b6) = 4x+y ∈ (π/2, π). Hence a2 ↑ b6.
Now consider (a2, b8). Note that a2 and b8 are symmetrically located with

respect to our favorite line b7a5. Thus a2 and b8 have the same height iff our
line is vertical. From Equation 24 and Equation 28 we see that this happens
for a point in closure(N2) iff 2y + 3x = π. That is, (x, y) has to lie on the
right boundary line of N2. Equation 28 shows that a2 ↑ b8 for (x, y) ∈ N2.

Now consider (a7, b6). Note that a7 and b6 have the same height iff the
line b7a4 is vertical. Essentially the same analysis as we have already done
shows that our line has negative slope for (x, y) ∈ N2, and is vertical for
2y + 4x = π. Hence a4 ↑ b7. The two points have the same height when
(x, y) is in the left boundary of N2. ♠

27

3.4 The General Case

We deal with the top vertices first. The general versions of Equation 24 is

θ(a1a2) = (2n + 2)x + π; θ(a2n+3a2n+4) = −x;

θ(b2n+3an+3) = π + (n + 1)x + 2y (30)

Equation 30 eliminates a2n+4 and a1 from consideration.
The conditions (x, y) ∈ Nn give rise to the angle constraints

x ∈ (0,
π

4n + 8
); y ∈ (

3π

4
,
π

2
). (31)

For (x, y) ∈ Nn we have

π − π/4 < 2y < π − (n + 1)x. (32)

These equations combine together with Equation 30 to show that the line
b2n+3an+3 has positive slope. This line is the center of symmetry of the fan
with vertices b2n+3, a3, ..., a2n+3. The same argument as above then shows
that a2, ..., a2n+2 lie above aj ↑ a2n+3 for j = 2, ..., 2n + 2. In this way we
eliminate everything but a2 and a2n+3.

Essentially the same argument eliminates all the b vertices except b2n+2

and b2n+4. The key point is that the line a1bn+2, which is the line of symmetry
for the fan with vertices a1; b2, ..., b2n+2, has negative slope. This follows from
Equation 31.

The analysis of the edges is the same in the general case. The main points
that need to be observed are:

• The points a2 and b2n+4 have the same height iff b2n+4an+3 is vertical,
and this happens iff 2y + (n + 1)x = π.

• a2n+3 and b2n+2 have the same height iff the line b2n+3an+2 is vertical,
and this happens iff 2y + (n + 2)x = π.

All this information assembles together in the same way as in the case n = 2,
to show that Nn ⊂ O(An).

28

3.5 The B Unfoldings

Now we turn to the B tiles. We will draw U(B1, T) for some triangle T , and
then explain the general case.

a5
a3

a7

a8

a9
a11

a13

b13

b12

b10

b8
b6

b4

b2

b1

a1

Figure 3.8: Unfolding for B1.

Figure 3.8 shows U(B1, T) for some triangle corresponding to a point
(x, y) ∈ N ′

1. Such points satisfy the equation

3x + 2y = π (33)

The (near) central edge (a8, b8) is parallel to both (a1, b1) and (a13, b13).
Indeed the portion of U(B1, A) to the left of (a8, b8) is isometric to the right
half of U(W2, A) and the portion to the right of (a8, b8) is isometric to the
left half of U(W1, A). This is fitting, because O(B1) fits “between” O(W1)
and O(W2).

In general, U(Bn) is obtained by splicing together the left half of O(An)
with the right half of O(An+1).

We will take the same approach as for the A tiles. We first consider a
special case in detail and then explain the changes needed for the general
case. Again, this is entirely for the sake of exposition. We first show that
N ′

1 ⊂ O(B1).

29

3.6 An Estimate for the Rotation Angle

In the section, we prove

θ(b13a13) ∈ (0, x); θ(a12, a13) ∈ (−x, 0). (34)

Lemma 3.5 There is some ǫ > 0 such that θ(a12, a13) ∈ [0, ǫ) is impossible.

Proof: The conditions in Equation 33 guarantee that the following lines are
parallel

a11b12; a8b7; a5b2; a12a13. (35)

By symmetry, the points b13 and a3 are related by a reflection in a8b7. The
point a3 and b1 are related by a reflection in a2b2. If a12a13 is vertical or has
negative slope, then a3 lies below b13. On the other hand, if a12a13 is vertical
has large negative slope then a2b2 has negative slope. (Here we are using
3x ≤ π/4. Compare Equation 27.) But then b1 lies below a3. But then b1

lies below b13, a contradiction. ♠

Lemma 3.6 There is some ǫ > 0 such θ(b13, a13) ∈ (−ǫ, 0] is impossible.

Proof: Condition 33 guarantees that a10b12, a8b8, a4b2, and a1b1 are all
parallel to a13b13. Let a0 denote the reflection of a2 through the line a1b1.
Our normalization puts a0 and a12 at the same height. The points a0, a2,
a6 are successively related to each other by reflections in the lines mentioned
above. Likewise, the points a12, b11, b5 are successively related to each other
by reflections in the lines mentioned above. If a13b13 is either vertical or has
sufficiently large negative slope then b5 lies above a6.

The points a6 and b3 are related to each other by a reflection through
b2a7. The points b3 and b5 are related to each other by reflection in the line
a8b4. If a13b13 is either vertical or has sufficiently large negative slope then
these two last mentioned lines both have negative slope and hence b5 lies
below a6. This is a contradiction. ♠

When x is near 0, the 1-spine of our unfolding converges to a horizontal
path. Hence, the two lines a13, b13 and a12, a13 converge to vertical lines.
By our previous results, these lines have opposite slopes. As we increase x,
and remain on N ′

1, this property cannot be lost, by our two results. This
establishes our inequalities.

30

3.7 Most of the Vertices

Lemma 3.7 For any T corresponding to points in N ′
1, the lowest top vertex

is either a9 or a12. The highest bottom vertex is either b1, b3, or b13.

Proof: From Equation 34 we get θ(a2a1) ∈ (x, 2x). Hence a1 ↑ a2.
We have θ(b2a5) = θ(a12a13). By Equation 34 we see that b2a5 has pos-

itive slope. This line happens to be the line of symmetry for the fan with
vertices b2; a3, ...a7. The same argument as in §3.3 shows that aj ↑ a7 for
j = 2, 3, 4, 5, 6. Similarly, considering the fan with vertices a8, b3, ..., b11,
whose line of symmetry a8b7 has positive slope, we see that b3 ↑ bj for
j = 4, ..., 11.

Equation 34 gives θ(a7a8) ∈ (0, 6x) ∈ (0, π/2). Hence a8 ↑ a7. Similarly,
b4 ↑ b2 and b13 ↑ b12.

a7 and a9 are related by reflection through a8b7, a line with negative slope.
Hence a7 ↑ a9.

Note that a12 and a10 are related by a reflection through b12a10, a line
which has negative slope because it is parallel to a13b13. Hence a10 ↑ a12.

a12 and a0, the point defined in the proof of Lemma 3.6, are at the same
height. Moreover, a0 and a2 are related by a reflection through the negatively
sloped a1b1. Hence a2 ↑ a12. ♠

a5
a3

a7

a8

a9
a11

a13

b13

b12

b10

b8
b6

b4

b2

b1

a1

Figure 3.8: Unfolding for B1.

31

3.8 The 6 Pairs

It remains to deal with 6 pairs of vertices. Througout our argument, we work
with triangles corresponding to points in N ′

1.

Lemma 3.8 ai ↑ bj for i ∈ {9, 12} and j ∈ {1, 13}.

Proof: Note that b1 and b13 are vertices related by a horizontal translation.
Thus, we need not consider b1.

We have θ(b13, a12) ∈ (y, x + y). We also have 3x + 2y = π. Hence
θ(b13, a12) ∈ (0, π/2). Hence a12 ↑ b13.

Consider the pair (a9, b13). Since b13 and a9 are related by reflection
through b12a12 and θ(b12, a12) = θ(a12, a13) ∈ (−x, 0) we have a9 ↑ b13. ♠

It remains to consider the pairs (a9, b3) and (a12, b3).

Lemma 3.9 a9 lies above the line b3a12. Hence, a12 ↑ b3 implies a9 ↑ a3.

Proof: Let θ1 denote the angle 6 b3a8a9. Let θ2 denote the angle 6 b12a9a12.
The point a9 lies on b3a12 iff (π− θ2)+ θ1 = 6 a8a9b12 = 2y. Using this fact as
a guide, we check signs to determine that a9 lies above b4a12 provided that
π − θ2 + θ1 > 2y.

Using the law of sines we can normalize so that our triangles all have
side lengths sin(x), sin(y), sin(z). Let θ3 = 6 a9a12b12. Looking at the triangle
with vertices a3, a8, b9 and using the law of sines we get

θ3 =
sin(z)

sin(y)
θ1. (36)

Using that the sum of the 3 angles in a triangle is π, together with Equa-
tion 33, we get:

θ1 + θ3 = π − 9x = π − 4 × 3x + 3x = −3π + 8y + 3x = 5y − 3z. (37)

The first equation uses Equation 33. Solving for θ1 we get:

θ1 =
(5y − 3z) sin(y)

sin(y) + sin(z)
. (38)

32

Let θ4 = 6 a9a12b12. From the law of sines we have

θ4 =
sin(z)

sin(y)
θ2. (39)

We also have

θ2 + θ4 = π − 3x = π − 2 × 3x + 3(π − y − z) =

π − 2(π − 2y) + 3π − 3y − 3z = 2π + y − 3z (40)

(We have complicated this equation so that it readily generalizes.) Solving
for θ2 we get

θ2 =
(2π + y − 3z) sin(y)

sin(y) + sin(z)
. (41)

Using Equations 38 and 41 we compute

(π − θ2 + θ1) − 2b =
(π − 2y)(sin(z) − sin(y))

sin(y) + sin(z)
. (42)

Note that sin(z) > sin(y). The expression in Equation 42 is positive as long
as y < π/2, which is certainly our situation. ♠

Lemma 3.10 a12 ↑ b3.

Proof: It is useful to cycle our picture so that b3 is all the way to the left.
See Figure 3.9. Figure 3.9 is cut-and-paste equivalent to Figure 3.8.

b3

b11

b12

a12
a14

b14

b15

a13

a8

Figure 3.9: Cut and paste

33

Note that a12 lies to the left of both b14 and b15. To see this note that
a14 and b15 are related by reflection in the nearly vertical line b14a17 and a14

and a12 are related by reflection in the nearly vertical line a13b13. These lines
make an angle of less that x with the vertical, from Equation 34. The same
argument shows that b3 lies to the left of a12.

Let σ1 and σ2 respectively denote the slopes of b15a12 and b3b15 when the
picture is rotated so that b15b14 is horizontal. Since a12 and b3 lie to the left
of both b14 and b15 the slopes σ1 and σ2 are finite. We will show that that
σ1 < σ2. This, together with the fact that b3 lies to the left of a12, shows
that a12 ↑ b3, as desired.

Consider the path of 8 vectors v1, ..., v8 defined by the vertex sequence

(b15, b14, a14, a13, a12, b12, b11, a8, b3). (43)

In the terminology of §4, this path is part of the 1-spine. The first vector
points from b15 to b14, and so forth. These vectors all have the same length,
which we normalize to be 1.

Let θk denote the counterclockwise angle by which v1 must be rotated to
produce vk. We now calculate these vectors.

Looking at Figure 3.9 have θ1 = 0 and

• θ2 = 6x + π = −4y + π.

• θ3 = 6x − 2z = −4y − 2z.

• θ4 = 4x − 2z + π = −2y + π.

• θ5 = 4x − 4z = −2y − 2z.

• θ6 = 8x − 4z + π = −4y + π.

• θ7 = 8x − 2z = −4y + 2z.

• θ8 = −2z + π.

In working out some of the equalities we used the relations

6x = −4y; 2αj = −2αj−1 − 2αj+1. (44)

These relations hold mod 2π, which is all we care about. The first equation
comes from Equation 33. To give an example derivation, we will work out
the derivations for θ4 and θ6:

4x − 2z = 4x + 2x + 2y = 6x + 2y = −4y + 2y = −2y.

34

8x − 4z = 12x − 4x − 4z = −8y + (4y + 4z) − 4z = −4y.

We want to eliminate x because this is the approach which generalizes to the
other words W ′

n.
To compute the slope of a point, we divide it’s y displacement by it’s

x-displacement. We set

Ck =
k∑

j=1

cos(θj); Sk =
k∑

j=1

sin(θj). (45)

Then σ1 = S4/C4 and σ2 = S8/C8. Since σ1 and σ2 are both finite the terms
C4 and C8 never vanish. We compute that

σ1 − σ2 =
2 sin(z)

C4C8

(cos(z) − cos(y)). (46)

The condition z ∈ (π/2, π) makes cos(z) < 0. The condition y ∈ (0, π/2)
makes cos(y) > 0. Hence σ1 − σ2 < 0. Hence σ1 < σ2. ♠

This completes our proof that N ′
1 ⊂ O(B1). the first tile in the second

family.

3.9 The General Case

For N ′
n we have the angle condition

(n + 2)x + 2y = π. (47)

The proof of Equation 34 works exactly the same way, with the same out-
come. Armed with Equation 34 we can use the same arguments as above to
eliminate all the pairs of vertices except (b3, a3n+6) and (b3, a4n+8). Figure
3.10 below shows the situation for n = 2.

Lemma 3.9 works in general, with the following changes: Equation 37
becomes

θ1 + θ3 = π − 4 × (n + 2)x − 3x = 8y − 3x = 5y + 3x. (48)

Eqution 40 becomes

θ2 + θ4 = 2× (n + 2)x− 3x = 2(π − 2y)− 3(π − y − z) = 2π + y − 3z. (49)

In other words, we get the same equations! The rest of the proof is the same.

35

b3

a11 a16

Figure 3.10: Unfolding for B2.

The analysis of the pair (b4, a4n+8 generalizes in the same way. In general,
we consider the path of vectors

(b4n+11, b4n+10, a4n+10, a4n+9, a4n+8, b4n+8, b4n+7, a2n+6, b3). (50)

The angle sequences we get are

• θ2 = 2(n + 2)x + π = −4y + π.

• θ3 = 2(n + 2)x − 2z = −4y − 2z.

• θ4 = 2nx − 2z + π = −2y + π.

• θ5 = 2nx − 4z = −2y − 2z.

• θ6 = (4n + 4)x − 4z + π = −4y + π.

• θ7 = (4n + 4)x − 2z = −4y + 2z

• θ8 = −2z + π.

As above we will show the derivations for θ4 and θ6.

2nx − 2z = 2nx + 2x + 2y = (2n + 2)x + 2y = −4y + 2y = −2y.

(4n + 4)x − 4z = (4n + 8)x − 4x − 4z = −8y + 4y + 4z − 4z = −4.

The rest of the proof is the same.

36

4 The Verification Algorithm

A complete list of the words W7, ..., W221 and the polygons P7, ..., P211 resides
in 3 places:

• The “100 Degree Result” window in McBilliards. See §7.

• The companion java applet. See §7.

• A written list on my website. My list of publications has a link.

In this chapter we will explain how we verify computationally that

Pi ⊂ O(Wi); i = 7, ..., 221

Here Pi is a given convex dyadic rational polygon and O(Wi) is the orbit tile
of a word Wi. The basic algorithm works for indices i = 30, ..., 221. These
orbit tiles are contained in the interior of the parameter space ∆. After
we describe the basic algorithm, we will explain how it is modified so as to
handle the indices i = 7, ..., 29. These indices correspond to orbit tiles that
contain a segment on ∂∆.

Say that a dyadic rational square is a square in ∆ (the paramete space)
whose sides are parallel to the coordinate axes and whose vertices have the
form x(π/2) where x ∈ [0, 1] is a dyadic rational.

Our verification algorithm tries to produce a cover of P by dyadic squares
P ⊂ ⋃

Qi, such that Qi ⊂ O(W) for all i. To show that Q ⊂ O(W) we need
to show that all the associated defining functions fai,bj

are positive on Q. We
will sometimes write fij = fai,bj

for ease of notation. In the first section we
will explain how we do this. In the sections following the first one, we will
explain our main algorithm.

4.1 Certificates of Positivity

Let Q be a dyadic rational square with center q and radius r. Here r denotes
half the edge length of Q. Suppose that f is a defining function for a pair of
vertices of the unfolding U(W, T). There are two ways we try to certify that
f > 0 on Q, the gold and the silver . The gold method is nicer.

37

4.1.1 The Gold Method

Let ∇f = (fx, fy) be the gradient. From Equation 19 we have

fa = Im(gah + gha); a ∈ {x, y}. (51)

We use Equation 20 to get bounds on the second partial derivatives. Using
the letters a and b to stand arbitrarily for x and y, we have bounds on the
second derivatives:

|fab| ≤ Fab,

where

Fxx =
∑

k

A2

k|Jk|; Fxy =
∑

k

AkBk|Jk|; Fyy =
∑

k

B2

k|Jk|. (52)

We introduce the quantities

ax = r(Fxx + Fxy); ay = r(Fyx + Fyy). (53)

Finally, we define the rectangle

G(q, f) = [fx(q) − ax, fx(q) + ax] × [fy(q) − ay, fy(q) + ay]. (54)

Here q is the center of Q.
It follows from integration that

∇f(x, y) ⊂ G(Q, f); ∀(x, y) ∈ Q. (55)

We say that f is gold certified if G(Q, f) is disjoint from the coordinate
axes in R

2. This is to say that G(Q, f) is contained in one of the standard
quadrants in R

2.
If f is gold certified, then there is some vertex v of Q such that throughout

Q the gradient ∇f is a positive linear combination of the edges of Q which
emanate from Q. This means that f(x, y) > f(v) for all (x, y) ∈ Q. Thus, if
f is gold certified and f(v) > 0 then f |Q > 0. We say that we have shown
f |Q > 0 by the gold method if this situation obtains. Note that the gold
method only requires a finite number of computations. The gold method
works poorly if ∇f points nearly horizontally or vertically in Q.

38

4.1.2 The Silver Method

Let Q̂ denote the square with the following property: Q is midscribed in Q̂,
as shown in Figure 4.1 below. Note that Q̂ is not a dyadic rational because
its sides are not parallel to the coordinate axes. However. the vertices and
center of Q̂ all have the form πx, where x is a dyadic rational.

We use all the same notation as in the previous section. We not define
the rectangle

S(q, f) = [fx(q) − 2ax, fx(q) + 2ax] × [fy(q) − 2ay, fy(q) + 2ay]. (56)

It follows from integration that

∇f(x, y) ⊂ S(Q, f); ∀(x, y) ∈ Q̂. (57)

We say that f is silver certified if G(Q, f) is disjoint from the lines through
the origin of slope ±1. This is to say that S(Q, f) is contained in one of
images obtained by rotating the standard quadrants by 45 degrees.

Q

Q

Figure 4.1: Two squares

If f is silver certified, then there is some vertex v of Q̂ such that through-
out Q̂ the gradient ∇f is a positive linear combination of the edges of Q̂
which emanate from Q̂. This means that f(x, y) > f(v) for all (x, y) ∈ Q̂.
In particular, this is true for all (x, y) ∈ Q. Thus, if f is silver certified and
f(v) > 0 then f |Q > 0. We say that we have shown f |Q > 0 by the silver

method if this situation obtains. Note that the silver method requires a finite
number of computations.

39

The silver method is not as nice as the gold method for the following
reason. If f |Q > 0 but Q is quite close to the level set, then it might happen
that f(v) < 0 on the relevant vertex of Q̂. For our purposes, the gold method
usually works, and the silver method takes over as

Remark: The constant r in the formulas above has the form r = πx/2,
where x is some dyadic rational number. When it comes time to do our
rigorous computation we will replace r by the larger r̃ = 2x because it is a
rational quantity. We will then work with the rectangles G̃(Q, f) and S̃(Q, f),
which are defined as above, but with r̃ in place of r. This replacement makes
the functions a bit harder to certify, but helps us reduce the problem to an
integer calculation.

4.2 An Inefficient First Try

Here we describe a simple verification algorithm which is too slow to use, but
easy to understand. Following this section, we will describe the algorithm
we actually do use.

Let Q be a dyadic square and let W be a word. We say that W is good on
Q if, for every defining function fij we can prove that fij |Q > 0 either by the
gold method or by the silver method. If W is good on Q then Q ⊂ O(W).

Let

Q0 =
[
0,

π

2

]2
. (58)

For our algorithm we start with a list of squares, having the Q0 as its sole
member. At any point of the algorithm we have a list of dyadic rational
squares. We let Q be the last square on the list. There are several options.

• If f is good on Q we delete Q from our list and add it to our covering.

• If Q ∩ P = ∅ then we delete Q from our list.

• If neither of the above is true, we replace Q on our list by the 4 squares
obtained by subdividing Q in half.

If our list ever becomes empty then we have a covering of P by dyadic squares,
each of which is contained in O(W). This does the job. The problem with
this algorithm is that it is too slow. We must evaluate all O(n2) defining
functions for each square on the list. Our actual algorithm is similar to the
one above, but enhanced so as to be much faster.

40

4.3 The Tournament

As above, W is a fixed word. Let Q be a dyadic rational square. Say that a
player list for Q is a pair (A, B), where both A and B are lists of indices. We
think of A as being a list of some distinguished a vertices and B as being a
list of some distinguished b vertices. We say that lists i < j ∈ A are adjacent

if there is no index k ∈ A such that i < j < k. In this section we will make
some definitions for A and at the end make the same definitions for B.

We say that an A-function is a defining function associated to (ai, aj),
where i and j are adjacent indices in A. We say that a vertex i ∈ A is an
A-loser if one of the following two situations (when applicable) obtains:

• Let j > i be the index adjacent to i. Let f be A-function for the pair
(ai, aj). Then −fQ can be certified positive.

• Let j < i be the index adjacent to i. Let f be A-function for the pair
(ai, aj). Then fQ can be certified positive.

One of the situations is not applicable if i is the first or last index in A. If i
is the only index in A then neither situation is applicable.

If i ∈ A is an A-loser it means that there is another index j ∈ A such
that ai ↑ aj throughout Q. In this case any result aj ↑ bk in Q automatically
implies that ai ↑ bk in Q. If i is not a round loser we call i an A-survivor .

We make all the same definitions for the B list, except that we reverse
the signs. That is, we say that a vertex i ∈ B is an B-loser if one of the
following two situations (when applicable) obtains:

• Let j > i be the index adjacent to i. Let f be B-function for the pair
(bi, bj). Then fQ can be shown to be positive using either the gold or
silver method.

• Let j < i be the index adjacent to i. Let f be A-function for the pair
(bi, bj). Then −fQ can be shown to be positive using either the gold or
silver method.

We call the following elimination process a round (of a tournament):
We consider in order all the A-functions f1, ..., fm. We form a new list A′

consisting of the A-survivors. We call A stable (with respect to Q) if A′ = A.
If A is not stable we form a sequence A ⊃ A′ ⊃ A′′... until the list stabilizes.
We call this process the A-tournament on Q. We call the indices of the final
list the A-winners. We carry out the same processes for the B list.

41

4.4 The Improved Algorithm

We start our algorithm with the list consisting of the triple (Q0, A0, B0),
where Q0 = [0, π/2]2 as above, and A0 = B0 = {1, 2, 3, ..., k} are the complete
list of indices. Here k is half the length of W . During the algorithm we
maintain a list of triples like this. At any stage we consider the last triple
(Q, A, B) on the list.

If Q∩P = ∅ we discard (Q, A, B) from our list and move on. Otherwise...

• We perform the A-tournament and B-tournament to produce triples
(Q, A∗, B∗), where A∗ consists of the A-winners and B∗ consists of the
B-winners.

• For each index (i, j) ∈ A∗ × B∗ we try to show, using the gold and
silver methods, that fij |Q > 0. If we succeed for every pair then we
add Q to our covering of P . Otherwise...

• Delete (Q, A, B) from our list, then replace by the 4 triples (Qj , A
∗, B∗),

where Q1, Q2, Q3, Q4 are obtained by bisecting Q.

If the list becomes empty then we have produced a covering of P by
dyadic squares, each of which is contained in O(W). This is justified by the
following result.

Lemma 4.1 If Q is added to our cover then Q ⊂ O(W).

Proof: Let (i, j) ∈ A0 × B0 be arbitrary indices. There is a nested se-
quence of squares Q0 ⊃ Q1... ⊃ Qn = Q together with a sequence of indices
i = i0, ..., in = i′ such that Q ⊂ Qk and aik ↑ aik+1

for all k. Moreover i′ ∈ A∗.
The same goes for j in place of i. Therefore, on Q we have ai ↑ ai′ ↑ bj′ ↑ bj . ♠

We point our 3 nice features of our algorithm:

• If P ⊂ P ′ ⊂ O(W) and the algorithm works for both P and P ′, then
the covering produced for P ′ is obtained from the covering produced
for P just by adding some squares.

• The gold and silver certificates are inherited. If a defining function f
is gold/silver certifed on a square Q it is also gold/silver certified on a
subsquare Q′ of Q. We don’t need to recompute the bounds.

42

• If Q is one of the squares in our covering, then there is a canonical
sequence of squares Q0, ..., Qn = Q, where Qk+1 is one of the 4 squares
in the bisection of Qk for all k. The presence of Q in our cover can
be completely explained by looking at what happens in Q0, ..., Qn. We
don’t have to look at other “branches” of the algorithm. As we will
explain in §7, McBilliards exploits this feature to produce a nice way
for the (tireless) reader to inspect the operation of the algorithm piece
by piece.

4.5 Exceptional Pairs

Here we explain how to modify our algorithm so that it works in the situation
when Pi and O(Wj) both have a segment in common with the right-angled
line in ∂∆

Say that a pair of vertices (ai, bj) is exceptional if the associated defining
function vanishes along the right angle line. We call such a defining function
exceptional as well. For any word W there is a list A of a vertices of U(W, ∗)
and a list B of b vertices of U(W, ∗) such that the set of exceptional pairs of
vertices is precisely A×B. For the words W30, ..., P229 the lists A and B are
typically (though not always) empty. However, the polygons P30, ..., P221 are
all (very) disjoint from the right angle line, and so the lists A and B do not
concern us. For the words W7, ..., W29 the lists A and B are always nonempty
and, as we mentioned above. the polygons P7, ..., P29 always have an edge on
the right angle line. For this reason, we need to understand what happens
with the defining functions associated to vertices in A×B. It is hard to deal
computationally with these defining functions, because they take arbitrarily
small positive values on points in the polygons.

Figure 4.3: Exceptional dyadic squares

43

Say that a dyadic square is exceptional if it has one or two vertices on the
right angle line and at least one vertex in the parameter space ∆ of obtuse
triangles. Figure 4.2 shows a picture of the two kinds of special dyadic
squares. Let Q be an exceptional dyadic square and let f be an exceptional
defining function. Say that f is certified on Q if the gold method shows that
∇f is contained in a quadrant throughout Q we also insist that ∇f points
into the obtuse parameter space. In this situation the axis of the quadrant
containing ∇f is perpendicular to the right angle line, and f > 0 on the
portion of Q which lies in ∆.

When we run our algorithm for the indices i = 7, ..., 29 we first isolate
the lists A and B. We then run the algorithm as in §5, except that we
automatically “pass” any exceptional defining function in the playoffs if the
dyadic square in question is exceptional and the defining function is certified
on the square. If the algorithm halts, we have a covering of Pi by a union of
dyadic squares and dyadic triangles, each of which is contained in O(Wi).

Now we explain how we find special pairs. Each of the exceptional words
is a special palindrome. Hence, the first and last edges of U(W, ∗) are always
vertical. This allows us to predict the turning angles of the other edges solely
from their turning pairs. Also, we only have to worry about the exceptional
pairs involving vertices on the left half of the unfolding.

Figure 4.4 shows the example of W11. In this case, the only exceptional
pair of vertices is (a5, b1).

Figure 4.3: Unfolding for W11.

The vertices a5 and b1 are joined by 2 edges of type 3. The union of these
two edges has a line of bilateral symmetry. Call this line Λ51. The turning
pair for Λ51 is (−2,−2). Mod π, the angle between the first edge, which is
always vertical, and Λ51, is −2x − 2y. But x + y = π/2 on the right angle
line. Hence Λ51 is vertical for any unfolding with respect to a right triangle.
Hence a5 l b1 for all points on the right angle line.

44

Remark: It is not actually necessary for us to show explicitly that we have
obtained an exhaustive list of exceptional pairs. We just have to run the
modified algorithm and see that it halts, given the exceptional pairs we have
singled out. Given that the algorithm is based on finite precision (though
exact) arithmetic, another exceptional pair would cause the algorithm to get
hung up, producing a list of ever smaller dyadic squares converging to the
right-angle line.

4.6 Case by Case Analysis

We recommend that the reader read this part of our analysis while using
McBilliards, or the accompanying Java applet. The reader can survey all the
unfoldings we discuss and verify that the analysis is correct.

The Easy Cases: With 6 exceptions, the words W7, ..., W29 have the same
analysis as W11. That is, they have a single exceptional pair of vertices (on
the left) and the spine connecting these vertices has bilateral symmetry. In
all these cases, the same analysis as for W11 works here word for word. Here
we list these cases, together with the exceptional pairs. Referring to the
example in Figure 4.4, the exceptional pair for the word W11 is (a5, b1). We
denote this by (11; 5, 1). Here are the easy cases:

(7; 5, 1) (9; 5, 10) (10, 5, 1) (11; 5, 1) (12; 8, 13) (13; 1, 11)
(14; 5, 1) (17; 5, 1) (19; 19, 3) (20; 5, 1) (22; 1, 23) (24; 27, 5)
(25; 5, 33) (26; 42, 31) (27; 38, 7) (28; 5, 45) (29; 48, 11)

(59)
Notice that the pair (a5, b1) occurs quite often. In all cases, the path connect-
ing the vertices in the exceptional pair has the same bilateral symmetry as in
Figure 4.5, and the line Λ of bilateral symmetry has turning pair either (2, 2)
or (−2,−2) and hence is vertical when the unfolding is done with respect to
a right triangle.

The Case of W8: Figure 4.5 shows U(W8, T) for some T . We have high-
lighted 8 line segments which are all horizontal when x lies on the right
angle line. The turning pairs for these segments are all of the form (k, k)
for k ∈ {±1,±3,±5}. Restricting our attention to the left hand side, we see
that the exceptional sets are A = {1, 2, 4, 5} and B = {8}. These are exactly

45

the ones we single out when we run our algorithm.

Figure 4.5: Unfolding for W8.

The Case of W21: For W21 we have A = {22, 23} and B = {4}. In this
case, the pair (a4, b22) has the same kind of bilateral symmetry as for the
easy cases. Hence a4 l b22 for any unfolding with respect to a right triangle.
Finally, the turning pair for the edge connecting b22 and b23 is (1, 1). Hence,
this edge is horizontal for any unfolding with respect to a right triangle.

The Cases of W16 and W23: For W16 we have the lists A = {4} and
B = {7, 8, 14, 15}. There is an edge of U(W16, ∗) connecting a4 and b7, and
this edge has turning pair (1, 1). Hence (a4, b7) is an exceptional pair. There
is an edge connecting b7 and b8 and this edge has turning pair (5, 5). Hence
b7 l b8 on the right angle line. Hence (a4, b8) is an exceptional pair. There is
a path connecting b8 to b14 which has bilateral symmetry. The line of sym-
metry contains an edge whose turning pair is (2, 2). Hence b8 l b14 on the
right angle line. Hence (a4, b14) is an exceptional pair. Finally, there is an
edge connecting b14 to b15 which has turning pair (−1,−1). Hence (a4, b15)
is an exceptional pair.

For W23 we have A = {12, 13, 29, 30} and B = {9}. There is an edge con-
necting b9 to a12 and this edge has turning pair (−5,−5). Hence (a12, b9) is
an exceptional pair. The other 3 pairs are shown to be exceptional as for W16.

The Cases of W15 and W18: For W15 we have A = {1, 2, 4} and B =
{8, 9, 11, 12, 13}. The same arguments as in the previous section show that
a1, a2, a4 all lie at the same height when the unfolding is done with respect
to a right triangle. The same goes for b8, b9, b11, b12, b13. Finally, a4 and b8

are connected by an edge whose turning angle is (5, 5). Hence (a5, b8) is an
exceptional pair. Hence all the pairs listed are exceptional.

For W18 we have A = {1, 2, 4, 5, 6, 8, 9} and B = {14, 16, 17, 18}. This
case is essentially the same as the case of W15.

46

5 Special Cases

5.1 The Regions of Interest

Figure 5.1 shows a fairly accurate picture of the parameter space ∆ of ob-
tuse triangles, as well as the regions P1, ..., P6 discussed in the introduction.
The dotted lines indicate that P1 and P4 continue “behind” P2. It is easier
computationally that our union of polygons covers ∆ is these two polygons
continue as indicated. As we mentioned in the introduction, P1 and P2 are
just dummy triangles. The don’t correspond to periodic billiard paths in tri-
angles. We dealt with P3 in §3. We dealt with S ′ = ∆100 −P3 −P4 −P5 −P6

in the §4. Here we deal with P4, P5, P6. (Actually, we already dealt with P6

in [S]. Here we just recall what we did.)

0 6
π
8

π
4

π
5

π

P3

P4

S’ P5

P6

P2

P1

Figure 5.1: Regions in the Parameter Space

47

We introduce the notation
∣∣∣∣
n1 k1

n2 k2

∣∣∣∣ =
π

2
×
(

k1

2n1
,

k2

2n2

)
[example :

∣∣∣∣
2 1
2 3

∣∣∣∣ = (
π

8
,
3π

8
)] (60)

To describe a dyadic polygon, we will list out the vertices. For instance

P4 :

∣∣∣∣
7 63
7 65

∣∣∣∣

∣∣∣∣
7 65
7 63

∣∣∣∣

∣∣∣∣
7 63
7 63

∣∣∣∣ (61)

P5 :

∣∣∣∣
12 1641
12 2455

∣∣∣∣

∣∣∣∣
12 1637
12 2455

∣∣∣∣

∣∣∣∣
12 1637
12 2459

∣∣∣∣ (62)

P6 :
∣∣∣∣
10 345
10 679

∣∣∣∣
∣∣∣∣
12 1380
12 2712

∣∣∣∣
∣∣∣∣
12 1352
12 2740

∣∣∣∣
∣∣∣∣
9 169
9 343

∣∣∣∣ (63)

Here Pk is a tiny region, one of whose boundary components contains the
point pk from Equation 1

5.2 Covering P6

Let P ′
6 denote the region

{
(x, y) ∈ ∆|

∣∣∣∣x − π

6

∣∣∣∣ <
1

175
;

∣∣∣∣(x + y) − π

2

∣∣∣∣ <
1

400
√

2

}
(64)

In [S] we covered P ′
6 by a union of two infinite families of orbit tiles. A

straightforward computation shows that P6 ⊂ P ′
6.

For the record, we describe the main result here. We used two families
of orbit tiles, {O(Yk)}∞k=8 and {O(Zk)}∞k=8. The words Yk are defined for all
k ≥ 1 and the words Zk are defined for all k ≥ 0, but we took k fairly large
to get better estimates.

We first define the Y family. Let

A = 3123; B1 = 23213; B2 = 23123; C1 = 213123; C2 = 123123.
(65)

We have Yk = 2yk2y
−1

k . For odd indices we have

y2k+1 = AB1(B2B1)
kC1(B1B1)

k; k = 0, 1, 2... (66)

For even indices we have

y2k+2 = AB1(B2B1)
kC2(B1B2)

k+1; k = 0, 1, 2... (67)

48

Now we define the Z family. Define

A = 123; B = 231; C = 32; D = 213; (68)

Next define E0 to be the empty word and

E1 = DD; E2 = DAAD; E3 = DADDAD; E4 = DADAADAD,

and so on. Then Zk = 3zk3z
−1

k , where

zk = ABC3EkABC (69)

(The digit 3 included in the equation is deliberate.)
Figure 5.2 shows the tiles O(Y1), ..., O(Y4). The “tips” of these tiles con-

verge to the point P (π/6). The largest tiles O(Y1) obscures the other tiles.
The left vertical grey line indicates the set y = π/6 and the right grey vertical
line indicates the set y = π/5.

Figure 5.2: The tiles O(Yk) for k = 0, 1, 2, 3, 4.

49

Figure 5.3 shows how the tiles O(Y1), ..., O(Y4) and O(Z0), ..., O(Z3) in-
terlock and suggests how the neighborhood of P (π/6) is filled up.

Figure 5.3: Interlocking tiles cover P6.

5.3 Covering P5

Let H+ denote the half-plane given by x ≥ π/5 and let H− denote the half-
plane given by x ≤ π/5. We consider the words

F = 3123231312313232313213132321

G = 132312323132321321312323132321312312323132321323

50

We will show that

P5 ∩ H+ ⊂ O(F); P5 ∩ H− ⊂ O(G). (70)

The basic idea is to check that the verification algorithm described in the
previous chapter halts when we ignore certain additional pairs of vertices.
Then, at the end, we intervene and analyze the pairs of vertices we ignored.

Figure 5.4: Covering P5.

5.3.1 Dealing with F

In terms of our listing, we have F = W7, but P ∩H+ is not contained in P7.
Indeed P ∩H+ shares a vertex with O(F) and we have to work harder. From
the list in §4.6, we see that the pair (a5, b1) is exceptional. When we also
ignore the pairs (a5, b5) and (a5, b6) we find that our verification algorithm
produces a covering of P5 ∩ H+. We already know from our analysis in the
previous chapter that f51 > 0 on P5. The point here is that the relevant

51

line of bilateral symmetry has turning pair (−2,−2) and hence this line has
positive slope throughout P5. This positive slope forces a5 to lie above b1.

It remains to show that f55 and f56 > 0 on P5 ∩ H+. Figure 5.5 shows
a picture of U(F, T) when T is the right triangle corresponding to the point
p5 ∈ P5.

Figure 5.5: The unfolding for F .

The edge connecting a5 and b6 has turning pair (−4, 1). Points (x, y) ∈
P5 ∩ H+ have the form

x = π/5 + ǫ; y = 3π/10 − ǫ − δ.

Here ǫ and δ are numbers much smaller than π/10. The turning angle of the
edge connecting a5 to b5 is therefore

−π/2 − 3ǫ − δ.

This line has negative slope throughout P5 ∩ H+ and hence a5 ↑ b5 there.
The vertices a5 and b6 are connected by a path of length 2 whose line

of bilateral symmetry has turning pair (−3, 2). The corresponding turning
angle is

−ǫ − 2δ.

This line has positive slope for (x, y) ∈ P5∩H+ and hence a5 ↑ b6 throughout
P5 ∩ H+.

5.3.2 Dealing with G

In terms of our listing, we have G = W13. However, P5 ∩ H− is not a subset
of P13 so we have to do more work. When we omit the pairs (a1, b11) and
(a1, b12) and (a1, b13) our algorithm produces a covering of P5 ∩ H−. It just
remains to show that the defining functions associated to these pairs are

52

positive on P5 ∩ H−. The function f1,11 is positive on P5 for the symmetry
reason we discussed in the previous chapter.

Here we explain a proof which works for all 3 defining functions at once.
When we run our algorithm, each of these omitted defining functions gets
certified on a dyadic square which contains P5. We just check that, in all
3 cases, the quadrant which contains the gradients is the (−,−) quadrant.
Hence ∇f1j lies in the (−,−). Also, these functions all vanish at p5. Every
p ∈ P ∩H− can be joined to p5 by a path which points from p5 into the (−,−)
quadrant. Hence f1j > 0 on P ∩ H−, as desired. Hence P ∩ H− ⊂ O(G) as
desired.

5.4 Covering P4

Figure 5.6 shows a partition of P4 ∩ ∆ into 5 regions. The regions c, d1, d2

are meant to be open. The segments e1 and e2 are meant to be open line
segments. The 4 solid lines through p4 have slope −1,−1/3, 0,∞. The dotted
line is contained in ∂∆, and bisects P4.

d2

c

d1

e2

e1

Figure 5.6: Dividing up P4.

Since we are taking x ≤ y in ∆ only the left half of P4 lies in ∆. We will use
the following words.

C = (1232313)2.

D1 = 231323123231323123232132313232132313

D2 = 2313231323123231323132312323213231323132321323132313

E1 = 12323132312323213231323132321323132313231323

E2 = 123231323132312323213231323132313232132313231323132313231323

53

The left hand side of Figure 5.7 shows a close-up O(C) and O(D1) and
O(D2). Note that O(C) slops over the boundary of P4 ∩ ∆. The boundary
here is contained in the line through p4 of slope 1. (See the dotted line in
Figure 7.3.) The large tile O(C) is not completely shown. The union of these
three tiles covers all of P4 ∩ ∆ except for two line segments. These two line
segments are then covered by O(E1) and O(E2), as shown on the right hand
side of Figure 5.7.

Figure 5.7: Covering P4

We will prove that z ⊂ O(Z), for z ∈ {c, d1, d2, e1, e2}.

5.4.1 Dealing with C

In terms of our listing, we have C = W30. Let T be the triangle corresponding
to the point p4, the right isosceles triangle.

Figure 5.8: U(C, T).

54

The defining function fij vanishes at p4 when i ∈ {1, 2} and j ∈ {4, 5}.
When we run our algorithm with these vertex pairs excepted, it produces a
cover of P by 4 squares. Thus, all the defining functions but the excepted
ones are positive on P . The algorithm in this case does not also verify that
the gradients of the excepted functions lie in the (−,−) quadrant−this isn’t
true for f14 and f25.

In dealing with the 4 exceptional defining functions, we first compute that

|fxx|, |fxy|, |fyy| ≤ 26.

in all cases. We also note that P4 is contained in a square of radius 2−6.
Hence, both ∂xf and ∂yf vary by at most 2 units throughout P4.

• Here is the formula for f15.

0 1
4 1
4 −3
0 −3

0 1 (−1)
4 1
4 −3

We compute that ∇f15(p4) = (−8,−8). Hence ∇f15 lies in the (−,−)
quadrant throughout P4. Hence f15 > 0 on the interior of c.

• A similar computation to the one above gives ∇f24(p4) = (−8,−8).
Hence f24 > 0 on c.

• Here is the formula for f14:

0 1
4 1
4 −3
0 −3

0 1 (−1)
4 1

We compute that f14 vanishes identically along the line y = π/4.
Also, we compute that ∇f14(p4) = (0,−16). Hence ∇f14 has positive
y-coordinate throughout P4. Hence f14 > 0 on c.

• The calculation for f25 is just like the one for f14, but with the roles of
x and y switched. Hence f25 > 0 on c.

In summary, all (a, b) defining functions are positive on c. We conclude
that c ⊂ O(C).

55

5.4.2 Dealing with D1

In terms of our listing, D1 = W9. Let T be the right-angled isosceles triangle,
as above.

Figure 5.9: U(D1, T).

Taking i and j on the left half of the unfolding, we see that the defining
function fij vanishes at p4 iff i ∈ {5, 6, 7, 8} and j ∈ {1, 2, 3, 4, 10}. (The
center point by convention counts as a vertex on the left half.) When we run
the algorithm with these pairs excepted, it produces a covering of P4 by 3
squares. Once again, the algorithm here does not verify anything about the
gradients of the exceptional defining functions.

Reflection in a certain edge e swaps a6 and a8. The turning pair for e is
(2, 2). Since the leftmost edge stays vertical for all points in the parameter
space, e has negative slope throughout P4. Hence a6 ↑ a8 throughout P4.
This eliminates a6 from consideration.

b4 b10

a5 a8

Figure 5.10: U(D1, T
′).

Figure 5.10 shows U(D1, T
′) where T ′ is a triangle corresponding to a

point of ∆ between e1 and the right angle line. (This point isn’t actually in
d1, because such points give rise to a picture which looks almost identical

56

to Figure 5.9; we wanted to show the difference dramatically.) Figure 5.10
serves as a reality check to the arguments we give below.

a6 is connected to a7 by an edge whose turning pair is (0, 2). As long as
y < π/4 this edge has positive slope and a7 ↑ a6. This condition holds in
d1. This eliminates i = 7 from consideration. Similar arguments show that
b2 ↑ b1 and b3 ↑ b2 and b3 ↑ b4 throughout d1. All in all, we just have to deal
with the 4 defining functions fij where i ∈ {5, 8} and j ∈ {4, 10}. Here is
the analysis:

• a8 and b4 are swapped by reflection in an edge whose turning pair
is (1, 3). This edge has positive slope throughout the interior of d1,
and vanishes on e1, the line of slope −1/3 through p4. Hence a8 ↑ b4

throughout d1. Hence f84 > 0.

• a5 and b10 are swapped by reflection in an edge whose turning pair is
(2, 2). Hence f5,10 > 0 on d1.

• b4 and a5 are connected by an edge whose turning pair is (−2, 4). This
edge has positive slope in d1. Hence f54 > 0 in d1.

• a8 and b10 are connected by an edge whose turning pair is (0, 2). This
line has negative slope in d1. Hence f8,10 > 0 in d1.

This takes care of all the cases. Hence d1 ⊂ O(D1).

5.4.3 Dealing with D2

In terms of our listing, D2 = W87. The analysis of D2 is almost identical to
the analysis of D1. We will omit most of the details, but illustrate the main
ideas with pictures. Figure 5.11 shows U(D2, T).

Figure 5.11: U(D2, T).

57

Figure 5.12 shows U(D3, T
′). Here T ′ is a triangle corresponding to a

point which lies between the lines e1 and e2. (We have gone outside d2 to get
a more dramatic picture.)

b6 b14

a7 a12

Figure 5.12: U(D2, T
′).

When we except all the index pairs entailed by Figure 5.11 our algorithm
produces a covering of P4 by 4 squares. Using the turning pair arguments,
as for D1, we eliminate all the indices except i ∈ {7, 12} and j ∈ {6, 14}.
Figure 5.12 is a typical picture of the signs of the slopes of the relevant These
4 defining functions have the same analysis as for D1.

5.4.4 Dealing with E1

In terms of our listing, E1 = W107. Recall that e1 is the intersection of the line
of slope −1/3 through p4 with P4. Figure 5.13 shows a picture of U(E1, T).
When we run our algorithm with all the excepted vertices, it produces a
covering of P4 by 47 squares. We also check, during the algorithm, that ∇f
has positive dot product with the vector (−3, 1) throughout P4 whenever f is
an exceptional defining function. This shows that all the exceptional defining
functions are negative on e1. Hence e1 ∈ O(E1).

Figure 5.13: U(E1, T).

58

Remark: Our gradient check is just a small tweak of the silver method.
We compute ∇f , then add all the error bounds coming from the second
partials, and check that the entire “error box” makes positive dot product
with (−3, 1).

5.4.5 Dealing with E2

In terms of our listing, E2 = W85.
Recall that e2 is the intersection of the horizontal line through p4 with

P4. Figure 5.14 shows a picture of U(E2, T).

Figure 5.14: U(E2, T).

When we run our algorithm with all the excepted vertices, it produces
a covering of P4 by 29 squares. We also check, during the algorithm, that
∂xf < 0 throughout P4, whenever f is an exceptional defining function. This
shows that all the exceptional defining functions are negative on e2. Hence
e2 ∈ O(E2).

59

6 Computational Details

6.1 The Covering Problem

Here we explain how we verify Equation 3. Let Pj be one of the polygons on
our list. Let e be an edge of P . We say that e is good if

e − ∂∆ ⊂
⋃

i6=j

Pi. (71)

In case e ∈ ∂∆ this condition is vacuous. We say that Pj is good if every
edge of Pj is good.

Lemma 6.1 ∆ ⊂ ⋃
Pj provided that every Pj is good.

Proof: If ∆ is not covered by our polygons then ∆ − ⋃
Pj contains some

open set U and some point of ∂U is contained in some edge e of some Pj .
But then e is not good. ♠

To make our problem easier, we scale all our polygons by the constant
227/π. The result is that all the coordinates of all the polygons are positive
integers between 0 and 223. Also, given the comments at the beginning of
§2.7 we know that all the coordinates are divisible by 29. This fact is useful
because we sometimes want to subdivide our edges in half a few time, while
retaining the property that the break points are integers. We now are left
with the problem of showing that a certain convex integer triangle is covered
by 221 other convex integer polygons.

The Algorithm: Let S be some segment in the plane, whose endpoints
are integers. We call S an integer segment . We say that S is admissible if
the midpoint of S also has integer coordinates. In this case, the two segments
S1 and S2 formed by bisecting S are also integer segments.

Let e be an edge of Pi. To show that a given edge e is covered by our
polygons, we perform the following algorithm. We start with a list of edges
whose sole member is e. At any stage of the algorithm we have a finite list
of integer segments. We consider the last segment S on the list.

• If we can show that S ⊂ Pj for some j 6= i then we omit S from our
list. Then we continue.

60

• If S is admissible and we cannot show that S ⊂ Pj for some j 6= i then
we omit S from our list and append S1 and S2 to the list. Then we
continue.

• If S is not admissible and we cannot show that S ⊂ Pj for some j 6= i
then we fail.

• If the list becomes empty we have succeeded in showing that e is good.

The main step in our algorithm involves showing that an integer segment
is contained in an integer convex polygon. This problem in turn boils down
to checking that each of the endpoints of the segment is contained in the
polygon. Showing that an integer point z is contained in an integer polygon
P is an integer calculation. We just check the orientations of all the triangles
obtained by coning the edges of P to z and see that they all agree. This
calculation is done entirely in Z and produces integers which have roughly
3 times as many digits as the coordinates of z and P . We implement our
algorithm in Java, using the BigInteger class. We discuss this in the next
section. The interested reader can see and interact with the cover using
McBilliards. In particular, one can re-run our algorithm, either one time at
a time or sequentially.

6.2 BigIntegers and BigIntervals

We wrote McBilliards in Java. See www.java.sun.com for information
about this language.

The Java programming language has a class called the BigInteger. The
BigInteger is an integer, with an “arbitrary” number of base 10 digits. Here
“arbitrary” means “subject to the memory limitations of the machine”. Once
two BigIntegers are defined, they can be added, subtracted, multiplied, and
even exponentiated. If the process of computing the resulting quantity does
not exhaust the memory of the machine, then the result is correct. It would
probably take integers billions of digits long to exhaust the memory of the
machine. In our case we work with integers, all of which have fewer than 200
digits. For this reason, we are convinced that the basic arithmetic operations
of the BigInteger class work without fail on the numbers we supply.

Our basic method is to convert all our calculations into integer calcula-
tions and then to use BigIntegers to get the calculations exactly right. Our
trick is to multiply the naturally computed quantities of interest to us by a

61

huge integer, namely 2106, and then trap these quantities inside an interval
of BigIntegers. We then perform a calculation using BigInteger arithmetic,
and in the end produce in interval of BigIntegers which contains 2106 times
the quantity of interest to us.

The only real-valued functions we compute are the ones in Equation 19
and 20. Once we have these quantities, we do make some further algebraic
manipulations, as discussed in connection with the gold and silver methods
of §5. However, once we have finished with Equations 19 and 20, we have
our intervals of BigIntegers and then we manipulate them as discuss below.

We define a BigInterval to be a pair (L, R) of BigIntegers, with L ≤ R.
There are several basic operations which we can perform on these intervals:

• (L1, R1) + (L2, R2) = (L1 + L2, R1 + R2).

• (L1, R1) − (L2, R2) = (L1 − R2, L2 − R1).

• (L1, R1)×(L2, R2) =(L3, R3), where L3 =min(L1L2, L1R2, L2R1, L2R2)
and R3 = max(L1L2, L1R2, L2R1, L2R2).

These operations have the following property: If xj ∈ (Lj , Rj) for j = 1, 2
then xj ∗ yj ∈ (L1, R1) ∗ (L2, R3). Here (∗) is any of the 3 operations just
mentioned. All our calculations boil down to showing that x > 0 or x < 0
for some real number x. We do our calculations in such a way as to produce
a BigInterval (L, R) such that 2106x ∈ (L, R). We would show that x < 0 by
showing that R < 0 and we would show that x > 0 by showing that L > 0.

6.3 The Interval Cosine Function

Looking at Equations 19 and 51 we see that we need some way to deal with
the sine and cosine functions. When we run our subdivision algorithm, we
find that it never produces a dyadic square whose side length is less that
218. For this reason, we are only evaluating the sine and cosine functions on
numbers 1 of the form

(π/2)
k

220
.

Using the identities:

sin(x) = cos(π/2 − x); cos(x + nπ) = (−1)n cos(x)

1Actually we just need 218 rather than 220 but we want to give ourselves a little cushion

here.

62

we see that it suffices to consider the 221 values

ck := 253 cos(π/2 × k

220
); k = 0, ..., 221 − 1.

(There is nothing special about 253. We like it because it affords about the
same precision as a double in C.)

We now explain how we produce a BigInterval Ik such that ck ∈ Ik. Once
we have Ik, we evaluate Equations 19 and 51 using the operations discussed
above. Producing Ik is quite easy. The tricky part is proving rigorously that
our method really works. We know that there exist packages in Java which
perform this task for the elementary functions, but we prefer to work from
scratch. We want to stress that it doesn’t really matter how we produce our
BigInterval Ik. The important point is the proof that ck ∈ Ik. However, it
seems worth explaining our simple method.

6.3.1 Producing the Interval

We introduce the routine cosBestApprox. When we evaluate this routine
on the pair (k, 20) is produces a BigInteger Ck. We then take

Ik = (Ck − 4, Ck + 4).

The routine cosBestApprox essentially computes “the usual” cosine on the
relevant point−here n = 20 and k is as above− and then rounds to the
nearest BigInteger. Our method uses the BigDecimal class, which is just
a BigInteger, together with a separate integer which tells where to put the
decimal point. Here is our code, all of which can be found online in the file
Deg100Trig.java.

public static BigInteger cosBestApprox(int k,int n) {
double d=Math.PI/2.0;
d=d*k/Math.pow(2.0,n);
d=Math.cos(d);
BigDecimal Y1=new BigDecimal(d);
BigInteger BIG=getBIG();
BigDecimal Y2=new BigDecimal(BIG);
Y1=Y1.multiply(Y2);
BigInteger X=Y1.toBigInteger();
return(X);

63

}

The BigInteger BIG is 253. Here is the routine which gets it:

public static BigInteger getBIG() {
BigInteger BIG=new BigInteger(”9007199254740992”);
return(BIG); }

6.3.2 Checking that the Method Works

What we actually show is that

235720!ck ∈ 235720!Ik.

A huge number like this appears fairly naturally because we want to clear
denominators in some Taylor series approximations for cosine.

For j = 0, 1, ..., 10 let Lj be the greatest integer less than

240020!

240j(2j)!
× (π/2)2j. (72)

Let Rj = Lj + 1. We compute these 20 integers using Mathematica, which
has a reliable arbitrary precision evaluation of the trig functions. The reader
can see our values in the file Deg100Trig.java. Consider the sums

Ak = L0 − R1k
2 + L2k

4 − R3k
6 + ... − R10k

20 (73)

Bk = R0 − L1k
2 + R2k

4 − L3k
6 + ... + R9k

18 (74)

Considering the Taylor series for cosine, we easily get that

235720!ck ∈ [Ak, Bk]. (75)

To verify that ck ∈ Ik it suffices to check that

225720!(Ck − 4) < Ak; Bk < 235720!(Ck + 4).

This is purely a calculation involving BigIntegers. We perform the verifica-
tion and it works. As a control, we performed the verification using “2” in
place of “4” and it failed at some point. The program is contained in the

64

same file as already mentioned. The reader can launch the program right
from the 100 Degree window in McBilliards.

Remark: We found that 235720! worked well for us. This choice yields
the following values

• A8 = 193117979382323170336391434868704;

• A9 = 1416254196461936667;

• A10 = 8363.

• A11 = 0.

This, the choice 235720! is well adapted to an approximation based on about
10 terms of the Taylor series.

6.4 BigInterval Structures

As one last bit of structure, we define a BigComplexInterval to be a struc-
ture of the form X + iY where X and Y are BigIntervals. The arithmetic on
these objects is just the same as the arithmetic on ordinary complex num-
bers, except that we substitute the BigInterval operations for the ordinary
arithmetic operations on reals. (We never have occasion to do any division,
so we are just talking about addition, subtraction, and multiplication.)

Once we have our BigInterval version of sine and cosine, and the BigCom-
plexInterval class, we plug these objects into Equations 19 and 51, wrapping
every integer in sight inside a BigInterval. We then perform all the oper-
ations described in §5. Our algorithm halts for all 221 polygons and this
constitutes our proof of the 100 Degree Theorem.

The reader can run our algorithm and survey its output using McBilliards,
as discussed in the paper. In particular, the reader can run the algorithm
with or without the BigInterval arithmetic, and see that the output is about
the same in both cases. (The output is not exactly the same because we
make some convenient but arbitrary cutoffs in the numerical version.)

6.5 Sanity Checks

In order to help insure that we have programmed the computer correctly, we
have made 3 additional sanity checks in our calculations.

65

1. We make sure that our combinatorial method of computing the defining
functions, namely Equation 19, is correct. We introduce a straightfor-
ward geometric method of computing the defining functions geometri-
cally: We just take the unfolding for the word and the given triangle,
rotate it so that it is horizontal, and then measure the difference in
heights of the relevant vertices. For each word Wi we evaluate each
defining function on the first vertex of the polygon Pi, using both meth-
ods. As long as the geometric method yields a number which is at least
.001 we check, up to a tolerance of .000001, that there is a single ratio ρ
such that the ratio of the combinatorial answer to the geometric answer
is always ρ. (This ratio depends on the point of evaluation.) In other
words, up to a initial rescaling, the two methods agree. We consider
this to be extremely strong evidence that we have got Equation 19 cor-
rect, and also programmed it correctly into the computer. We do not
consider the very small percentage of defining functions which evaluate
to a very small number, because the roundoff error interferes with the
computation of the ratio.

2. We make sure that our BigInterval versions of our functions yield es-
sentially the same answers as our numerical versions. We make the
same evaluations as for the first sanity check, except now we compare
the numerical and BigInterval implementations of the combinatorial
method. We check that the first 7 digits of the left endpoint of the Big-
Interval version agree with the first 7 digits of 2106 times the numerical
version. In the interest of having the check move along at a steady
clip when run from the interface, we only check about 4 percent of the
defining functions. This still comes out to a huge number of checks.
Unlike the first check, where the point is to verify that all cases of a
complicated combinatorial procedure work, here we are just checking a
fairly straightforward conversion from ordinary arithmetic operations
to BigInterval operations.

3. We make sure that our formula for Equation 51 is correctly imple-
mented. For this purpose we compare the partial derivatives of the
defining functions with a crude version of the partial derivatives ob-
tained by taking a difference quotient. Our value of ∆x and ∆y in this
computation is 2−30. We check that the two computations of the partial
derivatives agree up to a fractional error of .001. By this we mean that

66

|X1−X2|/|X1| < .001. Here X1 and X2 are the two computed versions
of the same quantity. We also require X1, which is the difference quo-
tient, to be at least .000001. We test about 1 percent of the defining
functions. Given the simple nature of the passage from Equation 19 to
Equation 51, this is overwhelming evidence that we have programmed
Equation 51 correctly into the computer.

The reader can run our sanity checks, either for individual words or else
for all words in sequence, from the 100 Degree window in McBilliards. The
code for our sanity checks is contained in the file Deg100SanityCheck.java.
Indeed, all our computer code pertaining to the 100 Degree Theorem can be
launched from this window.

We also mention another sanity check. Originally we had programmed
McBilliards in C and Tcl. We originally did all the computations for this
paper in the C version. (We switched to Java so that the whole proof could
be easily accessible right on the web, to someone without specialized com-
puter knowledge; and also because we wanted to make a new and improved
McBilliards.)

Perhaps the best sanity check of all is that McBilliards works. This
program has many interlocking features, and the interested reader can see
that they all fit together in a way which would be extremely unlikely given
serious bugs in the program.

67

7 Using McBilliards

7.1 The Applet

For the reader mainly intrested in seeing the results in this paper illustrated,
we recommend the java applet we wrote. One can access this applet in sev-
eral ways. One address is

http://mcbilliards/sourceforge.net/Deg100/

Another address is my website:

http://www.math.brown.edu/∼res/Java/App46/test1.html

This applet is a toy version of McBilliards specifically designed for the 100
Degree Theorem. The Java applet displays the polygons P3, ..., P221. One
can zoom into the picture to see the fine structure of these polygons.

1. For each j = 7, ..., 221. a click on the polygon Pj calls forth display of
the vertices of the polygon, and also the word Wj and its unfolding.
One can drag the mouse around Pj and check visually that (modulo
roundoff error) Pj ⊂ O(Wj).

2. We break P5 into two regions P51 and P52. One can click on each of
these regions and see the vertices and corresponding words W51 and
W52 as above. (These regions are not actually named in the program.)

3. We do the same for P4 as we do for P5, using sub-regions P41, ..., P45.

4. For j = 3 and j = 6, we break Pj into an infinite number of smaller
polygonal regions. In each case, one can see the words corresponding
to the first 10 regions. We show enough so that the pattern is fairly
clear. Again, for these first few words, one can verify visually that the
polygonal region is contained in the corresponding orbit tile.

The words and polygon vertices are displayed in full, so that (modulo the
reader being able to fill in several infinite patterns from a finite start) the
complete record of the words and polygons resides in the applet.

68

7.2 The Basics of the Main Program

Probably the most durable location for McBilliards is the website

http://mcbilliards.sourceforge.net

One can download McBilliards from this website. One can also run Mc-
Billiards as an applet from the website, though this doesn’t work with all
browsers. Another place to run McBilliards on the web is

http://www.math.brown.edu/∼res/Java/App47/A2.html

Accessing the Documentation: The first thing to do is to see how the
documentation for the program works. For example, there is a little black
box with a question mark at the very bottom right of the program. If you
click on this box (or any other box that has a question mark in it) the doc-
umentation window will pop up. Most of the features of McBilliards have a
question box beside them, so that you can learn what they do and how to
use them.

The Mouse Emulator: The mouse emulator lives at the bottom right
of the program. The question box we mentioned above pertains to this mod-
ule, and explains how to use the mouse emulator. McBilliards is meant to
run with a 3 button mouse. If you don’t have a 3 button mouse, or if your
browser does not interpret your mouse clicks correctly, you can get around
the problem by using the mouse emulator on the bottom right. By clicking
on the question box, you can see how to operate the emulator.

Parameter Selection: The big central window in McBilliards is the pa-
rameter window. This window contains the region ∆ we have discussed in
the paper. You select points on this window by clicking button 2 of the mouse
over a point. You can also drag the mouse – again button 2 – to select a
point. If you want to see the triangle that your selection corresponds to,
click on the “more popups” window at the top of the program. This brings
up an auxilliary menu. From this menu, click on the “billiard path” option.
This brings up another window that displays the triangle corresponding to
the point in parameter space you have selected. This auxilliary window also
displays billiard paths in the triangle, hence the name.

69

Searching: Once you have selected a point you like, you can press the
“seek” button at the bottom of the program. This will find all the stable
words less than the displayed length. We initially set the program to 50.
We recommend that you choose a point on the obtuse side that is fairly
near the right-angled line. If you pick a point too far into the obtuse region,
your search won’t turn up anything (unless you increase the maximum word
length.) When your search is done, an auxilliary window pops up, displaying
all the hexpaths of the words you have found.

Plotting: Once you have selected a point and done a search, you can select
one of the hexpaths from the auxilliary window that has popped up. After
you select one of these hexpaths, you can plot the corresponding orbit tile by
pushing the plot button. The color selector allows you to change the color
of the plotted tile. The bottom left portion of the program gives you some
buttons for managing the plotted tiles – deleting, raising, and recoloring.

Unfolding Window: Once you have plotted an orbit tile (or before) you
can click on the top of the program to bring up the unfolding window. The
unfolding window draws the unfolding U(W, T), where W is the currently se-
lected word and T is the currently selected triangle. By dragging the mouse
around an orbit tile, you can see the unfolding change with the point selec-
tion. This is a powerful sanity check that the searching and plotting options
are working correctly. Like almost all the windows on McBilliards, the un-
folding window is resizeable. You can see a nice large picture of the unfolding
if you like.

Word Window: Clicking at the top of the program brings up the word
window. This shows a large copy of the hexpath for the current word. The
word window is animated, so one can see how the hexpath is created from
the word.

The best way to get a feel for the basic features of McBilliards is to
play with the program – i.e. search, plot, survey tiles – with both the word
and unfolding windows open. The unfolding and word windows have many
auxilliary features embedded in them, and in time the use can learn these
from the documentation. We will talk more about the unfolding window
below.

70

7.3 The Unfolding Window: More Details

Now we will assume that you have mastered the basic features of McBilliards,
discussed above. Here we discuss the unfolding window in more detail.

Turning Pairs: If you click the middle mouse button on an edge of the
unfolding, you can see the turning pair of that edge displayed at the left.
The turning pairs were discussed in §2.4. This will give you a better feel for
the algorithm presented in §2.4.

Defining Functions: You can select a pair of vertices vertices from the
unfolding that is drawn in the unfolding window. Once you select these
vertices, the unfolding window computes the defining function associated to
these vertices. The defining function is then displayed at the bottom of the
unfolding window, using the conventions described in §2.7. One funny fea-
ture is that positive numbers are displayed in which and negative numbers
are displayed (without signs) in black. We somewhat regret this convention
now, but it does save space. As an aid to the computation of the defining
function, the unfolding window also shows the path of edges connecting the
one vertex to the other, as discussed in Lemma 2.7.

The Leading Vertices: One can also access the defining functions in an-
other way. One can turn on the “compute leaders” option on the unfolding
window. Assuming that you have plotted a tile, the unfolding window will
automatically select and display the pair of vertices on the unfolding, one
top and one bottom, that come closest to having the same height. In this
way, you can see which defining functions define the edges of the tile.

Derivative Bounds: Once a defining function is computed, the deriva-
tive bounds discussed in §4.1 are displayed at the bottom of the unfolding
window. The documentation for this part of the unfold window has more
information.

7.4 Surveying our Proof

One can survey our proof using a version of our applet that we have “embed-
ded” into McBilliards. One accesses this embedded version of the applet by
bringing up the “more popups” menu and selecting the “100 degree result”

71

window. This brings up the embedded copy of the applet. Using the “100
degree result” window, you can survey our computational algorithm down to
the last detail. (This is extremely tedious, but possible.) Here we explain
how one surveys the results of the tournament algorithm, discussed in §4.

• To run the verify algorithm for a particular word, select the verify single

mode on the 100 degree window interface and then click click on the
desired word. (These words are indexed by little square buttons on the
interface.) Be sure to have the trace verify button off.

• Once the picture is plotted on the main McBilliards window, turn on
the trace verify button and select your favorite dyadic square that you
have just plotted by clicking inside it. Now click on the same word you
just clicked.

• With the trace verify mode on, McBilliards re-runs the algorithm, dis-
carding any square which does not contain the selected point. This has
the effect of just tracing through the part of the algorithm which deals
with the selected square.

• Open up the unfolding window after the selected square has been plot-
ted. Along the bottom of the square you will see three kinds of boxes:
the top winners, the bottom winners, and the tournament record. The
tournament record consists of a bunch of pairs of the form (p, q), where
p loses to q on some box which contains the selected one. We call these
match boxes .

• If you click on one of these matchboxes, you will see the formulas for
the defining function associated to the relevant pair of vertices. You
also get to see a graphical display of the gradient and the quadrant
which contains the gradient throughout the dyadic square. By moving
the point around on the main interface, you can visually check that the
gradient remains within the quadrant. Also, you see displayed all the
quantities which go into the calculation of the certificates, so you can
recompute them yourself from the information.

• If you click on every single match box and make the computations your-
self, by hand, you will have given your own proof that the tournament
has performed correctly. Finally, you can go through all the pairs of
the form (top winner, bottom winner) and make all the same checks.

72

7.5 Surveying McBilliards as a Whole

This section is for the diehard computer enthusiast. Going back to the source-
forge McBilliards webpage, you can browse through our online documenta-
tion for McBilliards, which shows the details of essentially class, method, and
interface in McBilliards.

The code relevant to the 100 Degree Theorem only takes up a small
subset of the total program. To isolate the relevant code, we have put it in
files which have the Deg100 prefix, such as Deg100Verifier.java. However,
there are some basic classes, such as the complex number class and some
graphics classes, which are required to support the code in the Deg100 files.

73

8 References

[BGKT] M. Boshernitzyn, G. Galperin, T. Kruger, S. Troubetzkoy, Peri-

odic Billiard Trajectories are Dense in Rational Polygons, Trans. A.M.S.
350 (1998) 3523-3535

[G] E. Gutkin, Billiards in Polygons: Survey of Recent Results , J. Stat.
Phys. 83 (1996) 7-26

[GSV], G.A Galperin, A. M. Stepin, Y. B. Vorobets, Periodic Billiard Tra-

jectories in Polygons , Russian Math Surveys 47 (1991) pp. 5-80

[H] W.P. Hooper, Periodic Billiard Paths in Right Triangles are Unstable,
Geometriae Dedicata (2006) to appear

[HH] L.Halbeisen and N. Hungerbuhler, On Periodic Billiard Trajectories

in Obtuse Triangles, SIAM Review 42.4 (2000) pp 657-670

[HS] W.P. Hooper and R.E. Schwartz, Billiards in Nearly Isosceles Trian-

gles , preprint 2008

[M] H. Masur, Closed Trajectories for Quadratic Differentials with an Appli-

cation to Billiards , Duke Math J. 53 (1986) 307-314

[MT] H. Masur and S. Tabachnikov, Rational Billiards and Flat Structures,
Handbook of Dynamical Systems 1A (2002) editors: B. Hassleblatt and A.
Katok

[S] R. Schwartz, Obtuse Triangular Billiards I: Near the (2, 3, 6) Triangle,
Journal of Experimental Mathematics (2006) to appear

[T] S. Tabachnikov, Billiards , SMF Panoramas et Syntheses, 1 (1995)

[Tr] S. Troubetzkoy, Billiards in Right Triangles , preprint 2004.

[V] W. Veech, Teichmuller Curves in Moduli Space: Eisenstein Series and

an Application to Triangular Billiards, Invent Math 97 (1992) 341-379

74

[W] S. Wolfram, Mathematica: A System for Doing Mathematics by Com-

puter , Wolfram Press (2000)

75

