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1 Introduction

In polygonal billiards, one studys the trajectories made by a frictionless point
mass as it rolls across a polygon P and bounces off the edges according to the
law of geometric optics: The angle of incidence equals the angle of reflection.
When the angles of P are rational multiples of π, one sees a wealth of struc-
ture and theory. For instance, Masur’s theorem [M] says that the number of
periodic orbits on P grows quadratically. Improving on other work of Masur,
the paper [BGKT] proves that the set of pairs (start, direction) leading to
periodic billiard paths is dense in the set of all such pairs. A periodic bil-

liard path is one in which the billiard ball keeps retracing a closed path over
and over again. In general, the study of rational billiards brings in Riemann
surfaces, Teichmuller theory, hyperbolic geometry, and even algebraic geom-
etry. There is a vast literature on rational polygonal billiards and you should
consult e.g. [G], [MT] or [T] for an survey.

In this article we are going to completely ignore the beautiful structure
of rational billiards and consider what happens when the angles are not
rational multiples of π. In this case there is a great poverty of structure. For
instance, it has been a problem for over 200 years to decide whether or not
every triangle admits a periodic billiard path!

One case of this problem was settled by Fagnano in 1775. On an acute
triangle, Fagnano showed that the small inscribed triangle connecting the
altitudes is a billiard path. This is shown on the left hand side of Figure 1.
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Figure 1.1

The right hand side of Figure 1 shows a length 6 periodic billiard path
which works for any right triangle. The path always hits the hypotenuse at
right angles and retraces the same 3 steps twice before closing up. See [T]
and the references there for deeper theorems about right-angled billiards.

The papers [GSV] and [HH] give some examples of infinite families of
combinatorial types of billiard path which describe periodic billiard trajecto-
ries on obtuse triangles. Here a combinatorial type is a sequence of digits in
{1, 2, 3} describing the sequence of edges hit by the billiard path. However,
until recently it was not known if there was any ε > 0 such that a triangle
with all angles less than 90 + ε has a periodic billiard path.

Pat Hooper and I wrote a computer program called McBilliards, which
searches for periodic orbits in triangles, and we have discovered a number of
things using this program. For example, I discovered (and eventually proved
in [S1], [S2], [S3]) that a triangle has a periodic billiard path provided that
the largest angle is at most 100 degrees.

We originally wrote McBilliards to try and solve the triangular billiards
problem, and our early days using the program were filled with boundless
optimism. After a year of working, our optimism has faded somewhat, but
even so McBilliards reveals a zoo of new phenomena about triangular bil-
liards. The purpose of this article is to describe McBilliards and some of the
discoveries and questions which come out of it.

I hope that this article inspires you to download and install McBilliards.
The program has a snappy graphical user interface and ultimately is fun to
use. If you want to try a toy version of McBilliards on the web, check out my
Java applet: www.math.brown.edu/∼res/Java/App46/test1.html
This applet illustrates my 100 degree theorem, mentioned above.
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2 Some Geometric Constructions

2.1 The Rational Case

Here we will sketch a nice proof, due to Boshernitsyn, that every rational
polygon has a periodic billiard path. See [MT] for details.

Let P be a rational polygon and suppose that some initial direction v1 on
P is chosen. We think of v1 as a unit vector. If a billiard ball starts rolling
somewhere on P , in the direction of v1 then the angle conditions guarantee
that there is some minimal list v1, ..., vn of directions such that our ball, no
matter where it starts, can only travel in the directions v1, ..., vn.

Let P1, ..., Pn be n copies of P , with Pi “labelled” by vi. Suppose ei is
an edge of Pi and ej is the corresponding edge of Pj . Both edges correspond
to the same edge e on P . We glue ei to ej iff a billiard path travelling on
P in the direction of vi bounces off e and then travels in the direction of vj .
Each edge gets glued to one other and we produce a compact surface ΣP ,
called the Katok surface or the translation surface. Except for finitely many
singular points, ΣP is locally isometric to the Euclidean plane.

On each Pj we can draw the family of oriented line segments parallel to
vj. These line segments piece together on ΣP to partition ΣP into oriented
curves. Given p ∈ ΣP we define φ(p) to be the point obtained by moving p
one unit along the oriented curve on which it lies. φ is known as the time one

map for the geodesic flow. Technically, φ is only defined almost everywhere,
because we are not allowed to map into or out of singularities.

We choose v1 to be perpendicular to one of the sides e of P and imagine
a billiard path which starts at some point in the middle of P and goes in
the direction of v1 (pointing towards e.) Let x ∈ ΣP be the corresponding
point. We claim that, for any ε > 0 there is some k such that φk(x) and x
are within ε of each other. Otherwise, the disk ∆ of radius ε about p is such
that φk(∆) ∩ ∆ = ∅ for all k. By symmetry we have φi(∆) ∩ φj(∆) ∩ ∅ for
all i 6= j. But then we are filling up a finite area surface with infinitely many
disks. (We are proving an easy version of the Poincare Recurrence Theorem.)

So, we can pick k such that φk(x) is very close to x. Back on P , this means
that our billiard path at time k is so close, both in position and direction, to
the original starting position that it must be travelling in the same direction.
We are using the fact that there are only finitely many possible directions.
But then the path must hit the side e at some time after k. Since our billiard
path hits e perpendicularly twice, it is periodic.
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2.2 Unfoldings

Now we will remove the rationality constraint on the angles, and describe
a general construction, reminiscent of the one above, which works for any
polygon. We restrict our attention to triangles for ease of exposition. The
reader can see this construction in action either on my applet, or else using
the unfold window in McBilliards.
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2.1

Let T be a triangle and let W = w1, ..., w2k be a word with digits in
{1, 2, 3}. We always take W to be even length and we do not allow repeated
digits. We define a sequence T1, ..., T2k of triangles, by the rule that Tj−1 and
Tj are related by reflection across the wjth edge of Tj. Here j = 2, 3, ..., 2k.
The set U(W, T ) = {Tj}

2k
j=1

is known as the unfolding of the pair (W, T ). This
is a well known construction; see [T]. Figure 2.1 shows an example, where
W = (1232313)2. (Note that we have left off the label of a5 only because it
is difficult to fit into the picture.)

We label the top vertices of U(W, T ) as a1, a2, ..., from left to right. We
label the bottom vertices of U(W, T ) as b1, b2, ..., from left to right. This is
shown in Figure 2.1.

W represents a periodic billiard path in T iff the first and last sides of
U(W, T ) are parallel and the interior of U(W, T ) contains a line segment L,
called a centerline, such that L intersects the first and last sides at corre-
sponding points. We always rotate the picture so that the first and last
sides are related by a horizontal translation. In particular, any centerline of
U(W, T ) is a horizontal line segment. The unfolding in Figure 2.1 does have
a centerline, though it is not drawn. To show that a certain triangle has
W as a periodic billiard path we just have to consider the unfolding. After
we check that the first and last sides are parallel, and rotate the picture as
above, we just have to show that each a vertex lies (strictly) above each b
vertex.
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2.3 Stability

The word W is stable if the first and last sides of U(W, T ) are parallel for
any triangle T . There is a well-known combinatorial criterion for stability:

Lemma 2.1 Let W = w1, ..., w2n. Let nd,j denote the number of solutions

to the equation wi = d with i congruent to j mod 2. Let nd = nd,0 − nd,1.

Then W is stable iff nd(W ) is independent of d.

Proof: (Sketch) Let the angles of T be θ1, θ2, θ3. Going from T0 to T2n

(and keeping track of the even indices) the integer nj represents the total net
number of times we rotate counterclockwise about the jth vertex. Each time
we do such a rotation it is by 2θj. Thus, to get from T0 to T2n we (translate
and) rotate by 2(n1θ1 +n2θ2 +n3θ3) = 2n1(θ1 +θ2 +θ2) = 2πn1. Hence these
triangles are parallel. ♠

When W is stable, the existence of a periodic billiard path on T , described
by W , comes down to question of whether or not there is a centerline which
divides all the a vertices from all the b vertices. This is an open condition:
if W describes a periodic billiard path on T then W also describes periodic
orbits on all triangles T ′ which are sufficiently close to T .

The word window in McBilliards draws a useful graphical interpretation
of the word. Let H denote the union of edges of the planar hexagonal tiling.
There are 3 families of parallel line segments in H. We label each edge in
H by either 1, 2, or 3 depending on the family containing it. Given our
word W we can form a path P (W ) in H simply by taking the edges of H, in
succession, according to the digits of W . Then W is stable if and only if the
path P (W ) is closed. Figure 2.2 shows the path corresponding the word in
§2.1, namely W = (1232313)2.

Figure 2.2
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2.4 Orbit Tiles

We shall denote the parameter space of triangles by ∆. We think of ∆ as
the unit square, with the point (x, y) representing the triangle, two of whose
angles are πx/2 and πy/2. (Sometimes we will wish to talk about points
in ∂∆ and these correspond to “degenerate triangles”, where one or more
of the angles is zero.) Given a stable word W we define O(W ) ⊂ ∆ to be
the union of points which correspond to triangles for which W describes a
periodic billiard path. To save words we will say simply that W works for

the given parameter point or triangle. As we have remarked above, W works
for an open set of parameter points, and so O(W ) is an open set.

As we remarked above, the condition that p ∈ O(W ) is the same as the
condition that the vertex ai of the (correctly rotated) unfolding lies above
the vertex bj for every pair (i, j). Each one of these conditions is given by
some analytic function and there are finitely many such functions. (The tile
analyzer window in McBilliards actually gives you the formulas.) So, one
would expect the boundary of W to be a piecewise analytic set, with the
vertices coming from the points where several of the a vertices are at the
same height as several of the b-vertices.

McBilliards exploits this structure to plot O(W ) given W . The program
first finds the vertices of O(W ) using Newton’s method, and then plots the
edges connecting the vertices, again using Newton’s method to keep from
wandering off the edge. Since the method only traces out the boundary, it
assumes that O(W ) is simply connected. In practice, we find that this is
always the case.

2.5 Searching

In addition to plotting, McBilliards will search for periodic billiard paths:
Given a point p ∈ ∆ and a (smallish) number N , McBilliards finds all the
stable words of length at most N which work for p. Here smallish means
roughly less than 1000. Equipped with the plotting and searching capabilities,
you can go around ∆ trying to cover the space with orbit tiles. If you manage
to find a covering, you win: You have shown that every triangle has a periodic
billiard trajectory.

Here I will describe briefly how McBilliards used to search for periodic
billiard paths. What McBilliards does these days is much faster and more
sophisticated, thanks to some great programming and insights of Pat’s. In
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both the crude version I describe here and the refined version currently in
use, McBilliards essentially does a depth-first search through a tree of words,
pruning out branches which will not lead to success.

First, here is how pruning works: Figure 2.2 shows a (roughly) drawn
picture of an unfolding U(W, T ) where W = 2313213 and T is some triangle.
Let Ŵ be any word which contains W as a sub-word.
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Figure 2.2

U(Ŵ , T ) does not contain a centerline because w lies on the wrong side of
v1, v2. Thus T 6∈ O(Ŵ ). In case we find a triple of vertices in U(W, T ) as
above we say that W fails the pruning test .

The search algorithm begins with two lists of words, A and B. Initially A
consists of the empty word and B is the empty list. The algorithm proceeds
until A is the empty list, then stops. At this point, B is the list of even
length stable words of length less or equal to N which work for T .

1. If A = ∅ let W be the first word on A.

2. If W fails the pruning test, delete W from A and return to Step 1.

3. If W is nonempty, stable, and works for T , append W to B. Other-
wise...

4. Let L = Length(W ). If L ≤ N − 2 then delete W from A and prepend
to A the 4 words W1, W2, W3, W4 which have length L + 2 and contain
W as its initial word. Go to Step 1. If A=∅ then stop.
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3 Good and Bad Luck with Covering

When I was a kid I sometimes heard long drawn-out stories 1 which went
like this: ...unluckily J− fell out of an airplane; luckily he had a parachute;
unluckily it wasn’t working; luckily he landed in a soft pile of hay; unluckily
there was a pitchfork in the hay... The funny thing about our experience with
the triangular billiards problem is that it goes sort of like the story above.

3.1 Good Luck near the Right Angled Line

The first thing I wanted to do with McBilliards was to show that every
triangle having angles less than 90 + ε had a periodic billiard path. I started
searching and plotting near the right angled line and here is what I found:

Figure 3.1

The central point in this figure represents the 45− 45− 90 right triangle
and the picture is symmetric about this point. The little gaps near the
northwest and southeast corners of the picture correspond to the two points
representing the 30−60−90 triangle. The light blue tiles near these corners
meet the diagonal precisely at these points and then stretch all the way off to
the corners of the parameter space. The barely visible orange tiles near the
edges also stretch backwards to the corners. (Compare Figure 3.5.) Looks
promising, right?

1Curt McMullen pointed out to me that the probable origin of these stories is a chil-

dren’s book called “Fortunately” by Remy Charlip.
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3.2 Bad Luck near the 30 − 60 − 90 Triangle

Unluckily, there are these little gaps near the the points representing the
30− 60− 90 triangle, between the green and blue tiles in the above picture.
I tried to fill these gaps with a few more tiles and I eventually ran out of
computing power. Then, inspired by my bad luck, I proved

Theorem 3.1 Let ε > 0 be given. Then there exists a triangle whose angles

are all within ε of the 30−60−90 triangle which has no periodic billiard path

of length less than 1/ε.

See [S1] for a proof. The bad triangles in Theorem 3.1 are all obtuse,
since the Fagnano orbit works for all acute triangles and the order 6 orbit
discussed in the introduction works for all right triangles.

Theorem 3.1 seems to put the brakes on the whole enterprise. Try as you
like, you are not going to fill those little gaps just by searching for tiles and
plotting them. You need an infinite number of orbit tiles.

3.3 Good Luck near the 30 − 60 − 90 Triangle

Luckily, you look further and find the infinite family of words whose corre-
sponding sequence of hexagonal paths is:

and so on. Below we show (in blue) the first 5 orbit tiles in the sequence. It
looks like these tiles close down on the irritating gap, but unluckily the tips

of the tiles pull in too quickly and converge to the 30 − 60 − 90 point. This
means that the union of the blue orbit tiles does not cover any other part of
the gap. However, as it turns out, the part uncovered by the blue tiles is a
very slim region, akin to the region between a straight line and a parabola
tangent to that line.
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Figure 3.2

Luckily we can fill this slim region by an infinite family of green tiles,
corresponding to the words whose hexagonal paths are

and so on. The blue and green families interlock and cover a neighborhood
of the 30 − 60 − 90 point, as suggested by the closeup below.

Figure 3.3

We give a proof in [S1] that these two families do indeed cover a neigh-
borhood of the 30 − 60 − 90 point.
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It turns out that the 30− 60− 90 points are the only trouble spots along
the right-angle line, and we succeed in covering a neighborhood of the right
angle line with orbit tiles. (Technically, we have just covered the obtuse
side, but the rest is already taken care of.) Our covering result implies that
every right triangle T has the following property: If T ′ is any other triangle
sufficiently close to T then T ′ has a periodic billiard path.

3.4 Bad Luck near the Boundary

At first glance, it might seem to follow from what we have said above that
there is some ε > 0 such that a triangle has a periodic billiard path provided
all its angles are less than 90 + ε. However, this stronger result requires
not that we cover a neighborhood of the right angle line by orbit tiles, but
actually that we cover a strip about the right angle line. Unluckily, we have
the following result:

Lemma 3.2 (Boundary Demon) Let 0 < t < 1 be fixed and let pn ∈ ∆
be a sequence of points converging to (0, t) ∈ ∂∆. Then the length of the

shortest periodic billiard path on the triangle Tpn
tends to infinity with n.

Proof: (Sketch) The point (0, t) represents the “degenerate triangle” whose
angles are 0, πt/2 and π(1 − t)/2. Thus, if pn is very close to (0, t) then the
triangle Tpn

is an obtuse triangle with the smaller angle very near 0 and the
obtuse angle a definite amount greater than π/2. Two sides of T are very
long and the third side is short. Any billiard path in T must eventially hit
the short side, but then at least one of its directions, forwards or backwards,
must bounce down towards the far vertex, making a definite angle with the
two long sides as it travels. This forces the billiard path to make a lot of
bounces before returning. ♠

90 to T
Figure 3.4
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3.5 Good Luck at the Boundary

Luckily, the orange tile creeping in around bottom edge of Figure 3.1 is part
of an infinite family with paths:

and so on. Also, there is another helpful infinite family of tiles corresponding
to the words with paths:

and so on. Figure 3.5 suggests how these families fit together to cover a
neighborhood of the point (0, 1) in ∆. The blue tile creeping in at the
northwest corner is the same one as appeared in the southeast corner of
Figure 3.1. You should try McBilliards, or else my applet, if you want to see
how all the pictures fit together.

Figure 3.5

In [S2] we show that the union of the two families just described really
go fill up a neighborhood (on the obtuse side) of the point (0, 1). Thus, we
solve the dilemma presented by the Boundary Demon Lemma for all values of

12



(0, t) as long as t is sufficiently close to 1. That is we need an infinite family
of tiles to cover a neighborhood of the point (0, t) and the same family works
as long as t is fairly close to 1.

It turns out that t = 3/4 is the cutoff. This corresponds to a (degenerated)
triangle whose obtuse angle is

π −
(

π

2
×

3

4

)
=

5π

8
radians = 112.5o,

and whose small angle is 0 degrees. Once we take care of the trouble spots
mentioned above, we can cover the rest of the strip S100 with about 400
orbit tiles. Here S100 is the strip consisting of points corresponding to obtuse
triangles whose obtuse angle is at most 100 degrees. (If we use symmetry
and just consider the left half of S100, then we only use about 200 tiles.) We
give a rigorous proof in [S3].

It seems that we could get up to 112.5 degrees, or quite near it, with a
lot of extra work. However, after 112.5 degrees we have no answer to the
Boundary Demon Lemma.

3.6 Bad Luck in the Interior

Unluckily, the Boundary Demon Lemma is not the only source of trouble for
us. Let I(k) be the obtuse isosceles triangle with small angle k×π/2.. Then
I(k) corresponds to the point (k, k) in parameter space.

In a still unwritten paper, Pat Hooper proved that I(2−n) has no stable
periodic billiard path for n = 2, 3, 4.... (Masur’s theorem says that these
points do have periodic billiard paths, though they are always unstable ac-
cording to Pat’s result.) Given the special instability at the point (2−n, 2−n)
we might expect trouble trying to cover the neighborhoods of these points.
Indeed, experimentally it seems each of the points (2−n, 2−n) for n = 2, 3, 4...
is like the 30 − 60 − 90 point: No neighborhood can be covered by a finite
union of orbit tiles. Thus, to answer the triangular billiards problem in the
affirmative, we probably need to use infinitely many different combinatorial
billiard paths around each of the infinitely many points just mentioned.

Luckily, there seem to be infinite families which come to our rescue, at
least for the few values we can easily test−i.e. n = 2, 3, 4. We think that
proving this is within our grasp, but we haven’t even tried it yet.
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3.7 Good Luck along the Isosceles Line

Pat found, with proof, a doubly infinite family of words whose corresponding
orbit tiles cover all points on the obtuse side of the isosceles line except those
of the form I(1/k) with k = 3, 4, 5.... (He has yet to write this up.) The
beginning of Pat’s covering is shown in Figure 3.6.

Figure 3.6

The series of red tiles was known to [GSV] and [HH] but not the rest.
The first red, blue, yellow, blue, yellow, ... sequence limits to (1/3, 1/3). The
words are

and so on.
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The second series limits to the point (1/4, 1/4)−the first of the really
troubling interior points mentioned in the previous section. The sequence of
paths are:

and so on.
And so on. Thus, every isosceles triangle

T 6∈ {T (1/k)| k = 3, 4, 5...}

has the following property: If T ′ is sufficiently close to T then T ′ has a
periodic billiard path.

Pat and I also managed to show that there are stable words which work
for T (1/k) as long as k is not a power of 2. The nature of the word seems
to depend only on the odd part of k. Eerily, the number of words we find
in our family which work for T (1/k) is equal to the number which work for
T (1/2k). There seems to be a kind of renormalization going on here, but we
have yet to figure it out.

Now, if we can manage to deal with the neighborhoods of the points of
the form (2−n, 2−n), then we will know that any triangle sufficiently close to
isosceles has a periodic billiard path. This result seems within our grasp, but
it would be a ton of work−unless we get some new ideas.

After that our luck with covering runs out.
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4 Other Results and Questions

4.1 Stability

One of the early observations we made playing with McBilliards is that the
right triangles never seem to have stable periodic billiard paths. This was a
result of [GSV] in the case that the small angle is π/2n, and Pat Hooper
[H1] recently proved it for all right triangles. It would be nice to know
which triangles, even which rational triangles, have stable periodic orbits. (I
already mentioned that Pat Hooper proved that no stable word works for the
parameter point (2−n, 2−n) for n = 2, 3, 4.... This result is an offspring of his
right-angled result.)

Related to the stability result for right triangles, Pat proved that a stable
word cannot work for both an acute and an obtuse triangle. Put in the
language from the previous chapter, an orbit tile (corresponding to a stable
word) cannot intersect points on both side of the right angle line. We could
say that the right angle line confines all the orbit tiles to one side or the
other. This result is part of a general theory, due to Pat, which helps decide
from combinatorial data when a given rational line confines a given orbit tile.
(This work is not yet written.)

4.2 The Shapes of Orbit Tiles

If you look at the figures in §3 you might be mislead into thinking that the
orbit tiles are always (or at least usually) convex polygons. However, this is
not the case. The edges are described by setting various trigonometric sums
equal to 0. These sums have the form

∑
Ak sin(Bkx + Cky), where all the

constant terms are integers. (The tile analyzer window of McBilliards will
show you the formula for any edge of interest to you.)

In spite of the complicated formulas, the orbit tiles seem nearly convex,
and this leads me to conjecture at least:

Conjecture 4.1 An orbit tile is connected and simply connected.

Pat and I agree about the simply connected part of the conjecture but dis-
agree about the connected part. I think that the orbit tiles are always con-
nected but Pat isn’t convinced.
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4.3 Veech Triangles and Bad Points

Say that a point x ∈ ∆ is bad if no neighborhood of x can be covered
by a finite number of orbit tiles. We’ve already mentioned that the points
(2−n, 2−n) for n = 2, 3, 4... seem to be bad points. It would be nice to classify
all the bad points. What follows is a conjectural answer to this question.

Here we will give a quick definition of a Veech polygon. See [V1] and [MT]
for much more detail. Recall from §2.1 that each polygon P has associated
to it the translation surface ΣP . An affine automorphism of ΣP is defined to
be a homeomorphism of ΣP which, away from the singular points, is given
locally by an affine transformation. The group of these automorphisms is
sometimes called the Veech group and here we denote it by V (ΣP ).

It turns out that the linear part of an element of the Veech group is
indepdenent of the point at which it is measured, and also of determinant 1.
Thus we get a homomorphism Φ : V (ΣP ) → SL2(R). P is called Veech if
Φ(VG) is a lattice in SL2(R). This is to say that the coset space SL2(R)/VG

is a space of finite volume, when SL2(R) is equipped with a left invariant
volume form.

Veech [V] showed that billiards is especially nice on Veech polygons. One
can get exact asymptotic formulas for the number of periodic billiard paths,
and actually can completely classify the directions on the surface taken by
periodic billiard paths. Ironically, all the trouble points we described in §3
correspond to Veech triangles. This makes us suspect that, while billiards is
nice on Veech triangles, billiards is especially bad near Veech triangles. Here
is one formulation of this principle.

Conjecture 4.2 An interior parameter point is bad only if it is Veech.

4.4 The Boundary Demon

In order to make further progress on the triangular billiards problem we need
to deal with the points on the boundary. The Boundary Demon Lemma tells
us that we need infinitely many orbit tiles in the neighborhood of any one
of these points. Beyond the t = 3/4 cutoff mentioned in §3 we have no clue
how to proceed.

It seems clear to us that we need to investigate billiard paths on very
degenerate triangles. McBilliards is not equipped to do this, but we are
(boundlessly) optimistic that McBilliards II is going to do a fine job of it
once we get it off the ground.
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