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Abstract

This is a friendly, crisp, and slightly informal account of my solu-
tion of the 1977 Optimal Moebius Band Conjecture of B. Halpern and
C. Weaver.

1 Introduction

You make a paper Moebius band by giving an odd number of twists to a
1× λ rectangular strip of paper and joining the ends together. If e.g. λ = 6,
this is quite easy to do. If e.g. λ = 2 you can still do it, but you will find
it more challenging. How small can you take λ? I guess that this question
probably arose as soon as people started making paper Moebius bands, but
in any case W. Wunderlich [W] discusses this question in the introduction to
his 1962 paper. On the last line of their 1977 paper [HW], B. Halpern and
C. Weaver conjecture that λ must be larger than

√
3. I first learned about

this conjecture from the excellent survey article [FT, Chapter 14].
There is a nice physical experiment you can do which will probably lead

you to conclude that λ >
√

3 is the right bound. Take a long rectangular strip
of paper, give it one twist, and hold the ends together. Now slide the ends
past each other, a move which has the effect of simulating a shorter rectangle.
Keep sliding as much as you can. Eventually you will see a certain triangular
pattern emerge. Figure 1 describes the limiting shape you will see if you do
this experiment.
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Figure 1: The Triangular Moebius Band

Figure 1(a) is a 1 ×
√

3 rectangular strip that is lightly shaded on the
side you can see and darkly shaded on the other side. Figure 1(b) shows the
rhombus you get after folding over two flaps. Figure 1(c) shows what happens
when you fold the rhombus in half like a taco. The folding pattern brings the
two ends together with a twist. Figure 1(c) is the triangular Moebius band .
The dotted line segment indicates the joined ends of the strip. The thick line
segment indicates the “taco fold”.

The triangular Moebius band, a completely planar object, does not quite
count as a paper Moebius band. Technically, the triangular Moebius band
is known as a folded ribbon knot [DL] whereas a paper Moebius band is
defined as a smooth and locally isometric embedding of a flat Moebius band
into space. (You need not understand this formal definition to follow this
paper.) However, as is discussed in [Sa], [HW], and [FT, Chapter 14], you
can approximate the triangular Moebius band as closely as you like with a
bona fide paper Moebius band by taking a slightly longer strip of paper and
rounding out the sharp folds. The physical experiment above essentially does
this. This is why the Halpern-Weaver conjecture says that λ >

√
3 rather

than λ =
√

3.
In a recent paper [S], I proved the Halpern-Weaver conjecture. I also

provided a rigorous justification for the outcome of the physical experiment:
If λ ≈

√
3, then the shape of your paper Moebius band must approximate

the triangular Moebius band. In this paper I will give a friendly and some-
what informal account that I hope will reach a wider audience of scientists
who might be interested in these results. The proof here is essentially the
same as in [S] but it is presented in a different way, with an emphasis on
crisp exposition rather than filling in every detail. I also omit a lot of the
mathematical commentary, references, and acknowledgements found in [S].

The proof here starts with four easy optimization problems, the last of
which I call the Coupled Circuit Problem. I then show how the Optimal
Moebius Band Problem gives a special case of the Coupled Circuit Problem,
and this solves the whole thing.
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2 Four Optimization Problems

1. Triangle Problem: Let 5 be a triangle with a horizontal base of length
x, and a height of y. As is well known, the sum ∨ of the lengths of the two
non-horizontal sides of5 is minimized when5 is isosceles. The Pythagorean
Theorem computes this minimum as

∨ =
√
x2 + 4y2. (1)

2. Planar Circuit Problem: Suppose X = X1X2 and Y = Y1Y2 are
respectively horizontal and vertical line segments having lengths

|X| = x =
√

1 + t2, |Y | = y ≥ 1. (2)

Here and below | · | denotes arc length. For now, writing x =
√

1 + t2 is just
a complicated way of saying that x ≥ 1, but below t will mean more.

Suppose also that Y is contained in the open half-plane that lies beneach
the horizontal line extending X. Finally, suppose γ is a continuous loop that
successively connects the points X1, Y1, X2, Y2. Figure 2 shows all this.
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Figure 2: A circuit γ connecting the endpoints of X and Y .

The 4 arcs L1, L2, S2, S1 comprise γ. Let |L| = |L1| + |L2| and likewise
|S| = |S1|+ |S2|. Each arc is at least as long as the straight line segment with
the same endpoints. Hence |S| ≥ |X| and |L| ≥ ∨, the sum of the lengths of
the non-horizontal sides of the triangle 5 with vertices X1, X2, Y1. Since 5
has base X and height greater than 1, Equations 1 and 2 give:

|L| >
√

5 + t2, |γ| = |S|+ |L| > f(t) :=
√

1 + t2 +
√

5 + t2 (3)
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3. Coupled Planar Circuit Problem: We keep the same problem but
add a constraint that couples our loop γ to the segment X:

|S| = |L| − 2t. (4)

Equations 3 (left) and 4 give another bound:

|γ| = |S|+ |L| = 2|L| − 2t > g(t) := 2
√

5 + t2 − 2t. (5)

Combining Equations 3 and 5, we have |γ| > h(t) := max(f(t), g(t)).

3
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Figure 3: A plot of h(t) for t ∈ [−1, 3].

Figure 3 shows a plot of h(t). The minimum occurs when t = 1/
√

3, and
the minumum value is 2

√
3. Therefore, |γ| > 2

√
3. Furthermore, if |γ| ≈ 2

√
3

then t ≈ 1/
√

3 and x ≈ 2/
√

3, and 5 has height ≈ 1 and L1, L2, S1, S2 are
all nearly line segments. Hence γ closely follows an equilateral triangle.

4. Coupled Circuit Problem: This is almost the same problem as the
previous one. This time we think of our plane as the XY -plane sitting in
space. We keep the segments X and Y as before but this time we allow
our loop γ to move in space, above and below the XY -plane. All we re-
quire is that the endpoints of the 4 arcs L1, L2, S2, S1 comprising γ are again
X1, Y1, X2, Y2. Figure 2 again depicts the situation, except that you should
imagine you are looking down on the XY plane from space. This problem
has the same analysis as the planar version.
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3 Recognizing a Coupled Circuit

Let M be a paper Moebius band based on a 1× λ rectangular strip, and let
γ be its boundary loop. Note that |γ| = 2λ. We aim to recognize γ as a loop
that arises in the Coupled Circuit Problem.

A bend is a straight line segment in M which cuts across M and has
its endpoints in γ. A T -pattern is a pair of coplanar bends which point
in perpendicular directions. The dotted segment and the bold segment in
Figure 1(c) make a T -pattern. I’ll prove below that M has a T -pattern. We
can rotate M in space so that the bends X, Y of the T -pattern, and the loop
γ, are situated just as in the Coupled Circuit Problem. X and Y cut across
M and so have length at least 1. This gives Equation 2.

To derive Equation 4 we cut open M along Y and flatten it out in the
plane. We get a symmetric trapezoid τ . Figure 4 shows one of several
possible ways τ could look, depending on how X and Y slant. The labels
match Figure 2. (The repeat of Figure 2, included for convenience, is not
quite drawn to scale.)
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Figure 4: The symmetric trapezoid τ .

The left and right sides of τ get the same labels because on M they are
joined together. Since |X| =

√
1 + t2 the Pythagorean Theorem tells us that

t equals the horizontal displacement of the endpoints of X. Therefore

|S1|+ t = |L2|+ u, |S2|+ u = |L1| − t. (6)

We get Equation 4 by adding these equations together and simplifying. For
the other possible pictures of τ , in which X and/or Y slant the other way,
the signs of t and/or u change but we get Equation 4 in all cases.

Having recognized γ as a loop that arises in the Coupled Circuit problem,
we get |γ| > 2

√
3 and λ >

√
3. This proves the Halpern-Weaver Conjecture.

Furthermore, if λ ≈
√

3 then we have |γ| ≈ 2
√

3 and, as we remarked above,
γ closely follows an equilateral triangle. Hence the triangular Moebius band
is the only limit of a sequence of paper Moebius bands having λ→

√
3.
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4 Finding a T Pattern

The only piece of unfinished business is finding a T -pattern in our Moe-
bius band M . The proof here benefitted from insightful comments by Matei
Coiculescu and Jeremy Kahn.

The Bend Partition: Examining a paper Moebius band, you can see that
it has a continuous partition into bends that sweep through it. The pinstrip-
ing in Figure 1 is the analog of the bend partition for the triangular Moebius
band. (For the triangular Moebius band, we don’t quite get a partition be-
cause some bends have a common endpoint.) You could take the partition as
being part of the definition of a paper Moebius band, but in [S, §4] we start
with the formal definition of a paper Moebius band given in the introduction
and show that the bend partition exists. This is a classical result.

Parametrizing Bends: The bend partition of M is parametrized by the
circle R/2π. In R/2π two values are the same if they differ by an integer
multiple of 2π. Each θ ∈ R/2π corresponds to a bend Xθ in the partition.

Let S be the space of ordered pairs (Xθ1 , Xθ2) with θ1 6= θ2. Let S2 denote
the unit sphere, with north pole P+ and south pole P−. We can identify S
with a S2−P± as follows. The pair (Xθ−t, Xθ+t) corresponds to the point in
S2 having longitude θ ∈ R/2π and latitude t ∈ (0, π). Here t measures the
angle between the point on S2 and P+.

The antipodal map A on S2 interchanges each point with the diametri-
cally opposite point. With our identification, the action on S is given by
A(X, Y ) = (Y,X). A function g on S2 is odd if g ◦ A = −g.

Two Geometric Functions: Each bend X has 2 unit vectors ±
−→
X parallel

to it. Given a choice
−→
X θ1 , we choose

−→
X θ2 so that, as θ moves forwards in

R/2π from θ1 to θ2, the choice
−→
X θ varies continuously. We write

−→
X θ1  

−→
X θ2 .

Let (X, Y ) = (Xθ1 , Xθ2). Let mX and mY be the midpoints of X and Y .
Using the dot product (·) and the cross product (×) we define

g1(X, Y ) =
−→
X ·
−→
Y , g2(X, Y ) = (mX −mY ) · (

−→
X ×

−→
Y ). (7)

Here
−→
X  

−→
Y . Since −

−→
X  −

−→
Y , we would get the same values starting

with −
−→
X . If g1(X, Y ) = 0 then

−→
X ⊥

−→
Y . If g2(X, Y ) = 0 then X and Y are

coplanar. So, any common zero of g1 and g2 gives a T -pattern.
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Odd Extension: Given the continuous nature of the bend partition, g1
and g2 are continuous on S. Since

−→
X  

−→
Y and we are on a Moebius band,

we have
−→
Y  −

−→
X . Hence

g1(Y,X) =
−→
Y · (−

−→
X ) = −

−→
X ·
−→
Y = −g1(X, Y ),

g2(Y,X) = (mY −mX) · (
−→
Y × (−

−→
X )) = (mY −mX) · (

−→
X ×

−→
Y ) = −g2(X, Y ).

When (X, Y ) is near P± we have
−→
Y = ±

−→
X . For this reason, g1 and g2 both

extend continuously to S2 once we define g1(P±) = ±1 and g2(P±) = 0. Thus
g1 and g2 extend to give continuous odd functions on S2.

The Borsuk Ulam Theorem says these two continuous odd funtions on S2

have a common 0. Since g1(P±) 6= 0 our common 0 lies in S. We’re done.

Borsuk-Ulam Theorem: Here is a proof of the Borsuk-Ulam Theorem,
tailored to our situation. The map G : S → R2 given by G = (g1, g2) satifies
G ◦ A = −G. Suppose there is no p ∈ S2 such that G(p) = (0, 0). Let ` be
any line of longitude and consider the image G(`). This continuous path runs
from (1, 0) to (−1, 0) and misses (0, 0). If you stand at (0, 0) and watch G(`)
as it moves from (1, 0) to (−1, 0) your neck will twist a half-integer number
N(`) times. The function N is a continuous function of ` and therefore con-
stant. However, consider `′ = A(`). We have G(`′) = −G(`). This gives
N(`′) = −N(`), a contradiction.
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