Here is a discussion of the concept of m-dimensional smooth submanifold of \mathbb{R}^n. Later it will be superseded by the general concept of submanifold of an abstract manifold, but right now I want to get some ideas across by looking at this concrete case.

1 Curves in the plane

Let us start with the case $m = 1$, $n = 2$. I will give several definitions of smooth curve in the plane and show that they are all logically equivalent.

Let $C \subset \mathbb{R}^2$ be a subset and let $P = (a, b) \in C$ be a point. The following four conditions are equivalent, and if they hold for every $P \in C$ we say that C is a smooth curve in \mathbb{R}^2.

1. For some open set $U \subset \mathbb{R}^2$ containing P there exists a diffeomorphism $\Phi : U \to \Phi(U)$ from U to some open subset of \mathbb{R}^2 such that $\Phi(C \cap U) = (\mathbb{R} \times 0) \cap \Phi(U)$ and $\Phi(P) = (0, 0)$.

2. (Locally C can be given a regular parametrization.) For some open subset V of \mathbb{R} there is a smooth map $\phi : V \to \mathbb{R}^2$ such that $\phi(V)$ is a neighborhood of P in C, $\phi(0) = P$, and the derivative $\phi'(0)$ is not zero.

3. (Locally C is a graph.) For some open set $U \subset \mathbb{R}^2$ containing P, the set $U \cap C$ can be described either as the set of all pairs (x, y) with $y = f(x)$ and $x \in J$ for some smooth f defined in an open interval $J \in \mathbb{R}$, or as the set of all pairs (x, y) with $x = g(y)$ and $y \in J$ for some open interval $J \in \mathbb{R}$.

4. (Locally C is a regular level set.) For some open set $U \subset \mathbb{R}^2$ containing P there exists a smooth map $\psi : U \to \mathbb{R}$ such that $\psi^{-1}(0) = U \cap C$ and $\psi'(P)$ is not zero.
We outline the proof:

(1) implies (2) trivially. Define \(\phi \) by \(\phi(u) = \Phi^{-1}(u,0) \) (the domain \(V \) being the set of all \(u \) such that \((u,0) \in \Phi(U) \)).

(2) implies (3) using the Inverse Function Theorem in one dimension. Write \(\phi(u) = (\phi_1(u), \phi_2(u)) \). Either \(\phi'_1(0) \) or \(\phi'_2(0) \) is nonzero, say the former. Restricting to a smaller interval if necessary, we can assume that \(\phi_1 \) has an inverse. Let \(f = \phi_2 \circ \phi_1^{-1} \). If \(\phi'_2(0) \neq 0 \) then let \(g = \phi_1 \circ \phi_2^{-1} \).

(3) easily implies (4). If \(C \) is described locally by \(y = f(x) \) then let \(\psi(x,y) = y - f(x) \); if it is described by \(x = g(y) \) then let \(\psi(x,y) = x - g(y) \).

(4) implies (1) using the Inverse Function Theorem in two dimensions. One of the partial derivatives of \(\psi \) at \(P \) is nonzero, say \(\partial_2 \psi \). Define \(\Phi : U \to \mathbb{R}^2 \) by \(\Phi(x,y) = (x-a, \psi(x,y)) \). The derivative of \(\Phi \) at \(P \) is an invertible two by two matrix, so after restricting to a smaller open neighborhood of \(P \) the map \(\Phi \) becomes a diffeomorphism to its image.

2 The general case

Now let \(0 \leq m \leq n \). Let \(M \subset \mathbb{R}^n \) be a subset and let \(P \in M \) be a point. The following four conditions are equivalent, and if they hold for every \(P \in M \) we say that \(M \) is a smooth \(m \)-dimensional manifold in \(\mathbb{R}^n \).

1. For some open set \(U \subset \mathbb{R}^n \) containing \(P \) there exists a diffeomorphism \(\Phi : U \to \Phi(U) \) from \(U \) to some open subset of \(\mathbb{R}^n \) such that \(\Phi(M \cap U) = (\mathbb{R}^m \times 0) \cap \Phi(U) \) and \(\Phi(P) = 0 \).

2. (Regular parametrization) For some open subset \(V \) of \(\mathbb{R}^m \) there is a smooth map \(\phi : V \to \mathbb{R}^n \) such that \(\phi(V) \) is a neighborhood of \(P \) in \(M \), \(\phi(0) = P \), and the \(n \times m \) derivative matrix \(\phi'(0) \) has rank \(m \) (the maximum possible).

3. (Graph) For some open set \(U \subset \mathbb{R}^n \) containing \(P \), the set \(U \cap M \) is related by some permutation of the \(n \) standard coordinates in \(\mathbb{R}^n \) to the set of all pairs \((x,y) \in \mathbb{R}^m \times \mathbb{R}^{n-m} \) with \(y = f(x) \) for some smooth \(f \) defined for \(x \) in some open set \(W \subset \mathbb{R}^m \).

4. (Regular level set) For some open set \(U \subset \mathbb{R}^n \) containing \(P \) there exists a smooth map \(\psi : U \to \mathbb{R}^{n-m} \) such that \(\psi^{-1}(0) = U \cap M \) and the \((n-m) \times n \) derivative matrix \(\psi'(P) \) has rank \(n-m \) (the maximum possible).

The arguments are essentially the same as in the case \(m = 1, n = 2 \). Here are details for the two most interesting steps.

(2) implies (3) using the Inverse Function Theorem in \(m \) dimensions. After some permutation of coordinates we can assume that the first \(m \) rows of \(\phi'(0) \) constitute an invertible \(m \times m \) matrix. Write \(\phi(u) = (\phi_1(u), \phi_2(u)) \in \mathbb{R}^m \times \mathbb{R}^{n-m} \), so that \(\phi'_1(0) \) is invertible. Restricting to a smaller
domain if necessary, we can assume that ϕ_1 has an inverse. Let f be $\phi_2 \circ \phi_1^{-1}$.

(4) implies (1) using the Inverse Function Theorem in n dimensions. After composing with a permutation we can assume that the last $n - m$ columns of $\psi'(P)$ constitute an invertible $(n - m) \times (n - m)$ matrix. Define $\Phi : U \rightarrow \mathbb{R}^m \times \mathbb{R}^{n-m}$ by $\Phi(x, y) = (x - a, \psi(x, y))$ where $P = (a, b)$. The derivative of Φ at P is an invertible $n \times n$ matrix, so after restricting to a smaller open neighborhood Φ becomes a diffeomorphism to its image.

The fact that (4) implies (3) is a version of the Implicit Function Theorem.

3 Tangent Spaces

To a smooth m-manifold $M \subset \mathbb{R}^n$ and a point $P \in M$ is associated an m-dimensional vector subspace of \mathbb{R}^n, the tangent space $T_P M$. We can describe it in four ways corresponding to (1) through (4) above.

If Φ is a diffeomorphism as in (1) then we let $T_P M$ be $\Phi'(P)^{-1}(\mathbb{R}^m \times 0)$. To see that this is well-defined, first note that it does not change if Φ is replaced by its restriction to a smaller open neighborhood of P. Then suppose that Φ_1 and Φ_2 are two diffeomorphisms as in (1) both having the same domain. Writing $\Phi_1 = \Psi \circ \Phi_2$, we have $\Phi_1'(P) = \Psi'(0) \circ \Phi_2'(P)$. Since the diffeomorphism $\Psi : \Phi_2(U) \rightarrow \Phi_1(U)$ preserves (a neighborhood of 0 in) $\mathbb{R}^m \times 0$, the linear isomorphism $\Psi'(0) : \mathbb{R}^n \rightarrow \mathbb{R}^n$ preserves $\mathbb{R}^m \times 0$ and therefore $\Phi_1'(P)^{-1}(\mathbb{R}^m \times 0) = \Phi_2'(P)^{-1}(\Psi'(0)^{-1}(0)(\mathbb{R}^m \times 0))$.

Given a parametrization ϕ of a neighborhood of P in M as in (2), $T_P M = \phi'(0)(\mathbb{R}^m)$.

If M is locally the graph of f [altered by a permutation of the coordinates in \mathbb{R}^n] and $P = (a, b) = (a, f(a))$ then $T_P M$ is the graph of the linear map $f'(a) : \mathbb{R}^m \rightarrow \mathbb{R}^{n-m}$ [similarly altered].

Given a map ψ as in (4) such that M is locally $\psi^{-1}(0)$, the space $T_P M$ is the kernel of $\psi'(P) : \mathbb{R}^n \rightarrow \mathbb{R}^{n-m}$.

4 Transverse Intersections

Let M_1 and M_2 be smooth submanifolds of \mathbb{R}^n with dimensions m_1 and m_2. We say that M_1 and M_2 are transverse (or intersect transversely) at $P \in M_1 \cap M_2$ if $T_P M_1 + T_P M_2 = \mathbb{R}^n$, or equivalently if the intersection $T_P M_1 \cap T_P M_2$ has vector space dimension $m_1 + m_2 - n$. Notice that if $m_1 + m_2 \geq n$ then this is the lowest possible dimension for the intersection of vector spaces of dimensions m_1 and m_2 in an n-dimensional vector space. We say simply that M_1 and M_2 are transverse if they are transverse at every point of intersection. If $m_1 + m_2 < n$ then M_1 and M_2 can never be transverse at a point, so the only way they can be transverse is by having empty intersection.
We show that if M_1 and M_2 are transverse and $m_1 + m_2 \geq n$ then $M_1 \cap M_2$ is a smooth submanifold of \mathbb{R}^n with dimension $m_1 + m_2 - n$, and that $T_P(M_1 \cap M_2) = T_P M_1 \cap T_P M_2$ for every P. For this we use the regular level set point of view: For a suitable open neighborhood U of $P \in M_1 \cap M_2$ choose $\psi_1 : U \to \mathbb{R}^{n-m_1}$ such that $\psi_1^{-1}(0) = U \cap M_1$ and $\psi_2 : U \to \mathbb{R}^{n-m_2}$ such that $\psi_2^{-1}(0) = U \cap M_2$, both with derivatives of maximal rank, and observe that because of the transversality the combined map

$$
\psi = (\psi_1, \psi_2) : U \to \mathbb{R}^{n-m_1} \times \mathbb{R}^{n-m_2} = \mathbb{R}^{n-(m_1+m_2-n)}
$$

also has derivative of maximal rank: the kernel of

$$
\psi'(P) : \mathbb{R}^n \to \mathbb{R}^{n-(m_1+m_2-n)}
$$

is the intersection of $\ker(\psi_1'(P)) = T_PM_1$ and $\ker(\psi_2'(P)) = T_PM_2$.