Here is an alternative approach to defining tangent and cotangent spaces. It starts from the idea that a tangent vector of M at the point a should be a class of parametrized curves through a that agree to first order.

(I am always a little unsure about how use phrases like ‘agreeing to order k at a point’ . Here I will let it mean having the same value and the same derivatives, up to the derivatives of kth order. But that means that in one-variable calculus a function agrees to order 2 with the constant function 0 when it has a triple root, and so on.)

1 Jets

Given two smooth functions $\mathbb{R}^m \to \mathbb{R}^n$ taking 0 to 0, or better yet germs of such functions at 0, we say that they agree to order k at 0 if all of the partial derivatives of order $\leq k$ coincide.

If f and g are smooth maps $(M,a) \to (N,b)$, i.e. smooth maps $M \to N$ taking $a \in M$ to $b \in N$ – or more generally if they are germs of such – then of course we say that they agree to order k at a if, when expressed in terms of coordinate charts, they agree to order k in the sense above. That is, given charts Φ and Ψ in M and N centered at a and b, we look at whether the composed maps $\Psi \circ f \circ \Phi^{-1}$ and $\Psi \circ g \circ \Phi^{-1}$ agree to order k at 0. This question is independent of the choice of charts, because according to the chain rule the jth partial derivatives of a composition depend only on the partial derivatives of order $\leq j$ of the maps that are being composed.

Call the equivalence class of f under this relation the k-jet of f at a, and denote the set of all such classes by $J^k_{a,b}(M,N)$. Right now we are mainly interested in the case $k = 1$.

2 Tangent and cotangent vectors

Define the tangent space of M at the point a by $T_a M = J^1_{0,a}(\mathbb{R}, M)$. The equivalence class of the curve γ is sometimes denoted by $\dot{\gamma}(0)$.

Define the cotangent space by $T^*_a M = J^1_{a,0}(M, \mathbb{R})$. Unlike the set $T_a M$ just defined, this one has an obvious vector space structure, inherited from the vector space structure of real-valued functions. In fact, it is obviously the same as the $\mathfrak{m}/\mathfrak{m}^2$ that I mentioned in class. (Recall that we have denoted the ring of germs of smooth real functions at a by $\mathcal{O}_a \mathbb{R}$ and the maximal ideal corresponding to functions that vanish at a by \mathfrak{m}, and that the smaller ideal consisting of functions that vanish to first order is \mathfrak{m}^2.) The cotangent vector represented by the function f at a is denoted by $d_a f$.

Extend this to cases where the function does not vanish at the point, writing $d_a f$ for the class of $f - f(a)$.

Composition

$$(\mathbb{R}, 0) \to (M, a) \to (\mathbb{R}, 0)$$

induces a map

$$J^1_{a,0}(M, \mathbb{R}) \times J^1_{0,a}(\mathbb{R}, M) \to J^1_{0,0}(\mathbb{R}, \mathbb{R})$$

If we identify $J^1_{0,0}(\mathbb{R}, \mathbb{R})$ with \mathbb{R} by sending the 1-jet of f at 0 to $f'(0)$, then this becomes a map

$$T^*_a M \times T_a M \to \mathbb{R}$$

Let us write it as

$$(\omega, v) \mapsto \langle \omega, v \rangle$$

Explicitly, $\langle d_a f, \dot{\gamma}(0) \rangle = (f \circ \gamma)'(0)$. For each $v \in T_a M$ the map $T^*_a M \to \mathbb{R}$ given by $\langle -, v \rangle$ is linear, because $f \circ g$ is a linear function of f. The resulting map $v \mapsto \langle -, v \rangle$ from $T_a M$ to the dual vector space of $T^*_a M$ is a bijection, by a computation using coordinates. In this way $T_a M$ gets a vector space structure, the unique such structure that makes $\langle \omega, v \rangle$ a linear function of v.

Now consider maps $F : M \to N$ between manifolds. Composition

$$(\mathbb{R}, 0) \to (M, a) \to (N, b)$$

induces a map

$$J^1_{a,b}(M, N) \times T_a M \to T_b N$$

Let us write it as

$$(\{F\}, v) \mapsto F_* v$$

where $\{F\}$ is the 1-jet of F. Thus $F_* (\dot{\gamma}(0)) = (F \circ \gamma)(0)$.

Likewise composition

$$(M, a) \to (N, b) \to (\mathbb{R}, 0)$$

induces a map

$$T^*_b N \times J^1_{a,b}(M, N) \to T^*_a M$$

Let us write it as

$$(\omega, \{F\}) \mapsto F^* \omega$$
Thus \(F^*(d_af) = d_a(f \circ F) \).

The map \(F^* : T^*_aM \to T^*_bN \) is linear (again because \(f \circ F \) depends linearly on \(f \)). Denote by \(\mathcal{L}(V,W) \) the vector space of all linear maps \(V \to W \). A coordinate computation shows that our map sending \(\{ F \} \in J^1_{a,b}(M,N) \) to \(F^* \in \mathcal{L}(T^*_bN,T^*_aM) \) is a bijection.

Of course, since the tangent spaces are the duals of the cotangent spaces, \(\mathcal{L}(T^*_bN,T^*_aM) \) is canonically isomorphic to \(\mathcal{L}(T_aM,T_bN) \) by ‘adjoint’. We now verify that the map \(F^* : T_aM \to T_bN \) defined above is also linear, and moreover that this \(F^* \in \mathcal{L}(T_aM,T_bN) \) is the adjoint of \(F^* \in \mathcal{L}(T^*_bN,T^*_aM) \). The verification relies on the associativity of composition \((\mathbb{R},0) \to (M,a) \to (N,b) \to (\mathbb{R},0)\)

The 1-jet of \((f \circ F) \circ \gamma = f \circ (F \circ \gamma)\) is \(<F^*(d_af),\dot{\gamma}(0)> = <d_a(f),F^*(\dot{\gamma}(0))>,\) so \(<F^*\omega,v> = <\omega,F^*v>\)

For the composition \((\mathbb{R},0) \to (M,a) \to (N,b) \to (P,c)\)

the associative law \((G \circ F) \circ \gamma \) gives \((G \circ F)_*(\dot{\gamma}(0)) = G_*(F_*(\dot{\gamma}(0))),\) i.e. \((G \circ F)_* = G_* \circ F_*\). The equation \((G \circ F)^* = F^* \circ G^*\) can be obtained either by another such argument or by adjointness.

3 Higher jets

We have seen that \(J^1_{a,b}(M,N) \) is canonically a vector space; in fact it may be identified with the space of linear maps from \(T_aM \) to \(T_bN \). When coordinates are chosen, say \(y^i \) in \(N \) and \(x^j \) in \(M \), then this vector space gets identified with the space of \(n \times m \) matrices using the partial derivatives \(\frac{\partial y^i}{\partial x^j} \) at the origin as coordinates.

For \(k > 1 \) it is still true that coordinates in \(M \) and \(N \) give coordinates for \(J^k_{a,b}(M,N) \), namely the partial derivatives \(\frac{\partial^l y^i}{\partial x^j \cdots \partial x^j} \) of order \(1 \leq l \leq k \) at the origin. Nevertheless, when \(k > 1 \) \(J^k_{a,b}(M,N) \) is not canonically a vector space. Of course, \(J^k_{a,0}(M,\mathbb{R}) \) is the vector space \(\mathfrak{m}/\mathfrak{m}^{k+1} \). But no linear structure on \(J^k_{a,b}(M,N) \) can be invariant under diffeomorphisms in \(N \). This is already the case for \(J^2_{0,b}(\mathbb{R},N) \) and \(N \) one-dimensional. When changing coordinates from \(y \) to \(z \) in \(N \) we obtain

\[
\frac{d^2 y}{dt^2} = \frac{dy}{dz} \frac{dz}{dt} + \frac{d^2 y}{dz^2} \left(\frac{dz}{dt} \right)^2
\]

The quadratic dependence on \(\frac{dz}{dt} \) is the problem.