The other day I made a few slips at the end of my discussion of the tangent bundle of S^2. Let me correct them and say a few more words about vector bundles on spheres in general.

1 Tangent bundles of S^n

I showed that a smooth vector bundle on \mathbb{R}^n is always trivial. Now consider a rank k smooth vector bundle on S^n. Covering S^n by open sets U_+ and U_-, the complements of the south and north poles, we have a trivialization of E on U_+, an isomorphism

$$\Phi_+: \pi^{-1}(U_+) \to U_+ \times \mathbb{R}^k$$

between the restricted bundle and the trivial bundle. Likewise for U_-:

$$\Phi_-: \pi^{-1}(U_-) \to U_- \times \mathbb{R}^k$$

Together these give an isomorphism between the trivial bundle $(U_+ \cap U_-) \times \mathbb{R}^k$ and itself, which may be expressed by a smooth map $\tau: U_+ \cap U_- \to GL_k(\mathbb{R}^k)$,

$$\Phi_+(\Phi_-^{-1}(x, v)) = (x, \tau(x)v)$$

If the bundle E has a nowhere-vanishing global section $\sigma: S^n \to E$, then we may describe σ in U_+ by a function $f_+: U_+ \to \mathbb{R}^k - 0$:

$$\Phi_+(\sigma(x)) = (x, f_+(x))$$

and in U_- by a function $f_-: U_- \to \mathbb{R}^k - 0$:

$$\Phi_-(\sigma(x)) = (x, f_-(x)).$$
For \(x \in U_+ \cap U_- \) we then have \(f_+(x) = \tau(x)f_-(x) \).

Restricting further to \(x \in S^{n-1} \subset U_+ \cap U_- \), we have that the functions \(f_+, f_- : S^{n-1} \to \mathbb{R}^k - \{0\} \) are homotopic to constant maps, because they extend to the contractible spaces \(U_+, U_- \) respectively. It follows that for a constant \(u \in \mathbb{R}^k - \{0\} \) the function \(x \mapsto \tau(x)u \) from \(S^{n-1} \) to \(\mathbb{R}^{k-1} \) is homotopic to a constant.

This leads to a contradiction in some cases. For the tangent bundle of \(S^n \), if the trivializations on \(U_+ \) and \(U_- \) are made using stereographic projection then the resulting \(\tau \) is given by a very nice formula: for \(x \in S^{n-1} \) the element \(\tau(x) \in GL_n(\mathbb{R}^n) \) is reflection along the vector \(x \). (I said this in class in the case \(n = 2 \), but said something wrong at the end.) The mapping \(x \mapsto \tau(x)u \) in this case is generically two to one. It takes both \(u \) and \(-u\) to \(-u\). It takes all unit vectors orthogonal to \(U \) to \(u \). Its degree is 0 if \(n \) is odd, but if \(n \) is even then the degree is 2 and we have a contradiction to the existence of a nowhere-vanishing tangent vector field on \(S^n \).

2 Classifying vector bundles on \(S^n \)

Conversely any such map determines a rank \(k \) vector bundle on \(S^n \) by gluing together \(U_+ \times \mathbb{R}^k \) and \(U_- \times \mathbb{R}^k \). \((x, v) \in U_- \times \mathbb{R}^k \) is identified with \((x, \tau(x)v) \in U_+ \times \mathbb{R}^k \).

Isomorphism classes of vector bundles on \(S^n \) correspond one to one with classes of maps \(\tau : U_+ \cap U_- \to GL_k(\mathbb{R}^k) \). As argued in class, two maps \(\tau \) and \(\tau' \) are equivalent for this purpose if and only if there exist maps \(\rho_+, \rho_- : U_+ \cap U_- \to GL_k(\mathbb{R}^k) \), the one extending to \(U_+ \) and the other to \(U_- \), such that for \(x \in U_+ \cap U_- \) we have \(\tau(x) = \rho_+(x)\tau(x)\rho_-(x) \).

This can be analyzed further. A convenient form of the answer is that such bundles correspond to maps \(\tau : S^{n-1} \to GL_k(\mathbb{R}^k) \) up to the relation of multiplying on right and left by maps that extend to \(D^n \). This the same as multiplying on right and left by maps that are homotopic to constants. This can also be expressed as homotopy classes of maps \(S^{n-1} \to GL_k(\mathbb{R}^k) \) up to multiplication on right and left by constants; or based homotopy classes up to conjugation by constants.

For example, rank 2 bundles on \(S^2 \) correspond to elements of \(\pi_1(GL_2(\mathbb{R})) \cong \pi_1(SO(2)) \cong \mathbb{Z} \) up to sign change. For \(k > 2 \) we have \(\pi_1(GL_k(\mathbb{R}^k)) \cong \mathbb{Z}/2\mathbb{Z} \), so that there is only one nontrivial bundle of that kind.

For another example, rank \(k \) vector bundles on \(S^1 \) correspond to path components (based homotopy classes from \(S^0 \)) of \(GL_k(\mathbb{R}) \) up to conjugation, a two element set if \(k > 0 \).