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Logafithﬁic degeneration and Dieudonne theory. H

By Kazuya Kato.

T

To the memory of Dr. Osamu Hyodo.

§0. Introduction.

To describe the motivation of this paper, let A be a complete
discrete valuation ring with residue field k and with field of
fractions K, and let E be the "Tate elliptic curve" over K

corresponding to a prime element n of A which is usually denoted

as "Gm/{nn i ne€ Z})". Then E does not extend to a smooth proper
scheme over A and nE = Ker(n : E—> E) (n > 1) does not extend
to a finite flat group scheme over A. However the main claim of

this paper is that, in a certain category which is obtained as an

ahplification of the category of schemes by means of the theory of

"logarithmic structures"”, E e*tends to a smooth proper group object
€ over A and nE extends to a finite flat group object nG over
A having an exact sequence

0 —Z/nZ(1) — nt — Z/nZ — 0
(Z/nZ(1) = Ker(n : G — Gm)).

m
Assume k is perfect of positive characteristic p and let n be

a power of p. In this paper (§5), we give a Dieudonne theory for
group objects over Kk 1like nG @A k (resp. over A like nE when

A = W(k)). The new aspect is that our Dieudonne module involves a
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monodromy opera#or N beéides thelold operators F énd V.

Tﬁe breciée statement of our Dieudonne theory over k is the
following theorem (0.1). (Cf. §5.2 where this theorem and a similar
result on the Dieudonne theory of group objects over W(k) are
proved.) In (0.1), I do not explain the special terminologies used
there which will be defined in the text of the paper. I hope the
reader feels what is done in this paper from the statement of the
theorem.

Theorem (0.1). Let k be a perfect field of positive

characteristic P, and T _be the logarithmic scheme whose underlying

scheme 1S Sspec(k) and whose logarithmic structure 1is associated to

the homomorphism N — k ;1 — 0. Then, there exists an

anti-equivalence between the following two categories (a)({b) which

extends the classical Dieudonne theory.

(a) The category of finite flat commutative Eroup obijects G _in

the categoryv of algebraic valuative logarithmic spaces over T

catisfying the following conditions (i)(ii), (i) G ds annihilated

by some power of D. (i) T£ Get denotes the maximal

logarithmically etale guotient of G, the underlying scheme of Get

is etale over K in the usual sense.

(b) The category of W(k)-modules D of finite length endowed

with additive operators F, V, N : D — D satisfying the following

relations.

Flax) = ¢(a)F(x), Vie(a)x) = aV(x), N(ax) = aN(x) (a € W(k),
x € D),

FV = VF = p, FNV = N.

Here ¢ denotes the standard frobenius of wik).
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Usual commutative finite group schemes over k_ annihilated by some
power of P correspond to Dieudonne modules with N = 0. The object
o ©a k with n = pm belongs to the category (a), and its Dieudonne
module is a freé Wm(k)—moddle of rank 2 with basis e (i= 1, 2) on

which F, V and N acts by

Fe1 = e 2 = peys Ve1 = pey, Ve2 = eq

o
o
I

Ne1 = 0, Ne

5 = €1
A logarithmic structure in the sense of Fontaine-Illusie 1is defined
to be a sheaf of commutative monoids on a local ringed space having

some additional structure. (Deligne and Faltings have different

formulations of logarithmic structures; [De][Faz]. We use the

formulation of Fontaine-Illusie in this paper.) A logarithmic
structure is a "magic" by which a degenerate scheme begins to behave
as being non-degenerate. A large part of this paper (§1, §3, 84) is
devoted to the foundation of algebraic geometry with logarithmic
structures. Flat morphisms, quasi-finite morphisms, etale sites,
etc., in the logarithmic sense are introduced in §3 and §4 (one tries
there to have pieces of EGA and SGA for "spaces with rings and
monoids"). We already studied basic facts about logarithmic

structures in [Ka] (smooth morphisms, etale morphisms and the

"crystalline cohomology in the logarithmic situation were studied in

[Ka]l; thgse subjects were alsp studied by Faltings independently, in
his great works on p-adic Galois representations [Fal][FaZ]). The
materials in [Ka] were not sufficient when we consider group objects,
etale sites and flat sites in the logarithmic situation, and a new

idea in this paper is to introduce valuative logarithmic spaces
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(1.2.5) (6f,’§1mos£ equivalently} to consider schémes witb log. o
str.’s "modulo" blowing;upé along the log. str.’s; cf. §1.4.) In the
other sections §2 and 8§85, we consider group objects. In g2, we give
two examples of group objects, the compactification of Gm and the
proper smooth model of the Tate curve, which can exist only in the
logarithmic world. In §5, we study finite flat group objects and give
the Dieudonne theory.

An important theme which is not studied in this paper is the
compactification- of moduli spaces using logarithmic structures. As
the Tate curve is a smooth proper object from the logarithmic point
of view, we imagine that there is a good notion of "logarithmic
abelian varieties" which are smooth proper in the logarithmic sense
but may degenerate in the classical sense. 1 imagine that the
compactification over 7 of the moduli. space of abelian varieties
obtained in [Ch-Fa] and [Fu] should be reformulated as the solution
of the moduli problem of logarithmic abelian varieties. (This does
not contradict the fact that in [Fa-Ch] [Ful, there is no canonical
toroidal compactification of the moduli space of abelian varieties
and (for this reason) the compactifications were not obtained as the
solution of a moduli problem. Different toroidal compactifications
become isomorphic modulo blowing-ups along log. str.’s.)

I am thankful to Professors J.-M. Fontaine and L. Illusie and the
late Professor Osamu Hyodo for stimulating discussions. I studied
with them p-adic monodromy operators ([Bul). The qguestion to find a
real geometric group object which yields a Dieudonne module with a

monodromy operator came from discussions with them.
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§1. Logarithmic spaces.

The main purpose of this section is to introduce "valuative

logarithmic spaces (1.2.5)" and prove basic facts about them.

§1.1. Integral monoids, saturated monoids, and valuative monoids.
(1.1.1) In this paper, a monoid means a commutative monoid (= a
commutative semi-group) having a unit element. A homomorphism of

monoid is assumed to send the unit element to the unit element,

and a

submonoid is assumed to contain the unit element of the total monoid.

For a monoid P, let P

be the subgroup of P consisting of

all invertible elements. We denote by P8P  the commutative group

associated to P, that is,

pEP - {ab—1

ab-1 B cci_1 = 3'g € P such that sad = sbc.

; a, b € P}

Definition (1.1.2). A monoid P 1is called integral if the
canonical map P — peP {5 injective (in other words, 1if "ab

% b = ¢" holds in P).

ac
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For a monoid P, we denote by Plnt the image of P — p8&P,

i Definition (1.1.3).' A monoid is called saturated if P 1is integral
and satisfies the following condition: If a € ng and a" € P for

some n = 1, then a € P.

t

s For a monoid P, we define the saturated monoid pra by

PSat = {a € ng . al € Plnt for some n = 1}.

Lemma (1.1.4)., If P is a finitelvy generated monoid, then PSat
is also finitely generated.
cf. [KKMS) Ch. I §1 Lemma 2 for the proof.
Definition (1.1.5). A monoid P 1is called valuative if P 1is
integral and satisfies the following condition: If a € ng, then
4 either a € P or a—l € P holds.
i The following notions are in analogy:
integral monoids — local integral domain
saturated monoids «———— integrally closed local domain
valuative monoids «——— valuation ring.
(The reason why a monoid is "local" is that the complement of P*  is-

an ideal (cf. (1.4.1)) as the case of a local ring.)
The following lemmas (1.1.6)-(1.1.9) below are proved easily
imitating the arguments in the proofs of the analogous results in

commutative algebra ([Bol Ch. VI).

Lemma (1.1.6). A valuative monoid is saturated.

Lemma (1.1.7). An integral monoid P is wvaluative if and onlv if

it is a maximal element in the set of all submonoids of ng with

respect to the order relation

Q<q & Qcq and @ =an (@)%,

Lemma (1.1.8). For an integral monoid P, there exists a
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valuative submonoid V of ng containing P such that

p* = P n V™,

Lemma (1.1.9). For an integral monoid P, Psat coincides with

the intersection of all valuative submonoids V of ng containing

X

P such that P~ =P 0 v,

§1.2. Logarithmic structures; basic definitions.

We introduce logarithmic structures of Fontaine-Illusie. There is a
different definitions of log. str.’'s found by Deligne [De] and Falting
[Faz]. Most materials of this §1.2 are discussed in [Kal in a
slightly different formulation.

Definition (1.2.1). A pre-loéarithmic structure on a local ringed
space (X, OX) is a sheaf of monoids M endowed with a homomorphism

¢ ¢ M — OX' (Here GX is regarded as a sheaf of monoids by the

multiplication.)

A pre-log. str. M is called a logarithmic structure if o
induces

«Lo}) — 0%

If M is a log. str., we regard @§ as a subsheaf of M via a_l.

For example, a submonoid M of @X (for the multiplication)
containing O§ is a log. str. The particular case M = G§ is called
the trivial log. str. In general, M — OX need not be injective.

Definition (1.2.2). A logarithmic space is a local ringed space
endowed with a log. str. It is called a logarithmic scheme if the

underlying local ringed space is a scheme.

The structural log. str. of a log. space X 1is usually denotes by




T

MX -

Morphism of log. spaces 1is defined in the evident way.
If X and Y are log. spaces and Y 1is endowed with the trivial

log. str., to give a morphism of log. spaces X — Y 1is equivalent

to giving Jjust a morphism of local ringed spaces (forgetting log.

str.’s) X — Y. Thus, "endowed with the trivial log. str. sounds as

"without log. str.".

Definition (1.2.3). For a pre-log. str. M on a local ringed
space X, the log. str. M~ on X associated to M is defined to
be the push out of M — a—l(Oﬁ) =, 0; in the category of sheaves
of monoids on VX. (We endow. M~ with the homomorphism MY — 0Oy
induced by M — OX and by the inclusion map G§ — OX.)

It is easily checked that M~ is in fact a log. str., and that the
canonical homomorphism M— M~ is universal among homomorphisms
from M to log. str.’s on X.

Definition (1.2.4). Let f : Y — X be a morphism of local
ringed spaces. Then, for a log. str. M on X, the inverse 1image

*
£f°M of M is defined to be the log. str. on Y associated to the

pre-log. str. f_l(M) which is endowed with the composite

homomorphism f_l(M) —_— f—l(OX) — Oy (Here we denoted the sheaf
= *
theoretic inverse image by f l, not by f .)
Definition (1.2.5). A log. str. M on a local ringed space X is

called integral (resp. saturated, resp. valuative) 1if the stalk MX
is an integral (resp. saturated, resp. valuative) monoid for all
x € X.

Definition (1.2.6). A log. str. on a local ringed space X 1S

called quasi-coherent if locally on X, there exists a monoid P and



a—homomorpﬁism P — OX (here we denote the §onstant sheaf
associated to P by the same notation P) such that M 1is
isomorphic to the log. str. associated to the pre-log. str. P — GX‘

If we can take (locally) as P finitely generated (resp. finitely
generated integral) monoids, M is called a coherent (resp. fine) log
str.

We have the equivalence

fine ¢ integral and coherent.

In this paper, valuative log. spaces (abbreviation of "log. spaces
whose log. str.’s are yaluative") and fine log. schemes (abbreviation
of "log. schemes whose log. str.’'s are fine") are the most important
two types of log. spaces.

(1.2.7) A standard example of a fine log. str. is the following.
Let X be.a regular locally noetherian scheme and let D be a
reduced divisor on X with simple normal crossings. Then

M = {f € OX : f is invertible outside D}

is a fine log. str. which is ‘associated locally to N — OX ;€5
— T, where (ei)i is the canonical basis of Nr and n, are local
sections of @X such that D = U "ni = 0" and each "ni = 0" is
i
regular.

For example, if A 1is a discrete valuation ring, the closed point
of Spec(A) 1is regarded as a reduced divisor with simple normal
crossings on Spec{A). We call the corresponding log. str. of
Spec(A) the canonical log. str. of Spec(A). The recipe is that,
when Spec(A) is endowed with the canonical log. str., some

degenerate objects over A, endowed with suitable log. str.’s, behave
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as being of good reduction.’

Lemma (1.2.8). Let "f : Y — X be a morphism of local ringed

spaces and let M be a log. str. on X. If (P) is one of the

following properties (i)-(vi) of log. str.'s and M has (P), then

f*M also has (P).

(i) integral, (ii) saturated, (iii) valuative, (iv) quasi-coherent,

(v) coherent, (vi) fine.

Proof. The cases (i) - (iii) follow from the fact

m

f_l(M/Oﬁ) (f*M)/O§ , and the cases (iv) - (vi) follow from the fact

¥
that if M 1is associated to P — OX , then f M 1is associated to

1

the composite P —_ f (GX) _ Oy.

Proposition (1.2.9). Let X be a log. scheme whose log. str. is

int sat)

quasi-coherent. Then, there exists a scheme X (resp. X

endowed with an integral (resp. saturated) log. str. and with a

morphism of log. spaces Xlnt — X (resp. Xsat —— X) having the

following universal property: If Y is a log. space whose log. Str.

is integral (resp. saturated); a morphism Y — X of log. spaces

factors uniquely through Xlnt — X (resp. Xsat — X).
Locally on X, Xlnt (resp. Xsat) is described as follows.

Assume the log. str. of X 1is associated to a homomorphism P — OX

for a monoid P. Thén,

LS : LS

(* = int (resp. sat); here Z[P] and Z[P*] denote the monoid

rings), which is endowed with the log. str. associated to the

, * *
canonical map P — Oy ®Z[P] Z[(P 1.
Proof of (1.2.9). The above explicit local construction shows the

existence of a universal object.




In §1.3, we shall treat the "valuative ?eféidn" Xval of (1.2.9).

Contrarily to the integral and saturated cases, Xval is

merely a log. space and not a scheme in general,

Lemma (1.2.10). The category of log. schemes has finite inverse

limits. Log. schemes with coherent log. str.'s are stable under finite

inverse limits in the categorv of log. schemes. The categorv of

fine log. schemes has finite inverse limits.

Indeed, for a finite inverse system of log. schemes (XA)A’ the
inverse limit X 1is found as follows. As a scheme, X 1is the
inverse limit of the schemes XA. The log. str. MX is the

inductive limit in the category of log. str.’'s on X of the inverse

images of MX , Cf. [Ka] (2.6) for the proof of the statement
A

concerning coherent log. str. ’'s in (1.2.10). (There is a difference

between [Ka] and this paper in the formulation of log. str.’s (see

(1.2.11)) but the proof there works in the present -formulation.)

Finally, the inverse limit in the category of fine log. schemes 1is

( )39t (1.2.9) of the finite inverse limit in the

obtained as
category of schemes with coherent log. str.’'s.

Remark (1.2.11). 1In [Ka], we defined a log. str. on a scheme as a
sheaf on the etale site of a scheme whereas we defined it in this
paper as a sheaf on the 7ariski site. (It is possible to formulate
the theory of log str.’s on a ringed topos more generally as Fontaine
and Illusie explained in their first discussion on a log. str. with
the author.) An advantage of the etale site was that, with the

similar definition of a fine log. str. on the etale site as (1.2.6),

a reduced divisor with normal crossings, not necessarily with simple

1
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normal crossings, on a regular locally noetherian scheme X - is

regarded as a fine log. str. on the etale site of X.. However as Wwe

shall see in (4.2.3)(4), when we are interested in valuative log.

spaces (we shall be so in this paper), fine log. str.’s on the etale

site (or on the flat site) can be "replaced" by fine log. str.’'s on

the Zariski site.

P
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§1.3. The valuative log. space associated to a scheme with a

quasi-coherent log. str.

&

Theorem (1.3.1). Let X be a scheme with a quasi-coherent log str.

(1.2.6). Then there exists a valuative log. space Xval with a

morphism of log. spaces Xval —» ¥ having the following universal

property: For any valuative log. space Y, a morphism Y — X

factors uniguely through Xval — X,

To prove this theorem, we may work locally on X and hence we may
assume that MX is associated to a homomorphism P — @X for a
monoid P. Furthermore, by replacing P with Pint and X with
Xint (1.2.9), we may assume that P is integral. Under these
assumptions, XVal is constructed explicitly as in (1.3.4) below.

Definition (1.3.2). A subset I of a monoid P is called an ideal
of P if the condition

a € P and x € I > ax € I
is satisfied. For ideals I, J of P, we denote by TJ the ideal
of P generated by {xy ; x € I, ¥ € J}.

The empty set is an ideal of P, but we shall use only non-empty
ideals.

(1.3.3) Let X be a scheme, F an integral monoid, P — Oy
a homomorphism, and endow X with the log. str. associated to this

homomorphism.

Let ® be the set of all finitely generated non-empty ideals of P.

For I € ¢, let

(3



X ) Proj( @ <I>")

n20
where <I> denotes the ideal of Z[P] generated by I.

o = X Xspec(Z([P]

On the other hand, for a monoid Q@ with a homomorphism P — Q,

let X be the scheme X ®Z[P] Z[Q] endowed with the log. str.

Q

associated to the canonical map Q — OX . (I believe there is no

Q

confusion of the notations X and X. ; the intersection of the use

I Q

of them is the case I = Q = P, but XI e XQ = X in this case.)

For a € I, let P[a—ll] be the submonoid of pEP generated by the
_1I

set a = {a—lx : x € I}. Then XI is govered by the affine open

X — Y 4 -1 . L2
subschemes XP[a lI]' The ;og. str.’s on xP[a 11] coincide on

their intersections and define a log. str. on X

I
Note that if U an_g I .generate I{ then XP[azlP] (1 = i <
r) already cover XI.
We endow ® with the following directed ordering:
I’ =21 = I' = IJ for some finitely generated non-empty

ideal J of P.

If I’ > I, we have a canonical morphism of log. schemes

£y 10 Xp» — %p

Proposition (1.3.4). In the situation of (1.3.3), the inverse
limit 1lim XI in the categorv of log. spaces has the properties of

Tedi

yval 4n (1.3.1).

(Here, as a topological space, lim XI is the inverse limit of the

TEfD

topological spaces XI , and the structural sheaves 0O and M of
lim XI are the inductive limits of the inverse images of @X and
Teo I
MX , respectively.)

I

(4
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viwifﬁ;-éﬁfhof Iégfﬁéd.thelméfhod to considgf'thé inverse-limit of

blowing-ups with respect to the ordering by product of ideals as
above, from a lecture of O. Gabber.

The proof of (1.3.4) is straightforwards and we omit it.

(1.3.5) We give another discription of the topological space Xval

in the situation of (1.3.3).

There is a canonical bijection between the set Xval and the set

of all pairs (V, p) such that V is a valuative submonoid of pEP
containing P and p 1is a point of XV =a KK eZ[P] Z[V] satisfying

the following condition: If a € V and the image of a 1in OX b
V)

is invertible, then a € v¥. 1Indeed, if (V, p) 1is such a pair and
I 1is a finitely generated ideal of X, the image of (V, p) in XI
is obtained as follows. The ideal IV of V is generated by one

-1

element a € I, and P[a_lI] c V. We obtain a point of X c

Pla "I]

XI to be the image of the induced map XV —_— XP[a_lI]‘

For a pair (V, p) as above, when we regard it as an element of

Xval’ we have the description of stalks:
o = 0 5
Xval:(vip) XV,P
and M val is isomorphic to the push out of
X y (Vyp)
V o— v — @X in the category of monoids.
XV)F'

For a submonoid Q of P8P  containing P which is finitely )
generated over P, and for an open subscheme U of XQ , the
morphism Uval —_ XVal induces an isomorphism of Uval with an
open log. subspace of .Xval. These UVal form a basis of open sets
of Xval' A pair (V, p) as above, regarded as a point of Xval’
belongs to UVal if and only if Q ¢ V and the image of p under

/5



‘X, — Xq ‘belongs to’ U.

Definition (1.3.6). .We say a homomorphism of integral monoids
h: P — Q 1is exact if the inverse image of Q under hgp : ng
e Qgp coincides with P. We say a morphism f : Y — X of log.

spaces with integral log. str.’'s is exact at y € Y if MX £(y) —_—
b
MY y is exact. We say f 1is exact if it is exact at any Yy € Y.
)

Proposition (1.3.7). Let f : v — X _ be a morphism of log.

schemes whose log. str.’'s are integral and quasi-coherent.

Let v €Y and x = f(y) € X. Assume is exact at v (1.3.6).

Then for any point x' of Xval lving over x, there exists a

: va , .
point y' of ¥ 1 which lies over x' and also over ¥.

Corollary (1.3.8). Let X be a scheme with quasi-coherent

integral log. str. Then, Xval —— X is surjective.

Proof. Apply (1.3.7) by taking Spec(Z) with the trivial log. str.
as X in (1.3.7) and taking X of (1.3.8) as Y of (1.3.7).

Proof of (1.3.7). We may assume X = Spec(k), Y = Spec(K) for

fields k, K. Consider M, _ and M as "P" for X and for Y,
X,x Y,y
. o . Cyval gp
respectively. Let x' = (v, p) € X , where MX,X c V c MX,X )
p € XV' Then, by using the exactness assumption, we obtain
X X _ X . gP

(VMY,y) N MX,x S MX,x (= k™) 1in MY,y )

VM Xav=vE i gpP |

( Y,y) A in MY,y
Take a valuative submonoid W of Mépy containing VMY N such that

b} )

WX a WMy o= (VMg ¥ (1.1.9), and let I (resp. J) be the ideal of
I ' Y

7Z[V] (resp. Z[W]) &generated by {a € V j a & v®*} (resp. {a € W ; a

& W~}.) Then

~ 3 X
K eZ[MY,y] ZIW)/J % K 851Xy AR S

/6
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9 ; . - -—: 2 K B x
k eZ[MxAx] Zivl/1I = k 8Z[kk] AR A
y
Since K GZ[KX] Z[Wx] “ig faithfully flat over Kk QZ[kx] Z[Vx], there

is a prime ideal gq of K eZ[M ] 7Z[Wl/J lying over the prime

Y,y
ideal of k 8Z[M ‘] Z[V]/I corresponding to Pp. Then, y' = (W, q) €
X,x
Yval has the desired properties.

Proposition (1.3.9). Let X be a scheme with a quasi-coherent

integral log. str.

val . A ; \ ; ;
(1) X is quasi-compact if and only if X 1is quasi-compact.

(2) If X is connected and the log. str. of X is saturated,

then Xval is connected. Conversely, £ xval is connected, then

X is connected.

(1,3.10) We prove (1.3.9)(1). The "only if" part follows from the

surjectivity of Xval —— X (1.3.8). To prove the "if" part, we may

~assume X is as in (1.3.4). Though it is not true in general that

the inverse limit of a projective system of gquasi-compact spaces is
quasi-compact, we can use the following (1.3.11) to affirm that
lim XI is quasi-compact.

Lemma (1.3.11). Call a topological space T a good quasi-compact

space if it satisfies the following two conditions. (i) T is

quasi-compact. (ii) Define the "new topology" of T bw taking the

sets of the form U n E with U an open set of T and E the

complement of a quasi-compact open set of T, as a basis of open

sets. Then T is compact with respect to this "new topologv".

(Our terminologv "compact" includes "Hausdorff" as that of Bourbalki).

We have:

(1) A _quasi-compact scheme is a good quasi-compact space.
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(@) het (T

directed index set A _such that each TA is a good quasi-compact

be an inverse svstem of topological spaces with

space and such that if a, 2' € A _and 2’ > a, then the inverse

image of a quasi-compact open subset of TA in TA, is
quasi-compact. Then, 1lim T is quasi-compact.
*—A—' A .

Proof. To prove (1), it is sufficient to consider the case of an
affine scheme Spec(A). Let F be a ultra-filter on Spec(A). Let
p = {a € A ; D(a) & F}, where D(a) = {q € Spec(A) ; a # q}. Then
p is a prime ideal of A and is a unique point to which F
converges with respect to the "new topology".

Next we prove (2). If we endow T)L with the '"new'" topologies,

then lim TA is compact because it is an inverse 1limit of compact
k .

spaces. Since the original topologies are weaker than the new ones,

we see that lim T,1 is gquasi-compact.

(1.3.12) We prove (1.3.9)(2). The second statement follows from
the surjectivity of Xval — X (1.3.8). To prove the first
statement, we may assume X 1s as in (1.3.4) with P saturated. It

is sufficient to prove that each XI is connected. Furthermore, by

the fact P = U @ where @ ranges oVer finitely generated saturated

submonoids of P, we are reduced to the case P 1is a finitely
generated saturated monoid. It is sufficient to show that the

inverse image in XI of each point x € X 1is connected. So we may

assume that as a scheme, X 1s the Spec of a field k. Note XI =
: . _ . n )
Spec(k) Xspec(k[P]) Y with Y = PrOJ(n:O <I>k) where <I>k is the

ideal of k[P] generated by I. We have r(y, @ = k[P] (use the

v/
fact k[P] is normal [KKMS] Ch. I §1 Lemma 1). Since the morphism

Fral
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theory of Stein factorization

§1.4. Algebraic valuative

In this §1.4, let S be a

Definition (1.4.1). By an

Y ——4-§§é;(k[P]) is proper ‘and »XI

\i & fiber of this morphism, the

shows that XI is connected.

logarithmic spaces.

scheme with the trivial log. str.

algebraic valuative logarithmic space

over S, we mean a valuative log. space ¥ over S such that there
exists an open covering
r = : U,
of ¥ with the property that for each x, there exists a fine log.
= scheme U)k over S which is locally of finite presentation as an
g-scheme such that ul is isomorphic to (Uk)val over S.
An open.log. subspace of an alg. val. log. space over S 1is also
an alg. val. log. space over S.
The following proposition says that the category of alg. val. log.

spaces oVver S

fine log. schemes over S

as S-schemes.

Proposition (1.4.2). Let

is regarded as a-

which are loca

"localization' of the category of

11y of finite presentation

X, Y be log. schemes over 8. Assume

X is locally of finite prese

ntation as an g-scheme and the log. str.

of X

ig fine. Assume o

n the other hand that the log. str.

of ¥

is associated to a homomorphi

sm P — GY for an integral monoid P,

and the underlvying scheme of

v is quasi=-compact and quasi—separated.

Then,

val

X 1

—

I

Morg (Y val,

im MorS(YI, X)

19
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SEiA fnl,

T Sk

whefe-'Mor' denotes the set of morphisms ofvlbq. spaces over S, I

S

ranges over non-empty finitely generated ideals of P, and YI is

as in (1.3.3).

Proof. Straightforward.
(1.4.3) The categorVy of alg. val. log. spaces OVer S has finite
inverse limits. In fact, by (1.4.2), a finite diagram in this

category is locally the ( )val

of a finite diagram of the category
of fine log. schemes. Take the finite inverse limit in the category
of fine log. schemes (1.2.10) of the latter diagram, and take 1ts

( )val. Then, it gives locally the finite inverse limit of the
original diagram.

(1.4.4) Let S’ be a scheme over S with the trivial log. str.

Then, for an alg. val. log. space ¥ over S, the fiber product

£3 Xg s’ in the category of val. log. spaces exists. Indeed, X =

Xval locally, and the fiber product is (X Xg S’)val locally. This
also shows that X Xg S’ is an alg. val. log. space OVEr s’. Thus
we have the base change functor [( ) xo S’ (from the category of alg.

S

val. log. spaces over S to that over S’
When we talk about alg. val. log. spaces in this paper, the
notation of the fiber product 1is used in the sense of (1.4.3) or of

(1.4.4).
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§2. Examples of group objects.

§2.1. Compactification of Gm.

cpt

(2.1.1) Let S be a scheme with the trivial log. str. Let Gm S
})

be the scheme Pé endowed with the valuative fine log. str. which is

associated to N — Os[t] i 1 — t on Spec(os[t]) c Pé and

associated to N — Gs[t—l] 71— t_1 on Spec(os[t—l]) c Pé.

Here t denotes the standard coordinate on Pl If S 1is a regular

S*
cpt
m,S

divisor "t = 0" u "t = =" on Pé in the sense of (1.2.7).

locally noetherian scheme,.the log. str. of G

Proposition (2.1.2). For a valuative log. space U oOvVer S,

there exists a functorial isomorphism =

cpt = gp
Mors(‘D, Gm,s) = r(?:)) tti‘.D )'

In particular, cht is a group object in the category of alg. val.

m,S

log. spaces oVer S.

Remark (2.1.3). If 3 is a log. space OVer S which is not

necessarily valuative, MorS(D, G;?g) is identified with
rey, MD U Mil) where MD U Mél denotes the push out of
My ot o;"—ia Mg . i(u) = u, Jlu) = u-1
in the category of sheaves of sets. (Note MD U M51 = MSP if and
only if Mg igs valuative.) Thus G;?g is not a group object when

regarded as an object of the category of log. spaces over S (or the
category of log. schemes over S) if S = ¢. Thus, to have many

group objects, it is important to work in the category of valuative

2]
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log. sﬁaces.

§2.2. Tate curves.

Proposition (2.2.1). Let S be a scheme with the trivial log. str.

, let ¥ be an alg. val. log. space over S, and let mn_ be an

element of T (X, MI) whose image in OI is locallv nilpotent. TLet

o be the category of alg. val. log. spaces U over s endowed with

X
a morphism W — ¥ over S s Then, the functors

Ay — (Sets)

9 |— r(v, M§PT), g 1— r(9, uEP/nl)
are represenfable{ where M%P’n denotes the subsheaf of M%p
characterized by '
gP,T0 _ gP Lo n
MQ:Y {a € My,y o | a and alnr for some m, n € Z}
for v € 9 (alb means a*lb € MD y), and nZ denotes (n® i ne Z}.
b]

We call the group object ' of AI which represents the second
functor in (2.2.1), the Tate curve over ¥ corresponding to .

Proof of (2.2.1). The firét functor is represented by the open

cpt,n cpt _ ~cPt ; . 0 i
subspace Gm,I of Gm,I = Gm,S Xg ¥ consisting of all points X
such that

™t and t|n® at x for some m, n € Z.

Here t denotes the standard element in F(G;p;, Mgp) corresponding
b

cht cht

m,

to the projection R oF

We show that the action of the group nz on G;p;,ﬂ has the
)
following property: Each x € G;p;,n has an open neighbourhood U
)
such that nU n U = ¢ for n € Z N {0}. Indeed, there exists

i € Z such that tzlnl+1 and nllt2 at x, and we can take
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{y € GcPt T lIt2 ~and 'tzln1+1f at vy}
exists and it represents the second

Hence the gquotient ;pg n/n

functor.
lassical theory of Tate curves is

(2.2.2) the relation with the c

as follows.
with the

=,
=

Let E be the Tate curve E%/qz over Z[[a]l]
is an indeterminate) in [D-R] VII 1.10

q (where «q

"q-invariant"
q — 0. To

Z{[ql] — Z is

72. where
taking the singular part of

str., we blow up E

define a fine log.
is the gquotient of P% obtained by

E as the center. (EO
and the singular part

0
identifying the O-section with the o-section,
is the image of these two sections.)
' Hl 1
and let Eo be the reduced part of E 82[[q]]
with the fine log. str. defined to be the

E’ be the result
Z

of EO Let
of the blowing up,

duti-

We endow E’
and local sections of

T

(q——-»O).
sheaf of submonoids of OE generated by @E
nent of Eé. We denote by

which define some irreducible compo

%
Eq Eé . . (resp.

Tn for n = 1) the log.

scheme Spec(Z[[all) (resp.

><::j< Spec(Z[q]/(qn))) whose log. str.
N — Z[[ql]

is associated to

(resp. Z[q]/(qn)) : 1 — gq. In the following, let dq (resp.
9 over T (resp. Tn) such

Ao ) be the category of log. spaces
n

that © is an alg. val. log. space when considered over the scheme

Spec(Z[[ql)) (resp. Spec(Z[q]/(qn))) with the trivial log. str.
Proposition (2.2.3). Let E' be as above and let & = (E’)val.

Then there exists on & 2 structure of a group object of AT

23
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the following properties.

(i) For anv n =21, € Xq Tn is canonically isomorphic to the

Tate curve (2.2.1) over Tn corresponding to g as a group object

in  dqoo
TI"I.

ﬁ (ii) It defines on the open subspace

-1 = ) -1 ;
€ ®71q] Zla ") = E° 8714 Z[Q ] the known group scheme Str. of

1y gver z[lallla “1l.

g . . , -
the elliptic curve E' 8z, Zlq
Proof. Since we shall treat formal completions, we have to work

with log._schemes before passing to val. log. spaces.

Let Qn be the category of log. schemes over Tn with fine and

] .
saturated log. str.'s. Let Un 5 Un,i for i € 72, and Un,ijk
3 for i, j, k € Z Dbe functors €, —— (Sets) defined by

u_(x) = r(X, M§P), - T

UQ(X) = {a € Un(X) . for each x € X, there exists i € Z such

2, i+l
a”laq

that qlla2 and aﬁ o i

Vn(X) {(a,b) € UA(X) X UA(X) : for each x € X, there exists

2 2

i e Z such that -nkICab) and (ab) lnk+l

at x}.
Then, UA and Vn are represented by objects of @n.' We d note
these objects by the same letters U; and Vn ) respectively.

We have

-G cpt,aq

m,Tn A n m,T 2 Gm,T

(U,)val - cht,q (v )val cpt,qa
n

n n n

Furthermore, by the construction of the Tate curve in [D-R], we have
4 - = 1 Z
E' xq il E Un/q ;
Hence & X T_ = cht,q/qZ Furtheremore, the group law U x U, —
T "n m, T ) _ ’ ° n n

Un induces Vn —_— UA , and a diagram of log. schemes

24



By taking the formal completion 1lim and taking the algebraization
n

of this diagram (it can be checkes that the formal completion is
algebraizable), we have a diagram of fine log. schemes over T of
finite presentation

\% —_— B!

!

E’ X E’

such that VVal — (E’ E,)val.

X This defines the a group law on
€ =-(E’)Val. The property (i) in (2.2.3) is clear from the
construction and (ii) follows from the well known uniqueness of the
group law on an elliptic curve.

(2.2.4) The author believes that there is a good theory of
"logarithmic abelian variety"‘genéralizing the above case of the Tate
curve. There should exist a moduli space of logarithmic abelian
varieties with logarithmic polarization (and with a suitable level
structure) in the category of alg. val. log. spaces. He further
believes that a good theory of "logarithmic Picard variety" exists.
The "logarithmic Jacobian variety" should be related to the works
[0-S] and [Is].

Here he reports, without proof, a result of his computation of the

"logarithmic Picard group" of the Tate curve in a special case, which

may help a reader who likes to construct logarithmic Picard varieties.

2=

=y



L,

Let X, n and €' be as in (2.2.1) and let f : ¢ — ¥ be
the structural morphism. then if the underlying local ringed space
of ¥ 1is the Spec of a field and Mx/o§ is generated by the image
of n (these assumptions were put to make the computation possible
for thé author, and seem to be unnecessary), then

(2.2.4.1) le*<M§§) = (M8P/nf) e 2
The map M%p — le*Méﬁ is defined as the cup product with the
generator of Hl(Eé, Z) £ Z, and the map Z — le*Mii sends 1 to
the class of the line bundle on E’ corresponding to the divisor

"origin of E'". The proof of (2.2.4.1) is based on

Proposition (2.2.5). Let X, P and ® be as in (1.3.3), and assume

that the underlyving scheme of X is quasi-compact and

guasi-separated. Assume we are given. a sheaf of abelian groups ?I' on
]

XI for each I € ®, and a homomorphism hI,I’ fI,I,(?I) R 71,
for each pair (I, I') such that TI' > T, satisfying _
® =i - . " )
hI:’IH fI’,I”(hI,I’) = hI,I” if I > I > TI.
Then, if fI denotes the canonical morphism XVal — X7, uwe have
m, .val . -1 T m
H (X‘ , lim fI (7I)) = lim H (XI’ ?I).

I I .
Proof. By (1.3.9)(1), this follows from SGA 4 EXp. vI.




§3. Properties of morphisms of logarithmic spaces.

In this section, we discuss how the definitions of properties of

morphisms of schemes like "flat", "smooth", ..., are generalized to

morphisms of fine log. schemes and also to morphisms of alg. val. log.

spaces.

£§3.1. Local properties of morphisms of fine log. schemes.

o E
Wi, o

Here we discuss flatness, smoothness, -etaleness and
quasi-finiteness for morphisms of fine log. schémes.

Definition (3.1.1). (1) For a fine log. str. M on a scheme X, a
chart of M is a homomorphism P — M with P a finitely
generated integral monoid (regarded as a constant sheaf on X) such

that M is the log. str. associated to the pre-log. str. P with

P—— M — 0.

X
(2) For a morphism f : Y — X of fine log. schemes, a chart of

h

f is a triple (P — My Q — My, P — Q) of charts P — My

and Q — MY , and a homomorphism h such that the diagram

P
l l
MX) — M

is commutative.

£

A chart of f exists locally.

Definition (3.1.2). Let f : Y — X be a morphism of fine log.

PR
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schemeé. We say f is flat (resp. smooth, resp. etale, resp.
quasi-finite) if locally on X and Y for the fppf topology (resp.
etale topoloéy, resp. etale topology, resp. fppf topology) in the
usual sense, there exists a chart (P — MX’ Q — MY’ P —Eﬁ Q) of
f such that the induced morphisms of schemes

(3.1.2.1) Y — X Xgpec(Z[P]) Spec(Z[Q])

(3.1.2.2) spec(0y[Q8F1) — Spec (0, [PEP1)

are flat (resp. smooth, resp. etale, resp. quasi-finite) in the usual

sense.
Here, by "f. has the property .... jocally on X and Y for the
fppf (resp. etale) topology in the usual sense', I mean "there exist

coverings of schemes {YA —_ Y}A 'and {Xxﬁﬂ——» X Xy Yx}u for each

1.. for the fppf (resp:‘etale) topology such that if we endow X

Al
and Yx with the inverse image log. str.’s of MX and MY )
respectively, then each morphism Xku —_— Yl has the property in
problem".

Clearly we have the implications

etale > smooth > flat,
etale éw.éﬁ;éi—finite. g e

The implication (smooth) + (quasi-finite) = (etale) 1is also true
though it 1is not so evident.

To avoid confusions, Wwe sometimes write "(log) flat", etc. instead
of "flat", etc. when we are discussing the property of morphisms of
logarithmic objects, and write "(cl) flat" (i.e. flat in the classical
sense) etc. when we are discussing the property of a morphism of

schemes.

Remark (3.1.3). Concerning the morphism (3.1.2.2) : For a

2§




non-empty scheme S and a homomorphism h : G — H of finitely
generated abelian grouﬁs, OS[G] —_ OS[H] is flat (resp. smooth,
resp. etale, resp. quasi-finite) if and only if;

the kernel of h is a finite group whose order is invertible on S

(resp. the kernel and the torsion part of cokernel of h are
finite groups whose orders are invertible on S,

resp. the kernel and the cokernel of h are finite groups whose
orders are invertible on S,

resp. the cokernel of h is finite).

Lemma (3.1.4). (i) Flat (resp. smooth, resp. etale, resp.

quasi-finite) morphisms are stable under compositions, and under base

changes using the fiber products (1.2.10) in the category of fine log.

schemes.
(2) Let f : ¥ —> X be a morphism of fine log. schemes and
assume f*MX — MY. Then, f is flat (resp. smooth, resp. etale,

resp. quasi-finite) if and only if the underlving morphism of schemes

v —» X is (cl) flat (resp. kcl}'smooth\ resp. (cl) etale, resp.

Lcl)wguasi—finitel;

(3) Let S be a scheme and let P — @ be a morphism of

finitely generated integral monoids. Endow Spec(OS[P]) and

Spec(OS[Q]) with the log. str.'s associated to the canonical maps

P — OS[P] and Q — @S[Q], respectively. Then, the morphism of

fine log. schemes Spec(OS[Q]) —_ Spec(OS[P]) is flat (resp. smooth,

resp. etale, resp. quasi-finite) if and onlv if the morphism of

schemes Spec(GS[Qgp]) —_ Spec(@S[Pg?]) is (cl) flat [(resp. (cl)

smooth, resp. (cl) etale, resp. (cl) quasi-finite).

Proof. All statements are proved easily except the one concerning
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the éémpbsition in (2) which follows from (3.1.6) below.

(3.1.5) By [Kal (3.5), we have the following characterization of
smooth (resp. etale) morphisms. (The formulation of log. str. is
slightly different but the proof of (3.5) works in our present
formulation.) A morphism f : Y — X of fine log. schemes is
smooth (resp. etale) if and only if it has the following properties
(1)(i1).

(i) The underlying morphism of schemes Y — X is locally of
finite presentation.

(ii) For any commutative diagram of fine log. schemes

T =5 Y

i _ | ¢
'

‘such that T’ is a closed subscheme of T defined by a nilpotent

. X . . .
ideal of and such that 1 MT — MT’ is an isomorphism, there

Or
exists locally on T a morphism (resp. there exists a unique
morphism) g : T — Y such -that gi = s and fg = t.

For examples of smooth morphism related to toroidal embeddings

([KKMS][0d]) or to semi-stable redution, see [Ka] (3.7).

Lemma (3.1.6). Let f : ¥ —> ¥ be a morphism of fine log.

schemes and let 8 : P — MX be a chart. Assume f is flat (resp.

smooth, resp. etale, resp. quasi-finite). Then, fppf (resp. etale.,

resp. etale, resvp. fppf) locally on ¥ and on Y in the usual

sense, there exists chart (P — MX , @ — MY’ P — Q) including
g satisfving the condition in (3.1.2). We can require further that

p&P Qgp is injective.

Proof. Let (P’ > M Q' — My, p’ — Q') Dbe a chart

X’

30
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satisfying (i)(ii) in (3.1.2). Fix 7y € v, x = f(y) € X. By

replacing p' with the inverse image P" of MX " under
]

ng ® (Pa)gp Mgp

x.x & b) — ab,

and by replacing Q’ with the ( )1nt of the push out of P" — P’
— @', we may assume that 8 : P — MX factors as P — p* X
MX' We may assume
) y X = X ) s ax = X
P /(P ) - MX,X/GX,X ) Q /(Q ) = MY,Y/GY,Y .

In the flat case and in the quasi-finite case (resp. In the smooth
case and in the etale case), we can replace Q' with a push out Q"
of Q' — (Q’)x > G for a finitely generated abelian group G

including (Q’)x such that G/(Q’)x is a finite group (resp. a
finite group whose order is invertible on Y). After this replacing,

we find a commutativc_diagram-:rf::r Tt

pEP

— H = o~

! !

(P,)SP (Qv)gp
such that H 1is a finitely genergted abelian group, ng — H is
injective, and

coker (P8P — H) El Coker((P’)gp _— (Q,)gp)_

gp
MY,y under H — MY,y' Then,

(P &, MX’ Q — MY’ P — Q) 1is a desired local chart at (v, x).

Let @ be the inverse image of

§3.2. Local properties of morphisms of alg. val. log. spaces.
In this 8§3.2, S denotes a scheme with a trivial log. str. We

discuss flatness, smoothness, etaleness, and quasi-finiteness of

morphisms of alg. val. log. spaces oVerT S.
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pDefinition (3.2.1). Let f : 9 — X be a morphism of alg. val.
log. spaces over S. We say f is flat (resp. smooth, resp. etale,
resp. quasi-finite) if locally on X and 9, there exist fine
log. schemes X, Y which are S-schemes locally of finite

presentation, and a (log) flat (resp. (log) smooth, resp. (log)

etale, (log) quasi—finite) morphism g '+ Y — X over S such that
gval : Yval —_— Xval coincides with f : 9 — X upto isomorphism
over S.

It is easily seen that flat morphisms, smooth morphisms, etale
morphisms, quasi-finite morphisms are stable under compositions and
base changes.

We have the following log. version of the well known openness of a
(cl) flat morphisms.locally of finite presentation (EGA IV 2.4.6).

Theorem (3.2.2). A flat morphism between alg. val. log. spaces

over S is an open map.

Proof. First, if f : Y — X is a flat morphism of fine log.

schemes whose underlying morphism-of schemes 1is locally of finite

val al

i . * S .
presentation, and if £ MX — MY , then Y ==s5 B is an open

map by (1.3.7), (3.1.4)(2) and the classical (without log) version of
(3.2.2).

By this, we are reduced to proving the following fact. Let X be
a fine log. scheme whose log. str. is associated to 2 homomorphism
P — GX for a finitely generated integral monoid P. Let Q be a
finitely generated integral monoid and let P — Q be a
nomomorphism such that ng —_ Qgp is injective. Let X = X ]

)val

uw o= (X with XQ as in (1.3.3). Then, f : 0 — X is an

Q

open map.
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We are easily reduced to the following two cases.

(i) Q = P e N and -P — Q is a — (a, 0).

(ii) Qgp/ng is finite.

We consider the case (i)f Let t be the generator of N c Q. Let
vy € Y. Then one of the folowing three conditions is satisfied.

(i-l)v alt in M for any a € P.

U,y
(i-2)‘Y alt and tlb in My,y for some a, b € P,

._ . e P,

(i 3)y tla in My’y for any a P
The argument for the case (i-3)y is similar to that for (i-l)y , and
so we give here the arguments for (i-l)y and (i—Z)y. Assume we are
in the case (i-l)y (resp. (i-2)y). The following fact is proved

easily: If U is an open neighbourhood of y in 3, there exist a

finitely generated submonoid p’ of ng containing P and a
finitely generated submonoid Q' of Qgp containing @, and an open
set U of XQ,, having the following properties (a)(b).

(a) v € UVal c U and f(y) € (X )val_

P’

(b) There exist n > 1 and a € P’ (resp. a, b € P’ such that
alb) for which Q’ 1is generated over P’ by t and tna_l (resp.
by t, tna-l and bt 7).

Then, the_underlying morphism of schemes XQ, _— XP’ is (cl) flat
of finite presentation, and hence the image vV < XP’ of U c XQ, is‘
open. Furthermore XP’ —_ XQ, is exact (1.3.6) as is checked
easily, and hence f(Uval) B VVal by (1.3.7). Hence f(U) contains
an open neighbourhood Vval of f(y) in ZX.

Next we consider the case (ii). It is sufficient to show that for
any finitely generated submonoid Q' of Qgp containing @ and any

val)

open set U of Spec(AQ,), f(U is open in X. By replacing P



2
BTN

o

by pEP A Q' (then X is replaced by its open set (X(ngnQ,))val},
we are reduced to the case where Q' = Q@ and P — Q is exact.
Then from the exactness of P — Q and the fact Qgp/ng is of

torsion, we can easily deduce that Y — X 1is exact. By (1.3.7), it
is sufficient to show that XQ —— X 1is an open map.

Lemma (3.2.3). Let P — Q be an exact homomorphism of

finitelv generated integral monoids such that ng — Qgp is an

injection with finite cokernel. Let X be a scheme and let P —

OX be a homomorphism. Then, g : XQ ——+ X is_an open map.

Proof. The map g 1is surjective as is seen by the reduction to
the case where X 1is the Spec of a field. Since g 1is entire it is
a closed map and hence the topology of X is the quotient topology

of the topology of XQ. Let U be an open set of XQ' Consider the

action of the Z-group scheme Spec(Z[QgP/ng]) on XQ
gP /pEP . ‘
(*) Spec(Z[Q®"/P771) x5 X5 — Xq

defined by O — OX [Qgp/ng] i a— a8 a (ac€ Q). Then

Q

g 1is equivaliant with respecﬁ to the trivial action of

Xq

Spec(Z[Qgp/ng]) on X, and it is seen easily that g " (g(uU))
coincides with the orbit of U, i.e. the image of
Spec(Z[ng/Qgp]) X U — XQ . But the last map is an open map since

the morphism (%) above is flat and of finite presentation.

We end §3.2 by giving remarks on flatness and quasi-finiteness.

Proposition (3.2.4). If f : @ — ¥ {is a flat morphism of alg.

val. log. spaces over S, the ring homomorphism 0 — 04 - is
="

I, x

flat for anv v € U and x = f(y).

This follows from the fact that if V — W is an injective

3¢



homomorphism between valuative monoids, then zZ[v] — Z[W] 1is flat.
The converse of this is not true. For example, let X = S with
the trivial log. str., and let U be the scheme S endowed with the
log. str. associated to N — 0Og 3 { — 0. Then, the canonical
= morphism ® — X is not flat if S = ¢.

Proposition (3.2.5). A morphism f @ O — X of alg. val. log.

spaces over S is quasi-finite if and only if for any ale, val. log.

space 1' over S and any morphism T’ — ¥ over S, the inverse

image of any element of X' under 9 Xy ¥ — X' is discrete.

We omit the proof of this fact.
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§3.3. Global properties of morphisms of alg. val. log. spaces.

We fix a scheme S with the trivial log. str.
Definition (3.3.1). Let f : 4y — ¥ be a morphism of alg. val.
log. spaces over S.

(1) We say f is quasi-compact if for any quasi—compact open

subset U of I, f_l(u) is quasi-compact.

(2) We say f is quasi—separated if the diagonal morphism
Q — 9 Xy v is gquasi-compact.

(3) We say f is a closed immersion if locally on X (not
locally on Y), there exist fine .log. .schemes ...X,. Y - over. ...S which

are. locally of finite presentation as an -S-schemes, and a -morphism

i 1+ Y — X over S having the following properties: The underlying

* =z
morphism of schemes Y — X 1is a closed immersion, i MX —_— MY s
and ival : Yval — Xval coincides with f : 3 — ¥ upto

isomorphism over S.

(4) We say T~ is separated if the diagonal morphism U — 9 Xy Q
is a closed immersion.

(5) We say f 1s proper if it is quasi-compact and separated and
the following condition (%) is satisfied.

(*) For any alg. val. log. space ' over S and a morphism
¥' — ¥ over S, the image of any closed subset of 3 Xg T &

is closed.
As is seen easily, quasi-compact morphisms, quasi—separated
morphisms, closed immersions, separated morphisms, and Proper

morphisms are stable under base changes. These properties of
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morphisms are local on the base X.
We give remarks on closed immersions and separate morphisms.

Lemma (3.3.2). Let X, Y be fine log. schemes over S which are

lJocally of finite type OVEr s, and let i : Y — X be a morphism

over S such that the underlving morphism of schemes Y — X is a

closed immersion and such that i*MX —_ MY is surjective. Then
ival : Yval - Xval igs a closed immersion.

Corollary (3.3.3). For any ale. val. log. spaces T, 0__over S
and any morphism f : 0 — “ ower 'S, f§ __is separated locally
on ©. In particular, f is separated if and onlv if the image

of ® in 9 Xp 9y is closed.

Indeed, for any fine log. schemes X, Y over S which are locally
of finite presentation over S and .for any morphism .Y — X over
S whose underlying morphism of schemes Y — X is separated, the
morphism Yval —_— Xval is separated, for: If 2Z denotes the fiber
product of Y — X —— Y in the category of fine log. schemes, the
diagonal morphism v — Z satisfies the assumption on Y — X of

(3.3.2).
Proof of (3.3.2). Working locally on X, we may assume that X 1is

quasi-compact and there is a chart P — MK

.
<

For each y € Y, let

P(y) be the inverse image of M under p&P — M% . Then, on

Y,y ' J
some open neighbourhood U(y) of v, we have a chart P(y) — MU(y)'

Since Y is quasi-compact, there exists a finite number of points

- r

Yo v Vi of Y such that U U(yi) - Y. For each 1, take
i=1

elements a5, bj (1 < j <m(i)) of P such that P(yi) is

generated by aJ.bTJ.1 (1 < § < m(i)) over P. Let I be the product

37




wieai

of ‘all ideals (a;, by) (l<isr, 1<Jx m(i)) . Then, if X’

denotes X in (1.3.3) and Y’ denotes the fiber product of Y —

i
X — XI in the category of fine log. schemes, f' : Y' — X’
satisfies (f’)*MX, —Ea My and the underlying morphism of Y —
X' is a closed immersion.
Proposition (3.3.4) (valuative criterion). Let f : 0 — X be a
morphism of alg. val. log. spaces OVer S. Then, f is proper (resp.

separated) if and only if f is quasi-compact and separated (resp. f

is quasi-separated) and the following condition (¥%) is satisfied.

(¥x) For any valuation ring V _with field of fractions K and

for anv commutative diagram of local ringed spaces

Spec(K) =, v

3.k | £
Spec(V) i, ¥ h

with i the canonical morphism, there exists at least one (resp. at

most one) morphism g Spec(V) — % such that ¢j = s and fg = t.

(Note that in the condition (¥x), we neglect the log. str.'s of X
and 9.) ‘ .

Example (3.3.5). ©Let X, m, and the Tate curve s over X Dbe as
in {(2.2.1). Then:

(1) &% is proper and smooth over X.

(The properness 1s proved by the valuative criterion.)

(2) GCP;’K — ¥ 1is separated and satisfies the unique existence

m,

of g for any commutative diagram as in the above (**), but is not

proper (G;pé,n is not quasi-compact) if X # ¢@.
)
cpt cpt,m cpt
(3) Let 0 be the push out of Gm,I — Gm,I — Gm,I where
the two arrows are the inclusions. Then, 9 — X 1s quasi-compact

3%
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and satisfies the unique-existence of g for any commutative diagram
as in the above (**), but is not proper (9 — ¥ 1is not separated)
if i # ¢. This example shows that the implication "g in (*%*) is at
most one  f is separated"” does not hold. |

Before we prove (3.3.4), we give some lemmas.

Definition (3.3.6). Let X be an alg. val. log. space over S.
We say X 1is quasi-separated if for any quasi-compact open subsets
U, 8 of X, UNB is quasi-compact.

The following results (3.3.7)-(3.3.9) are deduced from (1.3.9)(1).

Lemma (3.3.7). Let X be a fine log. scheme over S which is

locally of finite presentation as an S—-scheme. Then Xval is

quasi-separated if and only if the underlving scheme of X is (cl)

quasi-separated. -

Lemma (3.3.8). Let ¥ be an ald. val. leg. space over S. Then

¥ 1is quasi-separated if and only if for any aleg. val. lodg. spaces

91, 92 over S which are quasi-compact as topological spaces and

for any morphisms Dl — X, ;92 —— ¥ over S, 91 Ko 92 is

guasi-compact.

Lemma (3.3.9). Let f : ® — ¥ be a morphism of alg. val. log.

spaces over S, Then, f is quasi-compact if and only if for any
aleg. val., log. space X’ over S which is quasi-compact as a

topological space and for any morphism ' — I over S,

] Xy X’ is quasi-compact as a topological space.

The proofs of the following (3.3.10) and (3.3.11) are easy and we

omit them.

Lemma (3.3.10). Let T be a good guasi-compact topolegical space

(1.3.11) and let F be a subset of T. Assume the following




Ii){ii}(iiij. (i) Each point of T has a fundamental svstem of

neighbourhoods consisting of quasi-compact subsets. (1i1) If x € T,

—_—

2z € F and x € {=z}, then X € F. (iii) F is closed in X with

respect to the "new" topologvw (1.3.11). Then, F is closed in T

with respect to the original topologv.

Lemma (3.3.11). Let ¥ be a quasi-compact aleg. val. log. space

over S. Then, X is a good quasi-compact space.

(3.3.12) We prove (3.3.4). It is sufficient to prove that f 1is
quasi-compact and satisfies the condition (%) in (3.3.1)(5) if and
only if f is quasi-compact and satisfies the "at least one'" version
of the condition (**) in (3.3.4). Indeed, the statement of (3.3.4)
for the proper morphisms then follows from it directly, and that for
separated morphisms.follows by applying it to the morphism

9 — 9 Xy 9 (note the "at least one" version of (**) for
9 — 9 Xy g is equivalent to the "2t most one" version of (%) for

9 — X).

Assume f 1is quasi-compact and satisfies the "at least one"

version of (%%). We prove that for any closed subset E of 3,
f(E) 4is closed. We may assume ¥ is quasi-compact. Then, Y 1is
quasi-compact. BY (3.3.11), 9 and X are compact for "new"

topologies, and hence f(E) 1is closed with respect to the '"new"

topology of X. By (3.3.10), it remains to prove that if x € X,

z € f(E), x € {z}, then Xx € f(E). Take vy € E such that 2z =
f(y). Let K = k(y), and let V be a valuation ring of K which

dominates the image of OI x in K. Then, we have a commutative
)

square of local ringed spaces as in (*%) in which the image of

Lo
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weERn ek

Spec(K) in 9 is ¥y

and the image of the closed point of

in £ is x. Let u € i)
Spec(V) under ¢ Spec(V) — 3. Then, f(u)
Hence we have X € f(E).

Conversely, assume T

show that "at least one

Y 1is quasi-compact and
square as in (**). Let
endowed with a morphism
morphism of log. spaces
of these two morphisms ¢

quasi-compact and quasi-

'M":a"’-‘w

inverse image of 5

spaces

_—S—, ‘n 4

Spec(K)
il

)
Spec(V) t

— =25 =
Let x(%’)

v(E")

be the image

let be the image

c(x’) = {ue 3y ;u

Then C(¥’) is not empty

are compact for the 'new

with respect to the "new

form a filtered category.

(3.3.8) and hence continuous for the

have 1lim C(X’) = ¢

I’

is quasi-compact
version" of (x¥)
quasi—separated.
¥' be an alg. val.
of local ringed spaces
¥' — X over S
oincides with t : Spec

separated, and MI’ co

e *have a commutative di

of tﬁe ciosed point of

of Spec(K) in 9’.

e {y(x’)} and f'(u)

by the condition (*).
" topologies (3.3.11),
" topology of 9’. Whe
The transition maps

"new'" topo

¢/

and satisfies

is satisfied.

log.

Spec(V)

be the image of the closed point of

= x and u € {y} ¢ E.

(*). We

We may assume

Consider a commutative

space over S

Spec(V) — ¥' and a

such that the composition

(V) — 1, X’ is
incides with the

agram of local ringed:

Spec(V) in X', and
Let
= x(¥’)}.

Since %' and X’

C(¥') is compact

n ¥’ ranges, X’
are quasi-compact by

logies. From this we

since the filtered inverse limit of non-empty
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compact sets is non-empty. Let u = (u(I’))I, be an element of

~~

1im C(X'). Since liT oI’,x(I’) —=5 V, the image of I;T Oy’,u(I’)
X’ X

— > K is a subring of K dominating V, and hence it coincides with
V. From this we obtain Spec(V) — lim 9’ and hence Spec(V) — 1.

Proposition (3.3.13). Let X, Y be fine log. schemes over S

which are locally of finite presentation as S—-schemes, and let

f + Y — X be a morphism over S, Then, fval : Yval — Xval

is quasi-compact (resp. quasi-separated, separated, proper) if and

only if the underlying morphism of schemes Y — X is (el)

quasi-compact (resp. (cl) quasi-separated, resp. (c1) separated, resp.

(cl) proper).

Proof. The statements for quasi-compact morphisms and
quasi-separated morphisms are deduced. from (1.3.9)(1). The
statements for separated morphisms and proper morphisms are deduced

from the valuative criterion (we omit the details).

§3.4, Small morphisms, affine morphisms and finite morphisms.

In §3.4, S denotes a scheme with the trivial log. str.

Definition (3.4.1). Let f : Y — X be a morphism of log. spaces.
We say f is small if for any y € Y, the cokernel of
(f*MX)ip'——ﬁ M%?y is a torsion group. |

For example, a guasi-finite morphism between fine log. schemes, and
quasi-finite morphisms between alg. val. log. spaces over S are

small.

Lemma (3.4.2)., Let f : ¥ — X be a morphism of fine log.

%2
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schemes. Then, f is small if and onlv if fval : Yval P — xval is

small.

Proof. Let 9 = Yval and let y € Y. Then M%?y/oﬁ,y —_—

IV

X . . ) . . .
1y,y,/09’y, is surjective for anv point y' of ¥ lying over V.

This proves the "only if" part of (3.4.2). To prove the "if" part,

it suffices to show that there exists y' € ¥ lying over ¥ such

. gp ,pX gp x : o Do
that the kernel of MY,y/oY’ — MD,y’/OD,y’ is finite. Thils 1s

N
reduced to

Lemma (3.4.3). Let P be a finitely generated integral monoid.

pEP

Then, there existis a valuative submonoid V. of containing P

cuch that the kernel of p&P p* _, vBP/v* is finite.

(If P is saturated, this property of V implies ng/PX —Ed
VSP/VX.) ’ '

Proof. Call an ideal P of P a prime ideal if PNp 1is a
submonoid of P. Following the analogy with commutative algebra, we
define dim(P) by using chains of prime ideals. Then,

(3.4.3.1) dim(P) = rank(PSP/P") .

(This 1is reduced to the case _P is saturated. In this case, & prime
ideal of P corresponds to a "face" of P/Px in the geometry of
ng/Px ® R ([KKMS][O0d]), and (3.4.3.1) follows from this geometric

interpretation.) For a prime ideal P of P, let

Pp = {ab—1 ; a € P, b€ PN p} cC ng.
Then (P \ p)%P = (pp)x . aim(P N\ p) + dim(P ) = dim(P).
We prove (3.4.3) by induction on dim(P). We assume P 1is saturated
without a loss of generality. If dim(P) = 0, then P is a group.

Assume dim(P) = 1. Take a prime ideal P of P such that

dim(Pp) = 1. Then Pp/(Pp)x = N. By induction on dim(P), there

%3



exists a valuative submonoid V' of (P

)X

D containing P N P such

that (Pp)x/(P < p)¥ =L (v)8P/(v)*. Let V = (P, N (Pp)x) UV,

Then V has the desired property.

The main result of §3.4 1is

Theorem (3.4.4). Let

X be a fine log. scheme over S which is

locally of finite presentation as an s-scheme and which has a chart

P — MX. Let ¥ =X

val

Let QI be the category of val, alg. log.

space U over S endowed with a emall morphism U — Y over S

such that ¥

is quasi-compact and quasi—separated (3.3.6).

On the

other hand, for a non—empty ideal T of P, let X. be as in

(1.3.3) and let 9

be the category of fine log. schemes OVerT X

I

I

having the following properties: The morphism Y — XI is small,

Y is locally of finite presentation as a scheme over S, and Y is

quasi-compact and quasi—senarated.

Then, we have an equivalence of

categories

where ® is as in (1.3.8). Here for I, J € @ such that I < J
with respect to the ordering on @ defined in (1.3.3), the functor
QI —_— 9J igs defined bv sending Y to the ( )Sat (1.2.9) of the

fiber product Y XX XI

functor ¢

in the category of fine log. schemes, and the

defined by sending Y to Yval.

1 QI is
We use the following

Lemma (3.4.5). Let

lemma in the proof of (3.4.4).

X be a fine log. scheme having a chart P —

MX. Let ¥ — X and Z — v be small morphisms of fine log.
schemes. Assume Z 1is gquasi-compact.

(1) If£_ L

is an element of @ which is sufficiently larce for

$4
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the ordering of @&,

)sat sat

(Z xy Xq

X 1 — (Y xy X1)

is exact.

(2) If the log. str. of zval coincides with the inverse image of

that of Yval‘ then for an element T of @ having the property in

)sat

(1), the log. str. of (Z x¢ X coincides with the inverse image

X I
sat
x X107

(3) 1If svel £, yval 4pen for an element 1 of & which is

of that of (Y x

sufficiently larde with respect to the ordering of @, the morphism

(Z Xy XI)Sat — (Y Xy XI)Sat is an isomorphism.
Proof of (1). The proof is similar to that of (3.3.2). For 2z €
7z, define P(z) c pBP  just as there. Then, for some open
neighbourhood U(z) of =z, th homomorphism P(z) — M, . extends
# )

to an exact homomorphism P(z) — MU(z)' Take 2y, +++1 Zp € Z

r
such that 2z = u Ulzy), and take a.., b.. € P and define I

i=1 i iJ ig
using them Jjust as there. Then it is easily seen that anvy element I’

of @& such that I’ 21 in -@ has the property stated in (1).

Proof of (2). . By (3.4.3), for any point 2z of (Z Xy XI)Sat, there
exists a point 2z’ of Zval lying over =z such that
(Mgp/@x)Z — (Mgp/ox)z,. From this we can deduce (2) easily.

Proof of (3). By (1)(2), we may assume that the log. str. of Z
is the inverse image of that of Y, and that Y — X 1is exact. By
working locally on Y, and by using the fact Y 1is quasi-compact
(1.3.9)(1), we may assume that Y — X has a chart (P — My, Q
— My, P — Q) which extends the given chart P — MX and for

which P — Q 1s exact and the cokernel of ng — Qgp/Qx is

Sy o
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finite. We méf_aiso assume Y 1is quasi-separated. By (1.4.2),
there exists a finitely'generated non-empty ideal J = (bl, Y bm)
of @ such that YJ — Y factors through 7 — Y. Take n =2 1
such that b? mod Qx is the image of some &, e P under P — Q/QX
for i =1, +e¢.y M, and let I be the ideal (al, ceey am) of P.

Then

~

&5 ] sat
— (Y Xy X1

)sat )sat , (ZJ XX XI)sat = (Z XX XI)

)sat

(YJ Xy XI )

sat = N
) — (Y xy XI

These show that (Z Xy XI
(3.4.6) We prove (3.4.4). The functor lim 94 — Sy is fully

faithful by (1.4.2) and (3.4.5)(3). We prove that this functor is

essentially surjective. Let U be an object of QI. take a finite
r val

open covering Y = U (Yi) where each Y.l is a fine log.
i=1

scheme over S which is locally of finite presentation as an

S-scheme and which 1is quasi—compact and quasi—separated as a scheme.

By induction on T, r;l (Y.)val comes from lim ¢.. Hence we may
j=1 * = 1

agssume T = 2. Passing to QI for a sufficiently larsge I in the

ordered set ¢, we may assume”thaﬁ for 1 =1, 2, there exists a

quasi-compact and quasi—separated open subscheme Ui of Yi (i = 1,

2) such that (U,)V3 (v)"* n (v,)¥3 in (v,)?®. By the fully

faithfulness of L%Q g1 — QI , passing to ¥ for I sufficiently

large, We may assume that Uial £ ;al comes from an isomorphism

Ul = U2 over X. Then, 3 = Yval where Y 1is the

push out of Yl — U1 £ U2 _— Y2

Definition (3.4.7). Let f : 9 — X Dbe a morphism of alg. val.

log. spaces over S. We say f 1is affine (resp. finite) if the

%6
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folléwinéjfwo éonditions are satisfied.

(i) f is small.

(ii) Locally on ¥ (not on ), there exist fine log. schemes
X, Y over S whigh are locally of finite presentation over S and
a morphism g Y — X over S such that ¢+ @ — T coincides

gk - Yval — Xval up to isomorphism over S and such that

with g
the underlying morphism of g : Y — X |1is (cl) affine (resp. (cl)
finite).

Affine morphisms and finite morphisms are stable under compositions
and base changes. (The stability under compositions is not clear, but
.« deduced from (3.4.4) and (3.4.5)(3) (we omit the details)).

Example (3.4.8). Let %, n, and the Tate curve s over X Dbe
as in (2.2.1). Then, for a non-2zero integer n, the group object
nGn = Ker(n : & — ") over X is finite and flat over ¥, In
fact, we have a surjective homomorphism

nGn — 7/nZ x ¥ ; a— T € 7Z/nZ when a € MEP a2l = nt,
and the inverse image of (r mod Z/nZ) x % (r € Z, T = 0) in
nGn is Spec(Os[tl]) XSpec(Os[tz]) ¥ where ty, t, are
indeterminates, Spec(Os[ti]) (i = 1, 2) are endowed with the log.
str. associated to N — Os[ti] ;1 — ty, and t2 —_ t?, t2 ——
n  in MI' It is easy to see that the morphism Spec(@s[tl]) —
Spec(@s[tz]) is (log) finite and (log) flat.

Proposition (3.4.9). The equivalence of the categories (3.4.4)
induces an equivalence lim 901 — 901 and 1lim yqf — gqf res
lim gaff — gaff and lim 9fln e gfln , if X is quasi-compact
= I X =0’ I X

cl c

and quasi-separated), where: QI (resp. l) denotes the full

¢7



=
il

subcategor§ of 91 (resp. Qx) consisting of objects whose log. str.

coincides with the inverse image of the log. str. of (XI)Sat res
1), Q%f (resp. y?ff, resp. Vgln) denotes the full subcategdory¥ of

91 consisting of objects ¥ such that the underlving morphism of

schemes Y — X is (bl) quasi-finite (resp. (cl) affine, resp.

%f (resp. ggff, resp. giln) denotes the full

(cl) finite) and ¢

subcategory of 9I consisting of objects 9 such that @ — X is

quasi-finite (resp. affine, resp. finite) .

ff
Proof. The statement concerning 901 (resp. yqf, resp. ga ,

resp. gfln) follows from (3.3.4) and (3.4.5)(2) (resp. (3.3.4),

(3.4.5)(1) and (3.4.10) below, resp. (3.4.4) easily, resp. (3.4.4)
easily).

Proposition (3.4.10). Let f . Y — X be a morphism of fine log.

schemes.

(1) Assume f is exact. Then, f is (los) quasi-finite if and

onlv if f is small and the underlying morphism of schemes Y — X

is (cl) quasi-finite.

(2) Assume X and Y are S-schemes locally of finite presentation.

Then f is quasi-finite if and only if fval : Yval — Xval is

guasi-finite.

Proof. Excercise.
Remark (3.4.11). The analogues of (3.4.10)(2) for flatness,

smoothness and etaleness are not true. For example, let

- 2 2 _ 2 2
X = SPeC(@S[tly tz]/(tly tz))) Y = SPeC(@S[tly tz]/(tla tltZ’ tz))

where tl’ tz are indeterminates, and endow X (resp. Y) with the
log. str. associated to N2 — Oy (resp. GY) : (m, n) — tTtg.

Then, Yval —_ Xval is an isomorphism but Y — X is not (log)

+§
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< g iz S e

flat.

Proposition (3.4.12).. A morphism between alg. val. log. spaces 4

over S8 is finite if and only if it is proper and quasi-finite.

Proof. The "only if" part is easy, and the "if" part follows from

the part concerning yqf of (3.4.9), the part concerning properness

i

of (3.3.13), and the "without log" version of (3.4.12) ([EGA] IV

8.11‘1).

*9



§4. Etale sites, flat sites, and fundamental groups.

Throughout this §4, we fix a scheme S with a trivial log. str.

and an alg. val. log. space X over S.
§4.1. Logarithmic etale (or flat) sites.

Definition (4.1.1). We define the logarithmic flat (resp.

. . . . : log log
logarithmic etale) site of % which we denote by Iet (resp. Ifl
) to be the following site. An object of Iitg (resp. I%ig ) is

an alg. val. log. space I over S endowed with an etale morphism
(resp. endowed with a morphism) 9 — X A covering
{fA : DA —_ D}A" is a family of etale (resp. flat and quasi-finite)
morphisms such that i'fl(gk) = 9.

We shall prove

Theorem (4.1.2). Let 3 Dbe an ale. val. log. space over S

endowed with a morphism 3 — ¥ oOver S . Then the presheaf

D j— MOI‘I(D) 3)

on I%ig is a sheaf.

Since the flat topology is stronger than the etale topology,

this theorem shows that the presheaf 2 |— MorS(D, 3) on Iiig
is also a sheaf.
Thm. (4.1.2) says that the presheaves
D I— F(D, 0y), D 1= [(Y, My), D I— T, MEF)
on I%ig are sheaves. (Indeed, these presheaves are the cases where

3 is X xg al where Aé is the affine line endowed with the
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trivial log; str., IX Xg Aé -whefe Aé is:endowed with the log: str.
cpt '

associated to N — Os[t] ; 1 — t, and Gm,I , respectively.)
We denote sometimes these sheaves by OI ) MI , and M%p ;

respectively, and we use the same notations for the corresponding

log

sheaves on X
et

We have a logarithmic version of the Kummer exact sequence:

Proposition (4.1.3). For n € 7 N {0} (resp. For an integer n
which is invertible on ¥), we have exact sequences
0 — Z/nZ(1) — 0F > 03 — 0
0 — z/nz(1) — MEP s MEP — 0
on %% (resp. ¥.3%). Here Z/nZ(1) = Ker(oX -2 0%).

(4.1.4) We start the proof of (4.1.2). By using the fact that a

finite inverse limit of sheaves in the category of presheaves is

still a sheaf, we are reduced to showing that 9 |— (9, 09) and
9 — (9, Mg) are sheaves on I%ig. Hence it is sufficient to
prove the folowing

Lemma (4.1.5). Let % be an alg. val. log. space over S, let
f : 9 — ¥ be a flat quasi-finite morphism over g and let v € B,
x = f(y) € . Then, the map from OI,x (resp. MI,X) to the
equalizer of

09y — ;%g\r(u xe Uy Oy Xy W
resp. - My y —0 Lin PO xg U My o n

is an isomorphism, where U ranges over open neighbourhoods of «w

in 9.
Proof. We may assume f comes from a flat quasi-finite morphism of

fine log. schemes Y — X over S such that Y, X are locally of

sl
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finite Pféseﬁfatioh as S-schemes. By considering (cl) fppf locally

on the underlying schemes of X and of Y, we are reduced to the

s

following case: The log. str. of X is associated to a homomorphism
P — OX with P a finitely generated integral monoid, Y = XQ for a
homomorphism P — Q with Q a finitely generated integral monoid
such that the map ng — Qgp is injective with finite cokernel,

<= (v, p), PecvVvecrp® pexy

v = (W, a), QchQgp, q € Xy

~

Furthermore, by considering (cl) fppf locally we may assume vx _Z

wX. Then, V = VEP n W, and
. . - gp ;8P
(4.1.5.2) lim (U xe U, By X u) = Ox,x ®7 (V] Z[W e WoP/Vve¥]

where U raﬁges as-in (4.1.5L,and“the_two.arrows”from,(4.l.5.l) to
(4.1.5.2) are induced from W — W & ng/Vgp a — (a, a) and a
—— (a, 1), respectively. Hence, Lemma (4.1.6) below (applied by

replacing A, P, @ there with © vV, W, respectively) proves the

I, x "’
part of (4.1.5) for ©O. It follows that the similar result as
(4.1.5) for 6~ holds. Hence, to prove the part of (4.1.5) for M,

it is sufficient to show

Sublemma (4.1.5.3). The equalizer of

U, My )
| Xy U

is contained in Image(V).Gg .
b I

The difference of the two arrows in (4.1.5.3) induces

gP ,,8P X
(4.1.5.4) My y — Og,y[¥W /Y 17
and the comosition
(4.1.5.4) . gp -, 8P X
W — My,y — Og,y[w /V=F]
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ng /Vgp i

coincides with the canonical projection W — Furthermore,

since xk{x) — k(y), the composition
\
Jy,y
annihilates ¢

(4.1.5.4) Og’y[wgp/\’gp]x N K(y)[ng/Vgp]x

x
v,y These facts prove (4.1.5.3).

Lemma (4.1.6). Let P and Q be integral monoids and let P —o

Q@ be an exact homomorphism such that ng —_— Qgp is injectiive.

Then, for any ring A and for anv homomorphism g : P — A, the

sequence of A-modules

] t
. 0 1 gp /pEP
is exact, where Lo is the canonical map and
zl(l ® a) =1® (a, a) - 1@ (a, 1) (a € Q).

Proof. Let

sg A 8yrp) 2[Q] —/m A.. ..
. E€P ) p8Py __,
be the A-homomorphisms defined by

gla) if a € P - 1@ b if ¢ # 1

sg(1 8 2) = { if a4 P sp(1 @ (b,e)) = { if ¢ =1
(b e Q, c € Qgp/ng). Then, ,SOlQ and sjtq t tgsy are the
identity maps. This proves the lemma.

§4.2. Classical etale (or flat) sites.

. . . . cil! cl

Definition (4.2.1). We define the site Iet (resp. Ifl) to be
the full subcategory of Iizg (resp. I%ig) consisting of objects
f: 0 — X such that f'My — My , equipped with the following
topology. A covering in IZ% (resp. I%i) is a covering in Iiig
(resp. I%ig) consisting of objects of IZ% (resp. I?i).

$3
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The aim of this section is to show that the "descent theory" works i

for coverings in I;i .

Theorem (4.2.2). Let f : % —— ¥ be a covering in I?i. Then we

have an eguivalence of categories
aff ~ aff

Iy — Yq_.% ;7 31— 3 x4, 9
where Q;ff denotes the category of alg. val. log. spaces 3 over
Y endowed with an affine morphism (3.4,7) 3 — ¥ over S, and
93££I denotes the category of alg. val. log. spaces 3 over S

endowed with an affine morphism 3 — % over S and with a

glueing datum

N . T Y x.. T
1 ) 3 Xy i) over Q) Xy 9

satisfying the usual transitivity condition.,

e : U x

In the proof of (4.2.2), we .shall use the following theorem
concerning the descent of the log. str.

Theorem (4.2.3). Let X and Y be schemes and let f : Y — X be

a faithfullv flat quasi-compact morphism. Let be the categoryw

£y—Xx

of integral log. str.’s M on Y endowed with an isomorphism

6 : pi(M) = py(M) em Y xy¢ ¥,

285
which satisfies

ES ES ES * * .
P23(6)p12(9) = p13(9) 3 ql(M) —_ qs(M) on Y xy ¥ Xy Y.

Here p; Y x,. ¥ — Y, P

X Y %, ¥ X, Y — Y XX W,

i3 ¢ X X

Qs Y Xy Y Xy Y — Y denote the projections. On the other hand,
let ﬁX be the categorv of integral log. str.'s on X. Then:
*
(1) The functor f ZX — £y_x is fully faithful.

X

(2) An object M of £y % belongs to the essential image of f

if and onlv if the following condition is satisfied.

(¥*) For any v € Y and 1z € pzl(y) N pél(y), the automorphism

S



Hobal:

- -
o, of my/OY,y defined bv

N = * X
My/OY,y — pl(M)z/onXY,Z

n

ﬂ{ X = : X
PZ(M)Z/OYXXY,Z A MY/OY,Y

is the identity map.

(3) Assume f is an open map. Then, for a log. str. N on X,

i

% -
f N is fine if and onlv if N is fine.

(4) Assume X and Y are quasi-compact and f is universally

open. Let M be an object of &

. , which is fine. Then there
Y—X

exist a projective morphism of finite presentation ¥' — X and a

fine log. str. N on X’ such that if we endow V' = Y Xy X' with

the inverse image of N, there exists a morphism of log. schemes

g : Y’ —— Y satisfying the following (i)(di)(iii).

(i) The underlying morphism of schemes of g is the canonical

projection.

(ii) gval ; (Y’)Val —_— Yval is an isomorphism.

(iii) The diagram

®* X X X
piglvi—-*b"'rg Py 8 M

N

is commutative where pi g Sy Y —

Xy Y' — Y' and gq : Y’

X
X)

X' denote the projections.

The above (4.2.3)(4) is a generalization of the fact that a divisor
with normal crossings (which need not be simple) on a regular
noetherian scheme X 1is "blowing-up locally" a divisor with simple
normal crossings (cf. (1.2.11)). Indeed, a divisor with normal
crossings on X is etale locally with simple normal crossings, and

by (1.2.7), it defines an object of £y . v for some covering

SS
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We prove (4.2.3). We omit the proof of the following elementary

Lemma (4.2.4). Let T, T', T" and X be topological spaces,

let p T — X, P], pz : T’ — T, plzl P13) pzs : T" — T7, ql’
Ao dg T" — T be continuous maps satisfying PPy = PPy 4y =
PjPyp = PyPy3: 9y = PpPyy = PyPpgy 3 = PpPyg = PpPpp¢ Assume that
the maps p : T — X, (Pl’ p2) : T2 — T Xy T, (p12’ p23) : TV —
e NS T' are surijective, and that the topologyv of § coincides
Py X Py
with image of the topology of T. Let F be a sheaf on T and let
8 : le(F) —_ pgl(F) be an isomorphism satisfying
—1 —l P —l - -l "

p;5(8)p]3(8) = pj3(8) : ] (F) — a3 (F) en T".

Let G be the sheaf on S defined as the equalizer of pu(F) — _ __

p*pZ*pél(F) where one arrow is induced from-the canonical map F

P2xP2
P1xPy

p

where

In particular, p

l(F) and the other is induced from the canonical map F —
l(F) and 8 : le(F) o= pgl(F). Then, for t € T, we have
16, = {aeF, :o,(a)=2 forall zepil(t)npyl(t)
o, denotes the automorphism of Ft
F, — p (), & p3t(F), — Fy

z
_l(

identity map for any t € T and for anyv 2z € pzl(t) N pg

gy,

(4.

prove

T" +the schemes X, Y, Y %, Y, Y x, Y x

2.5)

The fully-faithfulness (4.2.3)(1) is proved easily. We

(4.2.3)(2). By applying (4.2.4) to F = M/@? with X, T, T

Y, respectively, we see

X X X

that the sheaf M/O§ descents to X 1if and only if the condition

(*) in (4.2.3)(2) is satisfied. (Note Y x, Y etc. mean the fiber

products as schemes, but the fiber product T

X

XX T etc. mean the
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G) — F if and only if o, : F, — F, is t

—_—

}
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fiber products as sets.)

Assume M/G§ descents to a sheaf N on X. Define N to be the
equalizer of f,(M) == f*pZ*p;(M) where one of the arrows is
induced from M — p2*p;(M) and the other is induced from M —
pl*p:(M) and 8. We show that

(4.2.5.1)  N/ef = &

Then, f*N —Ea M will follow from it and from the exactness of

O§ —_ f*(0§) — f*pZ*(O§xXY). The problem in (4.2.5.1) is the

surjectivity. Let x € X and a € Nx' We show that a comes from
N, . Let U be an open neibourhood of x on which a 1is defined, an
1 .

let V =Y x, U. On V, the inverse image of £ " (a) € I'(V, M/Oi)

X

under M — M/O$ is a principal homogeneous space OVer Oé endowed

with a glueing datum:on the.-induced:principal homogeneous. space oVer.

X

ViV V. By the descent theory of line bundles ([SGA 1] Exp.
U

¢] on V x

U
VIII), we see that the inverse image of a 1in N is a principal
homogeneous space over OE bn U which has a section & on an open
neighbourhood of x in U. Thus we find 3 € Nx which maps to a.

%
(4.2.6) We prove (4.2.3)(3). Assume f°N is fine. Let x € X, ¥

€ f_l(x). Take a finitely generated integral monoid F and a
homomorphism P — Nx such that P/P* = Nx/®§ < (For example,
: Ay
take NT — N‘ which induces a surjection N — NY/GQ x and let
< < <y

P be the inverse image of Nx under ¥ — Nip.) Then P — Nx
extends to a homomorphism P —— N on an open neighbourhood U of
Xx. The facts P/P* = f*(N)y/O§ ; and that £¥(N) is fine show
B 3
* . . * '
that f (N) 1is associated to P — f (N) — 0y on an open

1

neighbourhood V c f ~(U) of y. It follows that N is associated

e T,
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to P — N — OX .on the image of V.

To prove (4.2.3)(4), we use the following general fact on finitely t
generated integral monoids.

Lemma (4.2.7). Let P be a finitelw generated integral monoid

such that p* = {1}). Call an element a of P irreducible if a =

v (x, ve€ P) implies x =1 or vy =1. Then, if E is a minimal
svetem of generators of P, E coincides with the set of all
irreducible elements of P. In particular, such a system is unigue,

and the set of all irreducible elements of P is finite.

Proof. Easy.

"Corollary (4.2.8). For a finitely generated integral monoid P,

Aut(P) is a finite group.

Indeed, an automorphism is defermined'by its actfon-on the finite
set of all irreducible elements (4.2.7).

(4.2.9) Proof of (4.2.3)(4). We may assume that there exist a
finitely generated integral monoid P and a homomorphism h : P —
Oy to which M 1is associated: In fact, such (P, h) exists at

least locally on Y. If Y =U Vi is a finite open covering such
i

that such (P, h) exists on each Vi’ then such “ (P, h) exists on

Vi , and (4.2.3)(4) for Y — X 1is reduced to that for U Vi —
i

S SN o

Now assume Y is affine and (P, h) exists on Y. Take a
representative E in P of the set of all irreducible elements (1.5.
6) in P/PY, and let I be the product ideal of all ideals of the
form f{a, b) with a, b € E.

Let A be the quasi-coherent graded ring over Y defined by

S8
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S . n, _= ' n
A= 0y 8zrp) (O <D ) — Oy ezpyy (B Ty

where <I> (resp. <I>,) denotes the ideal of Z[P] (resp. ZI[M])

M
generated by I (resp. by the image of I — M). (So Proj(A) 1is

* N
YI in (1.3.3).) The ideal of pl(M) generated by pll(I) maps via

8 onto the ideal of p;(M) generated by pgl(I). This gives a

glueing datum

* E * . . e
pl(A) E pz(A) on Y Xy Y satisfying the usual transitivity

.condition. By the fpqc descent theory for quasi-coherent sheaves

([SGA l]Eﬂ>.Vm), A descents to a guasi-coherent graded ring B on

X. Let
X' = Proj(B), Y' = Proj(A) = YI = X’ Xy pgh
The log. str. M’ of Y' =Y defined in (1.3.3) is regarded as

I
an object of zY’—qX" We claim that this object satisfies the

condition (*) in (4.2.3)(2) (with X, Y replaced by X', Y,
respectively) and hence descents to a log. str. N on X', Since M’
is fine, N 1is also fine (4.2.3)(3) and this concludes the proof of

(4.2.3)(4).

Now we prove our claim. If v € Y’ and z € pi_l(y) N pé_l(y), g,

M;/@?» v T M§/®§, N is the identity map for the following reason.

) )

Note p&P (Mé)gp/®§, = is surjective. Let t (resp. s) be the
3

image of z (resp. y) in Y x Y (resp. Y). Then, P — M /Ox
X s’ °Y,s
is surjective, and the diagram
. X s X
l 2 l 9z

MS/OY,S _ My/OY!’y

Y

is commutative. Let E be a minimal system of generators of P/PX.

S
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Then, there is a subset E1 of the image of E 1in .Ms/0§ S which -
1
is a minimal system of generators of MS/O§ S It is sufficient to
b

show that for a € E,, the image of a 1in M’/Ox, . 1s fixed by o_.
. 1 vy UY,y z

Since o,(a) is also an element of E1 by (4.2.7), there exists b,

t
¢ € E such that b — a, ¢ — at(a) in MS/O§ s Let d be the
)
image of be ! in (4))8P/0%, . . By the definition of the ideal I,
)
either d or d_l belongs to M;/O¥, v+ Since ¢, is of finite
)V

order (4.2.8) say n, we have doz(d)...oz—l(d) = 1, and this shows

that d = 1 in (M;)gp/0§, , that is, o, fixes the image of a 1in
. , .

¥
X

B g
(4.2.10) We prove (4.2.2). By (4.1.2), the functor y%ff — g;ffz

)
M) /0

is fully faithful. It remains to show that this functor is
essentially surjective. We may assume that there exist fine log.
schemes X, Y over S and a morphism g : Y — X having the
following properties: X and Y are locally of finite presentation
as S-schemes, X and Y are quasi-compact and quasi-separated as

schemes, X = Xval, 9 = Yval, f = Jval

11+

is (log) flat (log)

o]

o

. B ) i * .
quasi-finite and surjective, and g MX v We may assume there is

a chart P —o MX. To prove“}hat an object 3 of 9;££I comes from

giff, by (3.4.9), we may assume that 3 = ZVal for a fine log.

scheme Z over Y such that the underlying morphism of schemes Z
—— Y 1is affine and locally of finite presentation, and that Z 1is
endowed with a glueing datum

Z x4 Y = W Xy Z over Y xy V.
By the usual fppf descent theory for (cl) affine morphisms [SGA ],
the Y-scheme Z descents to an X-scheme Z which is affine over

0
X. The problem is that the log. str. of 3 descents to (ZO)Val. By

Lo
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(4.2.3)(4), there exists é-projéctivé.mofphism of finite preséntation

Zé —_— Z0 and a fine log. str. N on Zé having the following

Property: If we endow ¥ Xy Zé = 17 x, Zé with the inverse image of
0

N, there exists a morphism of fine log. schemes Y Xy Zé —_— Z

whose underlying morphism of schemes is the canonical projection,

such that (Y Xy Z(’))Val —Eq ZYal = 3. We have

)val =

0 Xy (Z(’))Val = (Y Xy Zé 3.
We show (Z(’))val — Xval is affine. There exists a finitely

generated non-empty ideal I of P such that

Y oxg (24 xg X1)%F S (2 xy xp)S8t |
(3.4.5)(3). Since (Z Xy XI)sat — Y Xy XI is small and the
underlying morphism of schemes of it is affine, we see (Z’Ox X
XI)Sat e XI is sméll and the underlying morphism of schemes of it
is affine. This shows (Z(’))val  — Xval is affine.
Remark(4.2.11). For a covering in the log. flat site (not the cl.
flat site), the descent theory does not work well, For example (cf.

(56.2.11)), it happens that the "Cartier dual" of a (log) finite (log)
flat commutative group object, which is defined as a sheaf on I%ig,
is not represented by a (log) finite (log) flat commutative group

object though it is represented by such object on a log. flat

covering of X,

6)
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§4.3. Fundamental groups.

We give a log. version of the theory of arithmetic fundamental
groups of Grothendieck ([SGA 1] Exp. V), which is closely related to

the theory of tame fundamental groups of Grothendieck-Murre [GM] (cf.

(4.3.16)).
Theorem (4.3.1). Assume S  is locally noetherian and X is
connected. Then there exists a pro-finite ¢roup G such that the

following two categories (a)(b) are équivalent.

(a) The category of alg. val. log. spaces U over S endowed

with a finite etale morphism 9 — %.

(b) The category of finite G-sets.

(A G-set means a set endowed with an action of G which is
continuous with respect to the discrete topology.of the set.)

The proof of (4.3.1) is almost the repetition of arguments in the
classical theory of fundamental groups in [SGA 1] Exp. V. Delicate
points in the logarithmic case are the openness of etale morphisms
(3.2.2) and the descent theory (4.2.2).

Definition (4.3.2). A geometric point of X 1is a morphism a —
¥ where a 1is a log. scheme having the following properties
(1)=-(iii).

(i) The underlying scheme of a is the Spec of a separably closed
field.

(ii) The log. str. of a 1is valuative.

(iii) r(a, Mip) is n-divisible for any integer n which is
invertible on a.

Lemma (4.3.3). For x € X, there exists a ceometric point x —o T

L2



1fine over x such that the field x(x) is a separable closure of

the residue field «k(x) of x and such that

gp ..'X - < X
Z(p) 92 Mx /CX,X — TI'(x, M}:/O{)

where p is the characteristic of «k{x). The geometric point X

having these properties is unique upto isomorphism over ¥X.

We call X — ¥ a log. separable closure of x.

Definition (4.3.4). For a sheaf ZF on Iiig and for a geometric

point a — X, let
?a = l;m 7(9)

where 9 ranges over objects of Iigg endowed with a lifting a —
9 of a — X.

Lemma (4.3.5). (1) For a geometric point a -— ¥, the functor &
| — ?a is a "point" ([SGA 4] Exp. IV §6) of the topos of- sheaves on

log ’
Iet X

(2) A morphism of sheaves % —— @ is an .somorphism if the

induced maps ?; _ ?i are bijective for all x € ¥.

(1) is reduced to the following fact which is proved easily: For a

log
zet

there exist A such that the geometric point lifts to a — 91

covering {1]A ] D}A in and for a geometric point a — 9,

(2) is proved easily and we omit the proof.

(4.3.6) For a geometric point a — ¥, we define a profinite

group n%og(I, a) as follows. Let 5I be the category of sheaves on
Iizg which are locally isomorphic to a constant sheaf of a finite
set, and let b, Ey — (Sets) be the functor & — Fa o Define
log
ny (x, a) = Aut(ma)

which we regard as a pro-finite group by taking the subgroups

£3
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Ke;(;%og(i; a) — Aut(?a)), as a basis of neibourhoods of- 1, where
7 ranges over objects of éI.
Proposition (4.3.7). Let the notations be as in (4.3.6). If ¥ is

connected, ¢a induces an equivalence of categories

&y — (n1%%(x, a)-sets}.

In general, let T be a connected topos (i.e. a topos whose final
object is not a disjoint union of two non-empty objects) with a
"point" p. Then, if € denotes the category of objects of T
which are locally isomorphic to a constant object corresponding to a
with the fiber functor ®_ : &

T p

| —— ?p satisfies the axioms of a Galois category in [SGA 1] Exp. V

finite set, then the category ¢

§4 (the proof of this fact is straightforward) and hence @P induces

an equivalence of categories €r — {Aut(@p)—sets}. What- we have
to check is that the topos of sheaves Sn Iizg

that the final object is a disjoint union of.two sheaves 71 and ?2.

)

It remains to show that ui are open. If x € Ul, there exists an

is connected. Assume

Let U, = {x € X ; (2

5 = ¢}. -~ Then, Ul N u2 = ¢ and Ul U H2 =n EE%;

i’x
etale morphism 9 — ¥ and a lifting x — 9 of x — I such
that ?1(9) # ¢. Then the image of 9 in X 1is an open
neighbourhood of x by (3.2.2) and is contained in Ul. This shows
that 31 is open, and uz is open similarly.

For the proof of (4.3.1), by taking G = nl(I, a) for any

geometric point a — ¥, we are reduced to

Proposition (4.3.8). Assume S is locally noetherian. Let £I be
as in (4.3.6), and let éi be the category of alg. val. log. spaces
N over S endowed with a finite etale morphism 9 — I, Then, for

an object ©  of éi , the sheaf Morz( , 9) on Iizg belongs to &

1
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Furthermore, this correspondence gives an equivalence of categories

6y — & -
(4.3.9) We prove the first statement of (4.3.8) that for an object

Y of 6£ , MorI( , 9) belongs to by - By (4.3.10) below, locally
on Iizg, MD becomes the inverse image of MI' Assume My has

this property. By (3.4.9), locally on X, we find fine log. schemes

X, Y over S and a morphism Y — X over S having the following

properties. ¥ = Xval, 9 = Yval, 9 — ¥ 1is induced from Y — X,
MY is the inverse image of MX’ and the underlying morphism of
schemes Y — X is (cl) finite (cl) etale. Hence for a (cl) etale

covering X' — X of the underlying scheme of X, the scheme

Y Xy X' over X' becomes a disjoint union of finite copies of X’.
When we endow Xf? with the inverse image of Mx , MorI( y 9)
becomes a cbnstant sﬁeéf on the etalé cévering (X’)Val — Xval'
Lemma (4.3.10). Let ®© , ¥’ be alg. val. log. spaces over 8§,
let f : 9 — X, g : X' — ¥ be morphisms, and let
f' 9’ dif 9 Xy ¥’ be the base change. If the cokernel of f*(Mip)
 — MSP is a torsion sheaf annihilated bv a non-zero integer n and
if the image of g*(Mép) in M%P is contained in (Mé?)n O;,, then
(£2) Mgy — My,

The proof is easy and is left to the reader.
(4.3.11) Next we prove the categorical equivalence in (4.3.8).

The problem is to show that éé —_— éI is essentially surjective. By

the descent theory (4.2.2), it is sufficient to prove that for an

object # of Ex there is a covering {ix —_— I}* in I:% such

that & belongs to ¢&.
£ %,
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“Let x € X¥; let X be a log. separable closure (4.3.3) of x, and

define the categories &§(x) and §’(x) by

&(x) = lﬁm 6u , §'(x).= lim Gﬁ

where U ranges over objects. of _I:% eridowed with a morphism X —
U over IX. The proof of (4.3.8) is reduced to

#h Lemma (4.3.12). We have an equivalence of categories

-~

&' (x) = s(x).

Let

L gP X
Gx E l;m Hom(MI,x/OI,X y Z/nZ(1))

Hom(MZP, /0% @ (Z(,,/2), (Z(5)/Z) (1))

with (Z(p)/Z)(l) = lim Z/nZ(1) where n ranges over all integers
n

which are invertible in k(x).-and_- Z2/nZ(1) denotes

)X n

{a € k(x i a =.1},

Lemma (4.3.13). We have an exact sequence of profinite groups .

0 — Gi — Aut(x/x) —- Gal(k(x)/k(x))-—> 0.
Indeed, for o € Gi corresponding to a homomorphism

he 0 (Mz)BP/k(x)*

m

gP X .
MX;X/QX,X'Q Z(P) o l%B Z/nZ(1),

we have an element of Aut(i/x) which acts on he scheme x
trivially and acts on the log. str. by
(MZ)EP — ()P 5 a4 — an_(a).

The exactness of the sequence in (4.3.13) is easily seen.

The proof of (4.3.8) is now reduced to showing the following two

lemmas.
Lemma (4.3.14). We have an equivalence of categories
&(x) —Eq {finite Gg-sets} ; 7 |— 75
where the action of G: on F: is given by Gz — Aut(x/x)
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(4.3.13)«
Lemma (4.3.15). The functor &é’(x) — {finite Gi—sets} is

essentially surjective.

Proof. It is easily seen that 6&(x) is a Galois category with a

fiber functor Y : & |— 5; ; It follows that

-~

§(x) —— ({finite Aut(¥)-sets} ; 7 |— 73
We have to prove that the inclusion Gi c Aut(¥) 1is an equality. In
the following, we denote Gi by G and we regard ¢&’(x) as a
subcategory of ¢6(x) in the natural way.
For each open subgroup H of G, we shall define an object DH of
&’ (x) and Yy € T(DH), and for each pair (H, H’') of open subgroups
of G such that H’' c H, we shall define a morphism 9

H’ H '

satisfying the following conditions.-

(i) For (H, H’) such.that H" ¢ H as above, the!morphism Yy, ..
— DH sends yH,-e,T(DH,) to  vy-

(ii) For any object F of ¢&(x), we have a surjection = =

lim Moré(x)(DH y F)Y —  ¥(F)

which is defined by sending h DH'——ﬂ F to W(h)(YH) € ¥(7).
(iii) The map G — ¥(9y) ; ¢ — o(yy) induces G/H — ¥(9y).
(iv) The map Morg,(x)(‘DH y 9y) — Mor  (¥(9y), Y (9y)) ‘

= MorG(G/H, G/H) = G/H

is surjective. (Note this map is injective by the property of the

fiber functor.)

Then the map (ii) is in fact bijective, for it is injective by

l_ﬁn} Morg(x)(DH y, F) = l_;Ir)n MorAut(‘P)(G/H’ ¥(%)) (by (iii))

c lim MorG(G/H, P(F)) = ¥(ZF).

|
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Aut(?) ='£ﬁg Mor6 (x)(yH’ DH) = lﬁg G/H = G

Since ?(DH) = G/H, the functor 6’(#) — {finite G-sets} 1is

essentially sufjgctivem:vu_ T
It remains to construct DH » Yy o DH, —_— DH
The following fact is proved easily. There exists a fine log.

scheme X with a chart P —s MX which is locally of finite

presentation over S as a scheme, such that Xval is an open

neighbourhocod of x in ¥ and such that the map

p8P M /O is an isomorphism.

X,x
For an open subgroup H of G, define a subgroup DH of ng 2]

Z(p) to be the intersection of the. kernels. of. all the homomorphisms
gp = gP =

defined by elements'of “H.- Let'~~ : -

Q; = {a € Dy a™ € P for some n > 1}.

Then, Qgp = DH , and

G/H = Hom(epP/PEF, (2 ,72)(1)).

Let QH = (XHafval
o 8 6

© Qg» and we obtain 9y, — 9y- By fixing P8P & Zip) — (Mi)gp

where X.- is as in (1.3.3). If H’ c H, then Q
‘g H

which lifts ©p8P g Z(p) =N (Mi)gp/x(i)x, we obtain a morphism x —
9H satisfying the condition (i). It is easily seen that the
conditions (ii)(iii)(iv) are also satisfied.

Remark (4.3.16). Let X be a regular locally noetherian connected
scheme, D a reduced divisor with simple normal crossings on X, and
endow X with the log. str. associated to D. Assume X 1s locally

of finite presentation over a scheme S, and let X = Xval be the

Qu
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assoc1ated alg.jval.-log.fspace ov;rﬁ's.uhThen,

°5(x) = nD(x) e
where nl(X)- is the tame fundgmént#l group of the scheme X relative

te D in [GM]"(2.4.4). Next lef Y .be.a connected closed subscheme

-

of X which is endowed with the invéfﬁé'image of'the log. str. of

X, and let 9 = YVal be the associated alg. val. log. space over S.

Then,
A

n1%%(9) = 2l(X)
1 1
A . D fa)
where X denotes the formal completion of X along Y and nl(X)
Fa
denotes the tame fundamental group of the formal scheme X relative
A
to X Xy D defined in [GM] (4.2.4). Here we omitted the geometric .

points from the notation T to avoid somé.complicated argument

how to choose geometric points.




8§85. Finite flat group objects.

§5.1. Computation of Hl.

In §85.1, we fix a log. scheme T such that N = MT/G¥ and such
that the underlying scheme of T is locally noetherian.
Let S be the underlying scheme of T which we endow with the

trivial log. str. We denote by AT the category of log. spaces %

over T such that ¥ is an alg. val. log. space when regraded as =a

log. space over S. we denote By d;l the full subcategory of dT
é% consisting of objects ¥ such that MI coincides with the inverse

image of MT. As 'is. easily seen, an object of A;l is a scheme (éf.

(3.4.4)), and the functor "forgetting log. str." induces an

equivalence between d%l and the category of S-schemes locally of
finite presentation. In particular, we have isomorphisms of sites
cl ~ cl .~
Tfl Sfl and Tet = Set'

For example, let A be a disérete valuation ring with maximal

ideal m, . Then, for n > 1, the log. scheme Spec(A/mX) endowed
with the inverse image of the canonical log. str. of Spec(A) (1.2.7)

X = N, and the image in M/0% of a prime element of A

satisfies M/®
is a generator.

Theorem (5.2.1). Let G be a commutative group scheme over S, and

assume that one of the following two conditions is satisfied.

1

. |
(i) 6 is (cl) smooth over §.

|
(i11) G _dis! (el) finite and (cl) flat over S.

|
1 .

Let & : Tfig —_— T?% be the canonical morphism. Then, we have
fﬁTﬁ
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é*e = 1im Xom ;l(Z/nz(;), G) .

(5.1.1.1). : RY

Here we denoted the sheaves 9 |— MorS(D, G) on T%ig and on
TCl by the same letter G, #om means the Hom-~sheaf on TCl, and
fl Tcl E L
_ fl .
the inductive system is defined by the homomorphisms
Z/mnZ(1) — Z/nZ(1) ; x — x".

The homomorphism from the r.h.s. to the 1l.h.s. of (5.1.1.1) is
defined as follows. The boundary map M%p _— Rls*(Z/nZ(l)) on T?i
of the Kummer exact sequence (4.1.3) annihilates O; , and we have a
mep N ¥ Mi/6% — R'g,(Z/nZ(1)). To h : Z/nZ(1) — G, we

1

assign the section of R 8*(G) which is defined to be the image of
1 € N under
1 h 1
N — R7ey(Z/nZ(1)) —— RIg,(G).

Corollary (5.1.2). Let G be as in (5.1.1), and let H be a (el}

finite (cl) etale commutative group scheme over S. Assume there
exists _an element n € I'(T, MT) whose image in MT/O; = N is the
generator. Then, we have a splitting exact sequence
0 — Extl 1(H, G) — Extli (H, G) — Hom.(H(1), G) — O
TC Tiog S
fl fl
where Extl mean the group of extensions as sheaves of abelian

groups, and H(1) is the group scheme over S defined to be the

Cartier dual of the Pontrjagin dual #om(H, Q/Z).

Proof of (5.1.2) assuming (5.1.1). We have an exact sequence
1 1 1
0 — ExtTCl(H, G) — ExtTlog(H, G) — HomTCl(H, R B*G).
fl f1l fl

By (5.1.1),

1
HomTcl(H' R7g,G) = HomS(H(l), G).
f1

7l
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EH

The splitting Homg(H(1), 6) —s Ext'}_ (H, G) is induced by an
. : Tfl _
element eg of Extllag(H, H(1)) which is defined as follows. - Let
T
fl

" be the Tate curve over T. corresponding to mn (note the image of

n in I (T, OT) is locally nilpotent since it is non-invertible
everywhere). Then for any non-zero integer n, we have an exact

sequence
0 — z/nz(1) -4 & - z/nz — 0
on T%ig where nGn = Ker(n : € — ") (cf. (3.4.8)). By taking

locally n which annihilates H and taking the tensor product of
the above exact sequence with H, we obtain
0 — H(1) — H ® nGn — H — 0 (exact)

which defines 6f. .

(5.1.3) The rest.of §5.1 is devoted to the proof of (5.1.1).

The finite flat case (ii) in (5.1.1) is reduced to the smooth-case
since there exists an exact sequence of commutative group schemes
over S

0 — G — G’ — G" — 0

with G’, G" smooth. (For example, let G' = ﬂoaS(G*, Gm) where
G* is the Cartier dual of G, and let G" = G;ié.)

Lemma (5.1.4). Let X be an object of AT and let £ : ¥ — T
be the structural morphism. Assume f is small (3.4.1).

(1) Then, X is a scheme, and is locally of finite presentation
as S-scheme, and MI/O§ = N.

(2) f is quasi-finite (resp. finite) as a morphism of alg. val.

log. spaces over S if and only if the underlying morphism of

schemes ¥ — T is (cl) quasi-finite (resp. (cl) finite).

7z
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(3) Ehé following three conditions ‘(i) - (iii)hare equivalent,

(i) f_ is flat (resp. smooth, resp. etale) as a morphism of alg.

val. log. spaces over - S.

(ii) f is flat (resp. smooth, resp. etale) as a morphism of fine

log. schemes.

(iii) Locally on the schemes ¥ and T for the classical fppf

(resp. classical etale, resp. classical etale) topology, there exist

and an integer e > 1 (resp. an integer

n e (T, MT), T € " (¥, MI)

e 2 1 which is invertible on ¥, resp. an integer e > 1 which is

invertible on ¥) such that the image of 5 in MT/@’Tc and that of

T _in MI/O§ are the generators and n = te. and such that the

morphism of schemes-

X — SpeC(OT[t]/(te - a(n))) 5 ot — a(T)

{t is an indeterminate) is (cl) flat (resp. (cl) smooth, resp.

{cl) etale).
(4) Assume f is (log) smooth (resp. (log) etale.) Then I
belongs to d;l if and only if the underlving scheme of ¥ is

(cl) smooth (resp. (cl) etale over §.

The proof is easy (use (3.4.4)) and we omit it.

(6.1.5) To prove (6.1.1), we consider the Cech cohomology of G
for a special covering in the logarithmic flat site. Let ¥ be an
object of T?% such that there is 15 € r(x, MI) whose image in
Mx/Oé = N 1is the generator. Let

Ein) = Sl:>eC(O:{[t]/(tn - n))

where t is an indeterminate, which we endow with the log. str.

73



associated to
N— 6,0t1/(t" - 1) ; 1 — ¢.
Lemma (5.1.6). Let ¥, n_ be as above, and assume G is smooth

over S. For an object %' of I;i , let Hm(IEn)/I’, G) be the

Cech cohomology of G with respect to the covering I(n) — ¥ in

= I%ig, and let #m(I(n)/I, G) be the sheaf on I;i associated to the
presheaf X' —s Hm(Izn)/I’, G). Then

. 1 ~ 1 , cl
rJ’Iim #H (I(n)/z, G) = R 8*(G) on Ifl‘

Proof. By the general theory of Cech cohomology, #l(I(n)/I, G)

is isomorphic to the kernel of the canonical homomorphism from

Rls*(G) to the sheaf on I;i associated to the presheaf ¥' |—

Hl((Izn))%ig, G). Let X' be an object of Igi , let s €

2 Hl((I’)%ig, G). It is sufficient to show that s dies in

Hl((I’ )log’ G) locally on® ¥' for the-classical fppf topology. We -
(n)’f1 :

may assume that X’ 1is quasi-compact. Let f - 9 — ¥’ be a

covering in (I’)%?g- which annihilates s such that -9 is

quasi-compact. Then there exists n > 1 such that the .okernel of

* 8P gp

- ) . . 8 5
of 9 Xgo I(n) is the 1nverse'1mage of the log. str. of I(n)' So,

is annihilafed by n. Then, by (4.3.10), the log. str.

9 X Izn) — Izn) is a covering in (Izn))gi, and hence the image

of s in Hl((IEn))%ig’ G) Dbelongs to Hl((IZn))E%, G). Since G is
smooth, a theorem of Grothendieck says Hl((IEn))gi, G) =

Hl((izn))gi, G). Since the direct image functor for the finite
morphism Izn) — X’ is exact, the image of s dies locally for the.
classical etale topology on X', and hence locally for the classical

fppf topology on x’.

7¢-
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' Néwaﬁe proof of 15.1.1) is reduced to

Lemma (5.1.7). Let X, n be as in (5.1.5) and assume G is smooth

over S. Then the map Rom(Z/nZ(1), G) — Rls*(G) induces

~

tom(Z/nZ(1), 6) —= #1(x /%, 6).

Proof. It is easily seen that the image of #om(Z/nZ(1), G) in
Rls*(G) is contained in ﬂl(I(n)/I, G).

The group object Z/nZ(1) = Spec(@s[u]/(un-l)) (u is an

indeterminate, the log. str. of Z/nZ(1) is trivial) acts on I(

n)
by
05[]/ (t"-n) — Oglt, ul/(t"-n, u1) ; t — t 8y
and we have
(5.1.7.1)  2/n2(1) xg %, — Tny Xy Eny 5 (a, x) — (x, ax)

(the fiber product on the right is taken in the category of alg. val.
log. speces over S, not in the category of log. schemes or in that

of fine log. schemes)... C o P
i

|l ‘.
Let # be the sheaf I’H——a MorS(I’ X .

G) on Ifl' By

X
(56.1.7.1), we see that the stadard complex which caluculates

(n)

Hm(f(n)/I, G) 1is isomorphic to the standard complex which calculates

the cohomology of the Z/nZ(l)-module % (here Z/nZ(1) is regarded
as a group sheaf on I;%). For i > 0, let Yi be the closed
subscheme of I(n) defined by the equation ti = 0. Consider the

sheaf

. b )
N R MorI(I Xy Yo, GI}
on I;%' Since Z/nZ(1l) acts on Y, ‘trivially, we have

il
H*(Z/nZ (1), #.) = Hom(Z/ Z(1), #,) = H (Z/nZ(1)y , Gy )
i Py, om n 1 omYl n Y, Y,

From the facts that Y1 is identified with a closed subscheme of ¥

S—_
~w

T i nler 7 ~, -
\‘ /a"e / ; N -.‘.-,.f_,nl\\k_

. 5 Lo |
@ / BEE A IS o Wi A Lo - AN}
N :D‘E*(-{I /}(”f,;"_';‘—."—:; _-'-__:3-.3 Gy ] S ’.?/

I - > acl s
!D; ‘;J A lr"’ o
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\
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defined by a nilpotent ideal and that G 1is smooth, we can deduce

easily that the last group is isomorphic to Hom él(Z/nZ(l), G). It

£
is easily seen that the composite
tom _1(2/n2(1), 6) — #1(x®/x, 6) — #om__;(2/n2(1), @)
3 Xrl1
is the identity. It remains to show that
1
HY(Z/nZ(1), #,,,) — H'(Z/nZ(1), 7;)
is injective for 1 > 1. But the kernel of ?i+1 o ?i is

isomorphic to

I ®OS LleS(G)

with the trivial action of Z/nZ(l) where I 1is the ideal of Yi

in Y;,; » and we are reduced to Hom(Z/nZ(1), Ga) = 0.

§5.2. Structure of finite flat commutative group objects.

Let T be a log. scheme such that MT/O¥ = N as in §5.1, and we
assume in §5.2 that the underlying scheme S of T 1is the Spec of a

henselian noetherian local ring.

Let AT’ dﬁl be as in §5.1, let QT be the category of group

objects in AT which are finite and flat over T, and let Q%l be

the full subcategory of QT consisting of objects & such that MS

coincides with the inverse image of MT. By "forgetting the log.
str.", @%l is equivalent to the category of finite flat

commutative group schemes over S,

We shall see soon (5.2.5) that an object G of @T has a largest

(log) etale quotient Get. Let # be the full subcategory of ¢

T T
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-cohsisting of objects G. such that the underlyiné sbheme of GEt -is
(cl) etale over S (i.e. such that Get belongs to Q%l
(5.1.4)(4)).

We shall prove

Theorem (5.2.1). The category KT is equivalent to the category

of pairs (G, N) where G is a (cl) finite (cl) flat commutative

group scheme over S and N is a homomorphism Getfl) =, @°,

Here Get dehotes the largest (cl) etale quotient of G, Get(l)
is as in (5.1.2), and &° denotes the connected component of G
containing the origin.

The equivalence in (5.2.1) is defined canonically once one fixes an
element n of I (T, MT) ‘whose image in MT/@¥ is the generator.

By combining with the classical Dieudonne - theory, wé obtain

Corollary (5.2.2). Let k be a perfect field of characteristic

B > 0 and assume S = Spec(k). Let W(k) be te ring of Witt

vectors and let ¢ : W(k) — W(k) be the frobenius map. Let ﬁT(p)

be the full subcategory of %TA consisting of objects annihilated bv

some power of p. Then ﬁT(p) is anti-equivalent to the category

of W(k)-modules D of finite length endowed with additive operators

F, V. N: D—> D having the following properties:

F(ax) = @(a)F(x), Vie(a)x) = aV(x), N(ax) = aN(x) (a € W(k),
x € D),
FV = VF = p, FNV = N,
Remark (5.2.3). The operator N above satisfies N2 =0
automatically. Indeed, N2_= FNVFNV = pFN2V, and hence
N = pENZV = p2FZNZVE = .. = pTETRZVT - o (r >> 0).
Proof of (5.2.2) assdming (5.2.1). Let G be a finite commutative

T

&
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group schéme'over"k “annihilated by’ some power of p and let D(G)
be the Dieudonne module.- Then, D(Get) is the largest W(k)-submodule
of D(G) which is stable under F and on which F 1is an

isomorphism. Furthermore, the underlying W(k)-quule of.. D(Get(l)).l

is identified with that of D(G%Y), F on D(G®Y(1)) is identified
with pF on D(Get), and V on D(Get(l)) is identified with F_1
on D(Get). A homomorphism Get(l) —— G corresponds to a

W(k)-homomorphism N : D(G) — D(Get(l)) compatible with F, V and
hence corresponds to a W(k)-homomorphism N : D(G) — D(Get) such
that NF = pFN and NV = F-lN. Hence it corresponds to a
W(k)-homomorphism N : D(G) — D(G) such that FNV = N.

Lemma (5.2.4), Let .d%lp.j(resp. _6T)' be the full subcategory of

AT consisting of objects -which are - finite (resp.- finite etale) over :

T. Then, the inclusion functor"gT —_— dgin“'haS'a left adjoint.
This left adjoint functor, which we shall denote by ¥ |—— Iet,
preserves finite inverse limits. If ¥ is an object of déin which
is flat over T, the canonical morphism ¥ — Iet is flat.

Proof. Let X be an object of d%in and assume X is
connected. Then Iet is constructed as follows.

Let k be the residue field of the closed point of S and let k'
be the separable closure of k in the residue field of the closed
point of ¥. Let S’ be the (cl) finite (cl) etale scheme over S
corresponding to the extension k —— k’, and let M be the inverse

image on S' of the log. str. of T. On the other hand, let e be

n

the order of the cokernel of M%p/0¥ 7 — M%P/Og = Z and let e’
be the largest divisor of e which is invertible on X. Then, there

exist n’ € I'(s’, M) and <t € I'(x¥, M such that the image of '’

£)
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1

-

- - - . T T ._ . .-... - . N ’ .
in ‘M/Gg, is a generator and such that < = n'. Let

t ’ 'L
£ = Spec(@s,[t]/(te - a(n’)))
with t an indeterminate, and endow Iet with the log. str.
associated to N — @ et 1 —= t. Then Eet is an object of Eme
X
We have a canonical morphism X — Iet ; £t — T, and it is easily

checked that for any object ©® of gT , the induced map

et

MorT(I y ) — MorT(I, 9) 1is bijective. It is also checked easily

that ¥ — %°% is flat if ‘¥ is flat over T.

Finally the fact the functor ( )et preserves finite inverse
limits is shown as follows. Take a geometric point a — T lying
over the closed point of T such that «x(a) is algebraically closed

and I (a, Mip) is a divisible group. Then, for any object X of

A%ln, we have

MorT(a, ) — Mor (a54I?t)—«5— (I?FJ

T ar

is the stalk at a of the sheaf on Tlog defined by

et)
a et

where (%

Iet. Since the functor ¥ |— MorT(a, X) preserves finite inverse

et

limits, ¥ |— (Iet)a and hence ¥ |— X preserve finite

inverse limits.

(5.2.5) Let & be an object of 9p. Since the functor ( )et
preserves finite inverse limits, Get is an object of @T' Let GO
be the kernel of 6 — Get. Then,

(5.2.5.1) 0 — 6° — 6 — 65t — o0
is exact when regarded as a sequence of group sheaves on T%ig.

Lemma (5.2.6). Let G be as above. Then G6° coincides with the
connected component containing the origin.

Proof. By applying ( )et to (5.2.5.1), we have (GO)et = T, and
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this shows that G° is.connécted. It remains to show that G° is
open in 'G, To see this, it is sufficient to show that the origin of
Get is open in Get. In general, a morphism between etale objects
is etale as is seen from (3.1.5). So the origin T — Get is etale

and hence is an open map.

Lemma (5.2.7). Let & be an object of QT and assume G is
cl
T

Proof. Let f : & — T be the structural morphism. The image of

connected. Then, & belongs to ¢

1 € N under N = f_l(MT/O¥) — MG/GE = N 1is a locally constant
function on G, and coincides with 1 at the crigin of G. Since &
is connected, it is 1 on the whole G.

(5.2.8) Now we can prove (5.2.1). We fix an element n of
r(T, MT) whose image in MT/O¥ is the generator. Bt using n, we

have a functorial direct decomposition
1 1

3 = 1 )
(5.2.8.1) ExtTlog(H, H) = ExtTcl(H, H') o HomS(H(l), H')
fl L Ifl
for (cl) finite (cl) flat commutative group schemes H, H’ over S
with H (cl) etale over S (5.1.2).
Let G be an object of %T. Then Get and G° belongs to Q;l.

et

We denote the underlying S-group schemes of & and GO by the

same letters Get and GO, respectively. The extension (5.2.5.1)

defines an element of Extllog(Get, 6°). 1In the decomposition
Tt1
(5.2.8.1) with H = Get. and H’ = 6°, the image of this element in
Extlcl(Get, Go) defines a finite flat commutative group scheme G
T .
fl

over S having an exact sequence

O——»GO—>G——>(Set—)O,

Y0
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and the image in Homs(ﬁe#(l),'GQ) defines Get(l) ='Get(1) —_—

G° = 6°. Conversely if we are given a finite flat commutative group

scheme G over S and a homomorphism N :.Ge#(l) — Go, then the

pair (0 — G° — G — g%t — 0, N) 1is an element of the r.h.s. of
(5.2.8.1) with H = Get and H’' = Go, and hence we obtain an element
of Extl1 (Get, Go).
T.98
fl
For the proof of (5.2.1), it remains to show the following fact:

(5.2.8.2) For any element 68 = (0 — H' — % — H — 0) of

1
Xt
log
Tey

object of QT‘

E (H, H') with H, H’ as in (5.2.8.1), & is represented by an

By the fppf descent (4.2.,2), it is sufficient to show that & is

representgd by an object. of :QT;u;on a:finite .flat covering:. T’ — T .

of T in T;i. Hence we may "assume that in the decomposition

(5.2.8.1), the image of 6 in Extlcl(H, H’) 1is zero. So 6 comes
Tl

from a homomorphism N : H(1) — H’. The image of N belongs to the

largest subgroup scheme of G° - of multiplicative type, and hence N

is a composition of two homomorphisms H(1) — H"(1) —— H' with

H" a finite etale commutative group scheme over S and with i a

T
oy

defined in the proof of (5.1.2), via N : H(l) — H'. First we show

closed immersion. Recall that 68 comes from a canonical element

that if 0 — H"(1) — ' — H — 0 denotes the image of Gg under

H(l) — H"(1), then ¢’ is represented by an object of ¢

T
Indeed, F’ is obtained from the extension

eﬁ” = (0— H"(1) — 2" — H" — 0), to be the fiber product of Z"
— H" «— H. So it is sufficient to show %" is represented by an
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object of QTZ and #" —— H" is flat. In fact, ﬁbrking (cl) etale

locally, we may assume-.H" = 2/nZ(1). Then, " = nGn and we have

done by (3.4.8). Denoté the object of S which represents %' by

the same letter #'. By [SGA 3) Exp. V (7.1), the guotient of the
underlying scheme of H’{iE 7’ by the action of H"(1) exists, and e
by (4.2.3)(3) and by Aut(N) = {1}, the log. str. of H’ XT 7’ A”/?j
descents to this quotient. This quotient log. scheme represents 7;. o

Remark (5.2.9). 1In (5.2.1), let 6 be an object of ‘KT and let
(G, N) be the corresponding pair. Then, for an alg. val. log. space -~
X over T, MorT(I, G)  is described in terms of (G, N) as the
follows. Take a non-zero integer n which annihilates the image of
N Get(l) —3 E°, Theh, there is a canonical bijection between
MorT(I, G) and the set of morphisms h : X X T(n) — G Tover _T.
(T(n) is as in (571.5)) satisfying. .-

h(x, ¢y) = h(x, y).N(h(x, v), ¢)

for functorial "points" x, y, & of I, T(n)’ Z/nZ(1), respectively.
Here, ¢y 1is defined by the canonical action of Z/nZ(1) on T(n)
(cf. the proof of (5.1.7)), ana Nk , ) denotes the composite

morphism G x Z/nZ(l1) — Get(l) i G = i@n
This fact is proved by applying Mors( , ) to the exact sequence
X xq T(n) x Z/nZ(l) = % X T(n),XT T(n) — I xp T(n) — X,
Proposition (5.2.10). The functor #om( , Gm) considered on T%ig
induces an autoduality of the categorvy RT. For an object G _ of %T
corresponding to a pair (G, N) as in (5.2.1), #om(G, Gm)

. * % x .
corresponds to the pair (G , N ), where G is the usual Cartier

*
dual of G and N is the Cartier dual of N.

et( o

b 4
(For N : G 1) — G, the Cartier dual N of N 1is defined as



should haveféwsurjective morphism H’ — H and héhce H must be

connected. By (5.2.7), H belongs to QCl

T
is represented by an object in Q%l. On the other hand, 6 —

and hence #Hom(H, Gm)

#om(#om(G, G,)» G

) (checked eon T'), a contradiction.
m . - .

(56.2.12) Let A be a complete discrete valuation ring and endow
Spec(A) with the canonical log. str. (1.2.7). Then, the log. scheme
Spec(A) does not satisfy M/o% = N, but we define the categories

« in the same way as at the beginnings of

Spec(A)’ QSpec(A)’ #Spec(A)
§6.1, §5.2. By applying (5.1.2) to the log. schemes Spec(A/mZ)

(n 2 1) and by taking 1lim, we have -that;
n

# is equivalent to the category of pairs (G, N) where G

Spec(A)
is a finite flat commutative .group ‘scheme over A .in the usual
sense and N is -a-homomorphism Geﬁ(l)_*fﬂ G2. s

This equivalence is canonical once one fixes a prime element of A.

Now let k be a perfect field of positive characteristic p > 0,
and consider the case A = W(k) and p is the fixed prime element.
By combining the above categorical equivalence with the Dieudonne
theory of finite flat commutative group schemes over W(k)
([Foll[F-L]), we have:

Asume ©p # 2, then ﬂT(p) in this case is equivalent to the

category of W(k)-modules D with finite length endowed with a
W(k)-submodule L c¢ D, frobenius-linear operators @y D — D,
R L — D, and a linear operator N : D — D satisfying the

following conditions:

eoly = Pey » w0p(D) + @ (L) = D,

N@o P¢0N, Nwl B wON on L.

3"
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follows. We aséumé<the chéfadﬂéristic p of the residue field of
the closed point of S is positive (otherwise, N -is always zero,

and we define N* = 0). Then, N factors through G{p}et(l) —_—

G{p}mult. )mult

where {p} denotes the p-primary part and (
denotes the largest subgroup scheme of multiplicative type. By

. X
taking the Cartier dual, we obtain N' : G*{p}et(l) m— G {p}mult,)

Proof of (5.2.10). The fact G — #om(Xom(G, G ), G ) 1is an

m
isomorphism is checked on a finite flat covering T’ — T in T%ig

such that 6 X T’ belongs to @;}, by using the classical Cartier

duality theory. The fact #om(G, Gm) is represented by an object of

mult

QT is proved as follows. The sheaf G/G is represented by an

object of QT (5.2.8.2), and this object belongs to Q;l by (5.2.1)

since the corresponding. . N is-zero::.We have.an. exact sequence..:.

0 #om(G/Gmult multg

mult

G ) — 0.

m
A Gm) is represented by an object in Q%l and

, Gp) — #om(G, G_) — #om(G

Then, #om(G/G

mult cl

#om (G , Gm) is represented by an etale object in 91" . Hence by

(5.2.8.2), #om(G, Gm) is represented by an object of QT.

Remark (5.2.11). Unlike the classical Cartier duality theory, if

T 1is not a Q-scheme, the functor #om( , Gm) (considered on T%ig)

does not give an autoduality of the total @T. For example, let G
be an etale object in QT annihilated by a power of a prime p

which is not invertible on T, and assume that G does not belong to
@;l. Then, the sheaf #om(G, Gm) on T%ig is got represented by an
object of QT' To see this, take a finite flat connected non-empty

T such that & X T’ belongs to @;}
#om(G, Gm) on (T’)%ig is represented by a connected object H’ in

object T’ in 4 Then

QT" If #Hom(G®, Gm) is represented by an object H of QT , we
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