
Multiplication and the Fast Fourier Transform

Rich Schwartz

October 22, 2012

The purpose of these notes is to describe how to do multiplication quickly,
using the fast Fourier transform. As usual, nothing in these notes is original
to me.

1 The Discrete Fourier Transform

Let
ω = exp(2πi/n) (1)

be the usual nth root of unity.
Let δab = 1 if a = b and otherwise 0. We have

n−1
∑

c=0

ωc(b−a) = nδab. (2)

An equivalent version of Equation 2 is that the following two matrices

M =
1√
n











1 1 1 · · ·
1 ω−1 ω−2 · · ·
1 ω−2 ω−4 · · ·
· · ·











(3)

M−1 =
1√
n











1 1 1 · · ·
1 ω1 ω2 · · ·
1 ω2 ω4 · · ·
· · ·











(4)

are inverses of each other.

1



The discrete Fourier transform is the linear transformation Φ : Cn → C
n

whose matrix is M . So, given z = (z1, ..., zn), we have Φ(z) = (Z1, ..., Zn),
where

Zk =
1√
n

n−1
∑

j=0

zjω
−kj. (5)

Φ−1 has the same form except that (−kj) is replaced by (kj).
The map Φ is an isometry relative to the Hermitian inner product

〈Z,W 〉 =
n−1
∑

i=0

ziwi (6)

One can see this just by noting that, by Equation 2, the rows of M form an
orthonormal basis. The same, of course, holds for Φ−1.

2 The Fast Fourier Transform

The straightforward method of computing Φ on an element ofCn takes O(n2)
operations. However, there are algorithms for computing Φ in O(n log(n))
steps. Here, I’ll explain the Cooley-Tukey algorithm, which works when n is
a power of 2. It seems that this algorithm was known to Gauss. Indeed, if
one reads Gauss’s proof that the regular 17-gon is constructible, one will see
essentially the same idea in it.

Let’s compute the Fourier transform of z = (z1, ..., z2n). Let Φ2n denote
the Fourier transform relative toC2n and let Φn denote the Fourier transform
relative to C

n. Define

ωn = exp(2πi/n); ω2n = exp(2πi/2n). (7)

Let [X]k denote the kth coordinate of a vector X. We have

[Φ2n(z)]k =
2n−1
∑

i=1

ziω
ik
2n =

∑

i even

ziω
ki
2n +

∑

i odd

ziω
ki
2n. (8)

We define
Ek = [Φn(ZE)]k, Ok = [Φn(ZO)]k, (9)

Here ZE and ZO are the vectors made respectively from the even and odd
components of Z. With this notation, Equation 8 can be written more suc-
cinctly as follows.

[Φ2n(Z)]k = Ek + ωk
2nOk. (10)

2



Equation 10 holds for all k = 0, ..., 2n− 1, but we only need compute Ek and
Ok for k = 0, ...n− 1 because

Ek+n = Ek; Ok+n = −Ok. (11)

Suppose it takes T (n) operations to compute the Fourier transform of
a vector in C

n. The trick above shows that we can compute the Fourier
tranaform of a vector in C

2n using 2T (n) + 8n. Here is a breakdown of the
computation.

• We can compute {OK} and {Ek} for k = 0, ..., n− 1 in 2T (n) steps.

• We can compute ωk
2n for k = 0, ..., 2n− 1 in 2n steps.

• It takes 3 more steps to compute each instance of Equation 10. So, this
is a total of 6n additional steps.

We clearly have T (20) ≤ 8. An easy induction argument shows

T (2k) ≤ 8× 2k × (k + 1) (12)

This shows that, for n = 2k, the Fourier transform of a vector in C
n can

be computed in O(n log(n)) steps. It is worth mentioning that “step” here
refers to operations that are more complicated than simple floating point op-
erations. For instance, a typical step involves multiplying a complex number
of size log(n) with an nth root of unity. An actual analysis of the number
of floating point operations needed to compute the Fourier transform would
depend on how efficiently these individual steps could be done.

3 The Convolution

Let A = (a0, ..., an−1) and B = (b0, ..., bn−1) be vectors in C
n. We define the

simple operation
AB = (a0b0, ..., an−1bn−1). (13)

We also define the more complicated operation A∗B as follows. We introduce
the dummy variables W0, ...,Wn−1 which formally behave like the roots of
unity. That is Wi+n = Wi and WiWj = Wi+j. We then define

A =
n−1
∑

i=0

aiWi; B =
n−1
∑

i=0

biWi (14)

3



Technically, these sums belong to the ring R = C[W0, ...,Wn−1]/I, where I
is the ideal generated by the 2 relations. We then define A ∗B = C, where

C · (W0, ...,Wn−1) = A×B. (15)

The (×) symbol is just polynomial multiplication in R. The vector C is
called the convolution of A and B. Here is an example which shows how the
operation works.

Example: Suppose n = 3 and A = (1, 2, 5) and B = (8, 4, 7). We have

A = 1W0 + 2W2 + 5W3; B = 8W0 + 4W1 + 7W2.

Then
A× B = (1W0 + 2W1 + 5W2)× (8W0 + 4W1 + 7W2) =

W0(1.8 + 2.7 + 5.4) +W1(1.4 + 2.8 + 5.7) +W2(1.7 + 2.4 + 5.8) =

44W0 + 55W1 + 55W2 = (44, 55, 55) · (W0,W1,W2).

Hence A ∗B = (44, 55, 55).

The two operations we just defined are related by the following equations.

Φ(A)Φ(B) = Φ(A ∗B). (16)

Φ−1(A)Φ−1(B) = Φ−1(A ∗B). (17)

Φ(A) ∗ Φ(B) = Φ(AB). (18)

Φ−1(A) ∗ Φ−1(B) = Φ−1(AB). (19)

These formulas say, in short, that the Fourier transform converts back and
forth between the two kinds of products we have defined.

Lemma 3.1 Equations 16 and 19 are equivalent.

Proof: Choose A′ and B′ so that Φ(A′) = A and Φ(B′) = B. By Equation
16,

AB = Φ(A′)Φ(B′) = Φ(A′ ∗B′).

Now apply Φ−1 to both sides. We get

Φ−1(AB) = A′ ∗B′ = Φ−1(A) ∗ Φ−1(B).

4



Hence Equation 16 imples Equation 19. Reversing the steps, we see that
Equation 19 implies Equation 16. ♠

Similarly, Equations 17 and 18 are equivalent. We will prove Equation
18. Equation 19 has essentially the same proof.

Lemma 3.2 Equation 18 is true.

Proof: Let 〈A,B〉1 denote the left hand side of Equation 18 and let 〈A,B〉2
denote the right hand side. We want to show that these two operations are
equal. Note that both operations are symmetric and bilinear. That is,

〈A,B〉 = 〈B,A〉; 〈A,B1 + B2〉 = 〈A,B1〉+ 〈A,B2〉.

For this reason, it suffices to check Equation 18 on pairs of basis elements.
We choose the standard basis.

Let A = ea and B = eb. We compute

Φ(A) =
1√
n
(1, ω−a, ω−2a, ..., ); Φ(B) =

1√
n
(1, ω−b, ω−2b, ...).

The dth coefficient Cd of Φ(A) ∗Φ(B) is obtained by adding up the products
of all the coefficients whose indices sum to d. This gives us

Cd =
1

n

n−1
∑

c=0

ω−caωcb−db =
1

n
ω−db

n−1
∑

c=0

ωc(b−a). (20)

Suppose first that a 6= b. Then AB = (0, ..., 0) and Φ(AB) = 0. Equations
20 and 2 say that Cd = 0 for all d. Hence, Equation 18 holds when a 6= b.

When a = b we have AB = A. In this case, Equations 20 and 2 say that
Cd = ω−da. But then C = Φ(AB), as claimed. ♠

4 A Multiplication Algorithm

We choose two integers M and N and write them (as usual) in base 10:

M =
k
∑

i=0

ai10
i; N =

k
∑

i=1

bi10
i. (21)

5



We take k the same in both cases, but allow the possibility that some of the
last coefficients are 0. The product is given by

MN =
2k
∑

h=0

(

∑

i+j=h

aibj

)

10h. (22)

The coefficient of 10h might be larger than 9, and so we would need to perform
“carrying” to get the true base-10 expansion of MN .

Equation 22 looks quite a bit like convolution. To make the analogy
formal, choose some n > 2k and associate the sequences

A = (a1, ..., ak, 0, ..., 0), B = (b1, ..., bk, 0, ..., 0) ∈ C
n

to M and N respectively. We then let C = A ∗B = (c1, ..., cn). We have

MN =
n
∑

i=1

ci10
i (23)

It is important to take n > 2k to keep the terms from wrapping around.
From Equation 16, we have

C = Φ−1(Φ(A)Φ(B)) (24)

If we take n to be a power of 2, we can use the fast Fourier transform. This
makes the method work much faster than ordinary multiplication.

6


