The Gauss-Salamin Algorithm

Rich Schwartz

January 5, 2020

1 Introduction

The Gauss-Salamin algorithm is a simple algorithm for computing the digits of π very rapidly. Every step of the algorithm approximately doubles the number of digits of accuracy! These notes give a proof. Very little in my notes is original. I took this proof directly from the paper:
Nick Lord, Recent Calculations of π : The Gauss-Salamin Algorithm, The Mathematical Gazette, Vol 76 No. 476 (1992)
All I did was put Lord's proof in a more direct order, omitting all the cool (but extraneous) stuff related to the simple pendulum, lemniscates, etc. Also, I fill in details about the Γ and β functions, and briefly discuss convergence.

2 The Formula and the Algorithm

Given $a_{0} \geq b_{0} \geq 0$ define recursively:

$$
\begin{equation*}
a_{n}=\frac{a_{n-1}+b_{n-1}}{2}, \quad b_{n}=\sqrt{a_{n-1} b_{n-1}} \tag{1}
\end{equation*}
$$

The arithmetic-geometric mean is:

$$
\begin{equation*}
\operatorname{AGM}\left(a_{0}, b_{0}\right)=\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} b_{n} \tag{2}
\end{equation*}
$$

Define the series:

$$
\begin{equation*}
S\left(a_{0}, b_{0}\right)=\frac{1}{2} \sum_{k=0}^{\infty} 2^{k}\left(a_{k}^{2}-b_{k}^{2}\right) \tag{3}
\end{equation*}
$$

The equality behind the algorithm is:

$$
\begin{equation*}
\pi=\frac{(\operatorname{AGM}(\sqrt{2}, 1))^{2}}{1-S(\sqrt{2}, 1)} \tag{4}
\end{equation*}
$$

Convergence: Define

$$
\begin{equation*}
\pi_{n}=\frac{a_{n}^{2}}{1-S_{n}(\sqrt{2}, 1)}, \quad S_{n}\left(a_{0}, b_{0}\right)=\frac{1}{2} \sum_{k=0}^{n} 2^{k}\left(a_{k}^{2}-b_{k}^{2}\right) . \tag{5}
\end{equation*}
$$

We have, for instance,

$$
\left|\pi-\pi_{n}\right|<10^{-(4 / 3) 2^{n}}
$$

provided that $n \geq 6$. The convergence is a bit faster, but this is a nice simple expression. The rapid convergence comes from the fact that

$$
\begin{equation*}
\kappa_{n}=\frac{\kappa_{n-1}^{2}}{4\left(a_{n-1}+b_{n-1}\right)^{2}}<\frac{\kappa_{n-1}^{2}}{16 \operatorname{AGM}(\sqrt{2}, 1)^{2}}=\frac{\kappa_{n-1}^{2}}{22.96864 \ldots} \tag{6}
\end{equation*}
$$

Here $\kappa_{n}=a_{n}^{2}-b_{n}^{2}$.

Some Mathematica Code:

a[0]:=Sqrt[2]; b[0]:=1; d[0]:=1/2; s[0]:=1/2;
$\mathrm{a}\left[\mathrm{n}_{-}\right]:=(\mathrm{a}[\mathrm{n}-1]+\mathrm{b}[\mathrm{n}-1]) / 2$; $\mathrm{b}\left[\mathrm{n}_{-}\right]:=\operatorname{Sqrt}[\mathrm{a}[\mathrm{n}-1] \mathrm{b}[\mathrm{n}-1]]$;
$d\left[n_{-}\right]:=2 d[n-1] ; s\left[n_{-}\right]:=s[n-1]+d[n] \quad(a[n] a[n]-b[n] b[n])$;
pi [n_]:=a[n] a[n]/(1-s[n]);
As a test, the first 10 iterations compute π to 1395 digits. The command SetPrecision [pi [10]-Pi, 1410] returns $1.90043721 \times 10^{-1396}$.

Remarks:

(1) As Nick Lord explains in his paper, the algorithm above is a variant of the Gauss-Salamin algorithm. A simple change of variables gives it exactly.
(2) To make this an honest algorithm, from scratch, you would want a good method for extracting square roots. The iteration

$$
x_{0}=1, \quad x_{n}=\frac{1}{2}\left(x_{n-1}+\frac{a b}{x_{n-1}}\right)
$$

converges to $\sqrt{a b}$ and has the same precision-doubling feature as the algorithm above. This is basically just Newton's method.

3 Deriving the Formula

In this section we derive Equation 4 modulo 4 statements. Define the elliptic integrals:

$$
\begin{align*}
& I\left(a_{0}, b_{0}\right)=\int_{0}^{\pi / 2} \frac{d \theta}{\sqrt{a_{0}^{2} \cos ^{2}(\theta)+b_{0}^{2} \sin ^{2}(\theta)}} \tag{7}\\
& L\left(a_{0}, b_{0}\right)=\int_{0}^{\pi / 2} \frac{\cos ^{2}(\theta) d \theta}{\sqrt{a_{0}^{2} \cos ^{2}(\theta)+b_{0}^{2} \sin ^{2}(\theta)}} . \tag{8}
\end{align*}
$$

Lemma 3.1 The following is true.

1. $L\left(a_{0}, b_{0}\right)+L\left(b_{0}, a_{0}\right)=I\left(a_{0}, b_{0}\right)$.
2. $I\left(a_{0}, b_{0}\right)=\frac{\pi}{2 \operatorname{AGM}\left(a_{0}, b_{0}\right)}$.
3. $\left(a_{0}^{2}-b_{0}^{2}\right) L\left(b_{0}, a_{0}\right)=S\left(a_{0}, b_{0}\right) I\left(a_{0}, b_{0}\right)$.
4. $\frac{\pi}{4}=L(\sqrt{2}, 1) I(\sqrt{2}, 1)$.

Set $I=I(\sqrt{2}, 1)$ and $L=L(\sqrt{2}, 1)$, etc. When $a_{0}=\sqrt{2}$ and $b_{0}=1$ we have $a_{0}^{2}-b_{0}^{2}=1$. So, Statements 1 and 3 give $L=(1-S) I$. Statements 2 and 4 now give

$$
\frac{\pi}{4}=(1-S) I^{2}=(1-S) \frac{\pi^{2}}{4 \mathrm{AGM}^{2}}
$$

Dividing both sides by $\pi / 4$ and rearranging gives Equation 4. Now we prove the 4 statements above.

4 Proof of Statement 1

Set $a=a_{0}$ and $b=b_{0}$. Making the substitution $\vartheta=\pi / 2-\theta$, we see that

$$
L(b, a)=\int_{0}^{\pi / 2} \frac{\sin ^{2}(\vartheta) d \vartheta}{\sqrt{a^{2} \cos ^{2}(\vartheta)+b^{2} \sin ^{2}(\vartheta)}}
$$

Therefore

$$
L(a, b)+L(b, a)=\int_{0}^{\pi / 2} \frac{\cos ^{2}(\vartheta)+\sin ^{2}(\vartheta)}{\sqrt{a \cos ^{2}(\vartheta)+b^{2} \sin ^{2}(\vartheta)}} d \vartheta=I(a, b)
$$

5 Proof of Statement 2

It is convenient to write

$$
I(a, b)=\int_{0}^{\pi / 2} \frac{d \theta / \cos ^{2}(\theta)}{\sqrt{a^{2}+(b \tan (\theta))^{2}} \times(1 / \cos (\theta))} .
$$

The substitutions

$$
u=b \tan (\theta), \quad d u=b d \theta / \cos ^{2}(\theta), \quad 1 / \cos (\theta)=\frac{\sqrt{u^{2}+b^{2}}}{b}
$$

lead to

$$
I(a, b)=\int_{0}^{\infty} \frac{d u}{\sqrt{\left(a^{2}+u^{2}\right)\left(b^{2}+u^{2}\right)}}=\frac{1}{2} \int_{-\infty}^{\infty} \frac{d u}{\sqrt{\left(a^{2}+u^{2}\right)\left(b^{2}+u^{2}\right)}}
$$

The second integral is the same as the first, by symmetry.
If we start with the integral

$$
I\left(a_{1}, b_{1}\right)=\frac{1}{2} \int_{-\infty}^{\infty} \frac{d u}{\sqrt{\left(a_{1}^{2}+u^{2}\right)\left(b_{1}^{2}+u^{2}\right)}}
$$

and make the substitutions

$$
\begin{equation*}
a_{1}=\frac{a_{0}+b_{0}}{2}, \quad b_{1}=\sqrt{a_{0} b_{0}}, \quad u=\frac{1}{2}\left(v-\frac{a_{0} b_{0}}{v}\right), \quad d u=\frac{1}{2}\left(1+\frac{a_{0} b_{0}}{v^{2}}\right) \tag{9}
\end{equation*}
$$

then simplify the mess, we get

$$
I\left(a_{1}, b_{1}\right)=\int_{0}^{\infty} \frac{d v}{\sqrt{\left(a_{0}^{2}+v^{2}\right)\left(b_{0}^{2}+v^{2}\right)}}=I\left(a_{0}, b_{0}\right)
$$

Iterating, we see that

$$
I\left(a_{0}, b_{0}\right)=I\left(a_{1}, b_{1}\right)=I\left(a_{2}, b_{2}\right)=\ldots=I(A, A)=\int_{0}^{\pi / 2} d \theta / A=\frac{\pi}{2 A}
$$

Here $A=\operatorname{AGM}\left(a_{0}, b_{0}\right)$.

6 Proof of Statement 3

Write $c_{k}=\sqrt{a_{k}^{2}-b_{k}^{2}}$. The key step is showing that

$$
\begin{equation*}
2 c_{0}^{2} L\left(b_{0}, a_{0}\right)-4 c_{1}^{2} L\left(b_{1}, a_{1}\right)=c_{0}^{2} I\left(a_{0}, b_{0}\right) \tag{10}
\end{equation*}
$$

Setting $I=I\left(a_{0}, b_{0}\right)=I\left(a_{1}, b_{1}\right) \ldots$, we iterate Equation 10, multiplying the relation by 2 each time:

$$
\begin{array}{r}
2 c_{0}^{2} L\left(b_{0}, a_{0}\right)-4 c_{1}^{2} L\left(b_{1}, a_{1}\right)=2 c_{0}^{2} I\left(a_{0}, b_{0}\right)=c_{0}^{2} I . \\
4 c_{1}^{2} L\left(b_{1}, a_{1}\right)-8 c_{2}^{2} L\left(b_{2} \cdot a_{2}\right)=4 c_{1}^{2} I\left(a_{1}, b_{1}\right)=2 c_{0}^{2} I . \\
8 c_{2}^{2} L\left(b_{2}, a_{2}\right)-16 c_{3}^{2} L\left(b_{3} \cdot a_{3}\right)=8 c_{2}^{2} I\left(a_{2}, b_{2}\right)=4 c_{0}^{2} I . \tag{11}
\end{array}
$$

The bound in Equation 6 implies that the infinite series made from the terms on the right side of Equation 11 converges. Summing these terms, we get $2 c_{0}^{2} L\left(a_{0}, b_{0}\right)=2 S\left(a_{0}, b_{0}\right) I$. Dividing by 2 we get Statement 3 .

Now for Equation 10. The substitution $u=b \tan \theta$ used above gives

$$
L(a, b)=\int_{0}^{\infty} \frac{b^{2} d u}{\left(u^{2}+b^{2}\right) \sqrt{\left(u^{2}+a^{2}\right)\left(u^{2}+b^{2}\right)}}
$$

Just as in the proof of Statement 1, we write out

$$
L\left(b_{1}, a_{1}\right)=\int_{0}^{\infty} \frac{a_{1}^{2} d u}{\left(u^{2}+b^{2}\right) \sqrt{\left(u^{2}+a_{1}^{2}\right)\left(u^{2}+b_{1}^{2}\right)}},
$$

and make the substitutions from Equation 9. This gives

$$
\begin{equation*}
L\left(b_{1}, a_{1}\right)=\frac{a_{0}+b_{0}}{a_{0}-b_{0}}\left(L\left(b_{0}, a_{0}\right)-L\left(a_{0}, b_{0}\right)\right) . \tag{12}
\end{equation*}
$$

Combining this the fact that $L(a, b)+L(b, a)=I(a, b)$, we have

$$
L\left(b_{1}, a_{1}\right)=\frac{a_{0}+b_{0}}{a_{0}-b_{0}}\left(2 L\left(b_{0}, a_{0}\right)-I\left(a_{0}, b_{0}\right)\right)
$$

Multiplying through by $\left(a_{0}-b_{0}\right)^{2}$ and rearranging, we have

$$
2\left(a_{0}^{2}-b_{0}^{2}\right) L\left(b_{0}, a_{0}\right)-\left(a_{0}-b_{0}\right)^{2} L\left(b_{1}, a_{1}\right)=\left(a_{0}^{2}-b_{0}^{2}\right) I .
$$

Now we observe that $c_{0}^{2}=a_{0}^{2}-b_{0}^{2}$ and $4 c_{1}^{2}=\left(a_{0}-b_{0}\right)^{2}$. Once we make these substitutions, we get Equation 10 .

7 Proof of Statement 4

We have the Γ-function and the β-function:

$$
\begin{equation*}
\Gamma(x)=\int_{0}^{\infty} e^{-t} t^{x-1} d t, \quad \beta(x, y)=\int_{0}^{1} t^{x-1}(1-t)^{y-1} d t \tag{13}
\end{equation*}
$$

To establish Statement 4 we establish the following facts.

1. $I(\sqrt{2}, 1)=\frac{1}{4} \beta(1 / 4,1 / 2)$ and $L(\sqrt{2}, 1)=\frac{1}{4} \beta(3 / 4,1 / 2)$.
2. $\beta(x, y)=\frac{\Gamma(x)(\Gamma(y)}{\Gamma(x+y)}$.
3. $\Gamma(x+1)=x \Gamma(x)$ when $x>0$. In particular, $\Gamma(5 / 4)=\Gamma(1 / 4) / 4$.
4. $\Gamma(1 / 2)=\sqrt{\pi}$.

These facts give

$$
\begin{gathered}
I(\sqrt{2}, 1) L(\sqrt{2}, 1)={ }^{1} \frac{\beta(1 / 4,1 / 2) \beta(3 / 4,1 / 2)}{16}={ }^{2} \\
\frac{\Gamma(1 / 4) \Gamma(3 / 4) \Gamma(1 / 2) \Gamma(1 / 2)}{16 \Gamma(5 / 4) \Gamma(3 / 4)}={ }^{3} \frac{\Gamma(1 / 4) \Gamma(3 / 4) \Gamma(1 / 2) \Gamma(1 / 2)}{4 \Gamma(1 / 4) \Gamma(3 / 4)}={ }^{4} \frac{\pi}{4} .
\end{gathered}
$$

7.1 Fact 1

We have
$I(\sqrt{2}, 1)=\int_{0}^{\pi / 2} \frac{d \theta}{\sqrt{2 \cos ^{2}(\theta)+\sin ^{2}(\theta)}}=\int_{0}^{\pi / 2} \frac{d \theta}{\sqrt{1+\cos ^{2}(\theta)}}=\int_{0}^{1} \frac{d u}{\sqrt{1-u^{4}}}$.
The last equality comes from the subst. $u=\cos (\theta)$ and $d u=-\sin (\theta) d \theta$. Substituting $v=u^{4}$ and $d v=4 u^{3} d u$ we see that

$$
I(\sqrt{2}, 1)=\frac{1}{4} \int_{0}^{1} \frac{d v}{v^{3 / 4}(1-v)^{1 / 2}}=\frac{1}{4} \beta(1 / 2,3 / 4)
$$

The same substitution for L gives us

$$
L(\sqrt{2}, 1)=\int_{0}^{1} \frac{u^{2} d u}{\sqrt{1-u^{4}}}=\frac{1}{4} \int_{0}^{1} \frac{d v}{v^{1 / 4}(1-v)^{1 / 2}}=\frac{1}{4} \beta(1 / 2,1 / 4) .
$$

7.2 Fact 2

Making the substitution

$$
t=\cos ^{2}(\theta), \quad 1-t=\sin ^{2}(\theta), \quad d t=-2 \cos (\theta) \sin (\theta) d \theta
$$

we see that

$$
\beta(x, y)=2 \int_{0}^{\pi / 2} \cos (\theta)^{2 x-1} \sin (\theta)^{2 y-1} d \theta
$$

Making the substition $t=u^{2}$ and $d t=u d u$, we have

$$
\Gamma(x)=2 \int_{0}^{\infty} u^{2 x-1} e^{-u^{2}} d u
$$

But then

$$
\Gamma(x) \Gamma(y)=4 \int_{0}^{\infty} \int_{0}^{\infty} e^{-u^{2}+v^{2}} u^{2 x-1} v^{2 y-1} d u d v
$$

Integrating this in polar coordinates, with $u=r \cos (\theta)$ and $v=r \sin (\theta)$, we have

$$
\begin{gathered}
\Gamma(x) \Gamma(y)=2 \int_{0}^{\pi / 2}\left[2 \int_{0}^{\infty} r^{2(x+y)-1} e^{-r^{2}} d r\right] \cos (\theta)^{2 x-1} \sin (\theta)^{2 y-1} d \theta= \\
\beta(x, y) \Gamma(x+y) .
\end{gathered}
$$

7.3 Fact 3

This is integration by parts. Define

$$
u=e^{-t}, \quad d v=t^{x-1} d t, \quad d u=-e^{-t}, \quad v=t^{x} / x
$$

Since $u(0) v(0)=0$ and $\lim _{n \rightarrow \infty} u(n) v(n)=0$, we have

$$
\Gamma(x)=\int_{0}^{\infty} u d v=\int_{0}^{\infty} v d u=\frac{1}{x} \Gamma(x+1) .
$$

7.4 Fact 4

We have $\Gamma(1)=1$. Hence, by Fact 2 ,

$$
\Gamma(1 / 2) \Gamma(1 / 2)=\beta(1 / 2,1 / 2)=\int_{0}^{1} \frac{d t}{\sqrt{t(1-t)}}={ }^{*} 2 \int_{0}^{\pi / 2} d \theta=\pi
$$

The starred equality comes from $t=\sin ^{2}(\theta)$ and $d t=2 \sin (\theta) \cos (\theta) d \theta$.

