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1 The Result and Proof Outline

The purpose of these notes is to prove the following theorem.

Theorem 1.1 (Hadamard) Let M1 and M2 be simply connected, complete

Riemannian manifolds having constant sectional curvature −1. Then M1 and

M2 are isometric.

I’ll outline the proof in this section and then fill in the details in sub-
sequent sections. Choose points pj ∈ Mj. We isometrically identify the
tangent space Tp1M1 with the tangent space Tp2M2, and we call the common
tangent space T . Here T is just n-dimensional Euclidean space. We have the
exponential map Ej : T → Mj which has the following properties.

• Ej(0) = pj.

• Ej maps lines through the origin to geodesics rays of Mj.

• dEj is an isometry at 0.

We will prove the following lemma below.

Lemma 1.2 (Nonsingular) dEj is nonsingular at every point of T .

The Nonsingular Lemma only uses the fact that Mj has nonpositive cur-
vature. The proof comes down to the statement that Jacobi fields do not
vanish in nonpositive curvature, and to Gauss’s lemma about dE preserving
a certain orthogonal splitting.

The Nonsingular Lemma as the following corollary.
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Lemma 1.3 Ej is a diffeomorphism.

Proof: For the proof we set M = Mj, etc. Since dE is nonsingular, E is a
local diffeomorphism. The fact that M is complete means that every point
of q ∈ M can be connected to p by a geodesic. But then this geodesic is in
the image of f . Hence E is a surjective local diffeomorphism. It just remains
to prove that E is injective.

Suppose that E(p) = E(q). Consider the image α0 = E(S0), where S0 is
the straight line segment connecting p to q. Since M is simply connected,
there is a homotopy of loops αt, based at E(p) which connects α0 to the
constant loop α1. Since E is a local diffeomorphism, we can find a preimage
St such that E(St) = αt. Moreover, we can take St so that its endpoints do
not move. But α1 is a single point and hence E(S1) is a single point. This
contradicts the fact that E is a local diffeomorphism. ♠

Consider the map g = E2 ◦ E−1
1 : M1 → M2. The map g is also a

diffeomorphism. Below we will prove

Lemma 1.4 (Local Isometry) dg is an isometry at each point.

The Local Isometry Lemma also boils down to Jacobi fields.
Since g is a global diffeomorphism and an dg is an isometry at each point,

g is a global isometry.

2 Jacobi Fields

Let M be a metric of constant negative curvature −1. Let 〈, 〉 be the metric
and [, ] the Lie bracket and DXY be the covariant derivative of Y in the
direction of X. Here D is the Levi-Civita connection. Here X and Y are
vector fields.

The basic things we have are

• DXY −DYX = [X, Y ]. This is the symmetry of the connection.

• R(V,W )X = DV (DWX)−DW (DVX)−D[V,W ]X. This just a definition.

• R(V,W,X, Y ) = 〈R(V,W )X, Y 〉. This is just a definition.

• R(X, Y,X, Y ) = −1 when {X, Y } is an orthonormal set of vectors.
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There are other equalities which I’ll mention as we go along.
Consider the map E : T → M defined above. We consider the restriction

of E to a 2-dimensional subspace R
2 ⊂ T . We write E = E(s, t). Holding

s = s0 fixed, the function E(s0, t) is a unit speed geodesic. The vectorfield

J(t) =
dE

ds
(s0, t) (1)

is a Jacobi field along the geodesic E(s0, t). We take s0 = 0 to do our analysis,
though the same statements apply for any value of s0.

Let γ(t) = E(0, t). Let T (t) denote the unit velocity vector field along γ.
As a convention we write

DV

ds
= DJV,

DV

dt
= DTV. (2)

Here is the equation for Jacobi fields

Lemma 2.1
D

Dt

D

dt
J = −R(T, J)T.

Proof: We compute

D

Dt

D

dt
J =

D

Dt

D

dt

dE

ds
=1

D

Dt

D

ds

dE

dt
=2

D

Ds

D

dt
T −R(T, J)T =3 −R(T, J)T.

Equality 1 comes from the fact that

D

dt

dE

ds
− D

dt

dE

ds
− = DTJ −DJT = [J, T ] = 0.

The Lie bracket vanishes because these vector fields are the image of the
commuting fields d/dx and d/dy under a smooth map. Equality 2 is the defi-
nition of the curvature tensor. Equatity 3 comes from the fact that DTT = 0
because T is the velocity field of a geodesic. ♠
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3 Local Diffeomorphism

We keep using the same notation as above. The following lemma also works in
nonpositive curvature but we will make it easy and use the constant negative
curvature condition.

Lemma 3.1 J(t) 6= 0 for all t > 0.

Proof: Let f(t) = 〈J(t), J(t)〉. We have f(0) = 0 We compute

f ′(t) = 2
〈

DJ

dt
, J

〉

.

Since J(0) = 0, we have f ′(0) = 0.
We compute

f ′′(t) =
d2

dt2
〈J, J〉 =1 2

d

dt

〈

DJ

dt
, J

〉

=2

2

∥

∥

∥

∥

∥

dJ

dt

∥

∥

∥

∥

∥

2

−
〈

J,
D2J

dt2

〉

=3

2
∥

∥

∥

∥

DJ

dt

∥

∥

∥

∥

2

− 2R(T, J, T, J) =4

2
∥

∥

∥

∥

DJ

dt

∥

∥

∥

∥

2

+ 2 ≥ 2.

Equalities 1 and 2 come from the compatibility of the connection and
the metric. The last inequality comes from the constant negative curvature
condition.

In summary, f(0) = 0 and f ′(0) = 0 and f ′′(t) > 0 for all t. This shows
that f(t) > 0 for all t > 0. ♠

Remark: In nonpositive curvature, we just get ‖J ′(t), J ′(t)‖ ≥ 0, and we
would need to make the further argument that J ′(t) is not identically 0. This
comes from the fact the Jacobi equation is linear and in the relevant basis
there is a whole (2n)-dimensional vector space of nontrivial solutions.

The next result is known as Gauss’s Lemma. It is one of the millions of
things due to Gauss, at least in the two dimensional case.
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Lemma 3.2 〈J, T 〉 = 0 for all t.

Proof: Let g(t) = 〈J(t), T (t)〉. We have

g′(t) =
〈

DJ

dt
, T

〉

+
〈

DT

dt
, J

〉

.

The second term vanishes and DJ/dt is perpendicular to T at 0 because dE|0
is an isometry. Hence g′(0) = 0. A calculation like the one above shows that

g′′(t) = R(T, J, T, T ) = 0.

The second equality comes from the fact that the curvature tensor is anti-
symmetric in the last two slots. So, g(0) = 0 and g′(0) = 0 and g′′(t) = 0 for
all t. Hence g(t) = 0 for all t. ♠

Our arguments apply to any 2-plane in E. We conclude two things.

• dE respects the orthogonal splitting coming from the polar coordinate
system on the vector space T .

• dE is nonzero on the vectors tangent to the spheres in the polar coor-
dinate system.

These two properties show that dE is everywhere nonsingular.

3.1 Local Isometry

Let J(t) be a Jacobi field perpendicular to γ. I’ll show that ‖J(t)‖ =
‖J ′(0)‖ sinh(t), independent of whether we are in M1 or M2. That is, the Ja-
cobi fields grow at the same rate, a rate which only depends on the constant
curvature condition. This situation, together with Gauss’s Lemma, forces dg
to be an isometry at each point.

Let {Pk} denote a parallel orthonormal frame along γ, all of whose vec-
tors are perpendicular to T . The following lemma only works in constant
curvature. It is responsible for the clean growth formula we get.
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Lemma 3.3 R(T, Pk, T, Pm) = −1 if m = k and otherwise 0.

Proof: When k = m we are just compute the sectional curvature of some
plane. When m 6= k we let V = (Pk + Pm)/

√
2. Then V is a unit field

perpendicular to T and

1 = 2R(T, V, T, V ) =

2R(T, Pk, T, Pk) +R(T, Pm, T, Pm, T ) +R(T, Pk, T, Pm) +R(T, Pm, T, Pk)

Hence
R(T, Pk, T, Pm) +R(T, Pm, T, Pk) = 0. (3)

But these last two terms are equal, by the general symmetry

(R(A,B,C,D) = R(C,D,A,B).

Hence, each of the terms in Equation 3 is 0. ♠

Let J be a Jacobi field perpendicular to T . We can write J =
∑

akPk.
We compute

D2J

dt2
=

∑

a′′kPk

Therefore
〈

D2J

dt2
, Pm

〉

= a′′m. (4)

At the same time
−R(T, J, T, Pm) = am (5)

by the lemma above. Hence, the Jacobi equation gives a′′m = am. we nor-
malize so that ‖J(0)‖ = 0 we find that ak(t) = a′k(0) sinh(t). Therefore
‖J(t)‖ = ‖J ′(0)‖ sinh(t) as claimed.
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