The purpose of these notes is to prove Lindemann's Theorem. The proof is adapted from Jacobson's book Algebra I, but I simplified some of the assumptions in order to make the proof easier. Also, I improved the proof somewhat.

1 The Main Result

Here is Lindemann's Theorem.
Theorem 1.1 Let $u \neq 0$ be an algebraic number. Then e^{u} is transcendental.
Theorem 1.1, applied to $u=1$, immediately proves that e is transcendental. Here is another application.

Theorem 1.2π is transcendental.

Proof: Suppose π is algebraic. Since $2 i$ is also algebraic, $2 \pi i$ is algebraic. But $e^{2 \pi i}=1$ and 1 is not transcendental. This contradicts Theorem 1.1.

Rather than prove Theorem 1.1 directly, we'll prove a related result.
Theorem 1.3 Let \boldsymbol{F} denote the field of algebraic numbers. Suppose that u_{1}, \ldots, u_{k} are distinct algebraic integers. Then the numbers $e^{u_{1}}, \ldots, e^{u_{k}}$ are linearly independent over \boldsymbol{F}.

Let's first see how Theorem 1.3 implies Theorem 1.1. Suppose that u is some algebraic number and e^{u} is algebraic. Then $e^{k u}=\left(e^{u}\right)^{k}$ is algebraic for every integer k. We can choose k so that $k u$ is an algebraic integer. Hence, without loss of generality, we can assume that u is an algebraic integer and $e^{u}=v$ is an algebraic number. But then we set $u_{1}=0$ and $u_{2}=u$ and $v_{1}=-v$ and $v_{2}=1$. We have

$$
v_{1} e^{u_{1}}+v_{2} e^{u_{2}}=-v+e^{u}=0 .
$$

This contradicts the fact that $e^{u_{1}}$ and $e^{u_{2}}$ are linearly independent over \boldsymbol{F}.
Remark: Jacobson proves Theorem 1.3 under the weaker assumption that u_{1}, \ldots, u_{k} are just algebraic numbers and not necessarily algebraic integers. The stronger result in Jacobson is equivalent to the Lindemann-Weierstrass Theorem, a generalization of Lindemann's Theorem.

2 Outline of the Proof

Say that a bad sum is a nontrivial sum of the form

$$
\begin{equation*}
v_{1} e^{u_{1}}+\ldots+v_{n} e^{u_{n}}=0 \tag{1}
\end{equation*}
$$

where v_{1}, \ldots, v_{n} are algebraic numbers and u_{1}, \ldots, u_{n} are algebraic integers. the content of Theorem 1.3 is that there are no bad sums. We will assume that there is a bad sum and derive a contradiction. Here is our first main result.

Lemma 2.1 (Step 1) Suppose that there exists a bad sum. Then there exists a bad sum where $v_{1}, \ldots, v_{n} \in \boldsymbol{Z}$.

Note that the n in Step 1 might be different from the n in Equation 1. The same thing is true for the remaining steps. We are just using n to denote a finite sum.

Suppose then that we have a bad sum in which all the v 's are integers. We can find a normal extension K of \boldsymbol{Q} such that $u_{1}, \ldots, u_{n} \in K$. Let $G=G(K, \boldsymbol{Q})$ denote the Galois group of K over \boldsymbol{Q}.

Lemma 2.2 (Step 2) Suppose that there exists a bad sum as in Step 1. Then there exists a bad sum of the form $v_{1} T_{1}+\ldots+v_{n} T_{n}$, where

$$
\begin{equation*}
T_{k}=\sum_{\phi \in G} e^{\phi\left(u_{k}\right)}, \tag{2}
\end{equation*}
$$

and $v_{1}, \ldots, v_{n} \in \boldsymbol{Z}$.
Finally, here is the last of the algebraic steps.
Lemma 2.3 (Step 3) Suppose that there exists a bad sum as in Step 2. Then we have a bad sum of the form

$$
\begin{equation*}
v_{0}+v_{1} T_{1}+\ldots+v_{n} T_{n} \tag{3}
\end{equation*}
$$

where $v_{0} \in \boldsymbol{Z}-\{0\}$ and the remaining terms are as in Step 2.
We will work with the sum in Equation 3.

Lemma 2.4 (Step 4) For any sufficiently large prime p, there is an integer $N \in \boldsymbol{Z}-p \boldsymbol{Z}$ and polynomial $F(x) \in \boldsymbol{Z}[x]$ such that

$$
\left|N e^{\phi\left(u_{i}\right)}-F\left(\phi\left(u_{i}\right)\right)\right|<1 / p
$$

for all u_{i} and all $\phi \in G$. Also, the coefficients of F are all divisible by p.
Now let's put the steps together. We pick some large prime p and multiply Equation 3 by N :

$$
\begin{equation*}
X=v_{0} N+v_{1} N T_{1}+\ldots+v_{n} N T_{n}=0 \tag{4}
\end{equation*}
$$

Consider the related sum

$$
\begin{equation*}
Y=v_{0} N+v_{1} \sum_{\phi \in G} F\left(\phi\left(u_{1}\right)\right)+\ldots+v_{n} \sum_{\phi \in G} F\left(\phi\left(u_{n}\right)\right) . \tag{5}
\end{equation*}
$$

From Step 4, we have

$$
\begin{equation*}
\left|v_{k} N T_{k}-v_{k} \sum_{\phi \in G} F\left(\phi\left(u_{k}\right)\right)\right|<\frac{M}{p} ; \quad M=\max \left(\left|v_{1}\right|, \ldots,\left|v_{n}\right|\right) \tag{6}
\end{equation*}
$$

Subtracting X from Y term by term and using Equation 6, we get

$$
\begin{equation*}
|Y|=|Y-X|<\frac{n M}{p}<1 \tag{7}
\end{equation*}
$$

The last inequality holds when we pick p large enough. But each term

$$
\begin{equation*}
\sum_{\phi \in G} \frac{F\left(\phi\left(u_{k}\right)\right)}{p} \tag{8}
\end{equation*}
$$

is an algebraic integer that is fixed by all $\phi \in G$. Hence, this sum lies in \boldsymbol{Q}. The only algebraic integers in \boldsymbol{Q} are ordinary integers. Hence the sum in Equation 8 is an integer! Therefore, all the summands of Y, after the first one, lie in $p \boldsymbol{Z}$. But the first summand of Y lies in $\boldsymbol{Z}-p \boldsymbol{Z}$ provided we take p large enough. Hence $Y \in \boldsymbol{Z}-p \boldsymbol{Z}$. In particular $|Y| \geq 1$. For p sufficiently large, Equation 7 says that $|Y|<1$. This is a contradiction. Hence there are no bad sums.

This completes the proof, modulo the four steps above. Now we prove the four steps.

3 A Certain Ring

Let K be a finite normal extension of \boldsymbol{Q}. Let O_{K} be the ring of algebraic integers in K. We define a ring R, as follows. An element of R is a map $f: O_{K} \rightarrow K$ which is nonzero only at finitely many values. Given two elements $f_{1}, f_{2} \in R$, we define $g=f_{1}+f_{2}$ by the rule $g(a)=f_{1}(a)+f_{2}(a)$. Again, g is only nonzero at finitely many values, so $g \in R$. This makes R into an abelian group. We define $h=f g$ by the rule that

$$
\begin{equation*}
h(a)=\sum_{s+t=a} f(s) g(t) . \tag{9}
\end{equation*}
$$

Again h only takes on finitely many nonzero values. It is an easy but tedious exercise to check that these operations make R into a ring. For instance, the multiplication rule is associative and $(f g) h$ and $f(g h)$ both map a to

$$
\sum_{r+s+t=a} f(r) g(s) h(t)
$$

Here is a less obvious property.
Lemma 3.1 R is an integral domain.
Proof: This works for roughly the same reason that polynomial rings over fields are integral domains: The highest degree terms multiply together to get a result that isn't cancelled by anything else. We don't have the notion of degree here, but we can do something similar. We define an ordering on \boldsymbol{C}, as follows: $x_{1}+i y_{1}>x_{2}+i y_{2}$ if and only if one of two things holds.

- $x_{1}>x_{2}$.
- $x_{1}=x_{2}$ and $y_{1}>y_{2}$.

Our ordering has the following property: If $z_{1}>z_{1}^{\prime}$ and $z_{2}>z_{2}^{\prime}$ then $z_{1}+z_{2}>z_{1}^{\prime}+z_{2}^{\prime}$. Given nonzero $f, g \in R$, there are largest elements $s, t \in K$ such that $f(s) \neq 0$ and $g(t) \neq 0$. But then $f g(s+t)=f(s) g(t) \neq 0$. The point is that all other sums in Equation 9 are less than $s+t$ in the order.

There is a map $\Psi: R \rightarrow \boldsymbol{C}$ given by

$$
\begin{equation*}
\Psi(f)=\sum_{a \in K} f(a) e^{a} \tag{10}
\end{equation*}
$$

This is a finite sum, so $\Psi(f)$ is a well-defined number.

Lemma 3.2 Ψ is a ring homomorphism.
Proof: It is pretty obvious that Ψ is a group homomorphism. We compute

$$
\begin{gathered}
\Psi(f g)=\sum_{a \in K}(f g)(a) e^{a}= \\
\sum_{a \in K} \sum_{s+t=a} f(s) g(t) e^{s+t}= \\
\sum_{s, t \in K} f(s) g(t) e^{s+t}= \\
\sum_{s, t \in K} f(s) g(t) e^{s} e^{t}= \\
\left(\sum_{s \in K} f(s) e^{s}\right)\left(\sum_{t \in K} g(t) e^{t}\right)= \\
\Psi(f) \Psi(g)
\end{gathered}
$$

The main point here is that $e^{s+t}=e^{s} e^{t}$.
There are two more pieces of structure. Let $G=G(K, \boldsymbol{Q})$ be the Galois group of K over \boldsymbol{Q}. For any $\phi \in G$, the composition $\phi \circ f$ is also an element of R. This map has the action $\phi \circ f(a)=\phi(f(a))$. Similarly, the composition $f \circ \phi$ is an element of R.

4 Step 1

Suppose that we have a bad sum, as in Equation 1. We take the field K to be some finite normal extension that contains $u_{1}, \ldots, u_{n}, v_{1}, \ldots, v_{n}$.

Let N be the kernel of Ψ. If our bad sum exists, then N is nontrivial. In fact, N consists exactly in those elements which Ψ maps to bad sums.

Our bad sum gives us a nontrivial element $f \in N$. Consider the product

$$
\begin{equation*}
g=\prod_{\phi \in G}(\phi \circ f) \in N . \tag{11}
\end{equation*}
$$

Since R is an integral domain, g is a nontrivial element of R. By construction $\phi \circ g=g$ for all $\phi \in G$. This is to say that $g(a)$ is fixed by all elements of G. But then $g(a) \in \boldsymbol{Q}$ for all $a \in O_{K}$. By construction $\Psi(g)$ is a bad sum with rational coefficients. We multiply through by a large integer to make all the coefficients integers. This completes Step 1.

5 Step 2

We keep the same notation. Suppose that $f \in N$ is such that $\Psi(f)$ is a bad sum with integer coefficients. We consider the product

$$
\begin{equation*}
g=\prod_{\phi \in G}(f \circ \phi) \in N \tag{12}
\end{equation*}
$$

By construction, $g \circ \phi=g$ for all $\phi \in G$. The map g assigns the same values to both a and $\phi(a)$ for all $\phi \in G$. Hence, in the bad sum $\Psi(g)$, the coefficient of e^{a} and the coefficients of $e^{\phi(a)}$ are the same for each $a \in O_{K} K$ and $\phi \in G$. By construction, these coefficients are integers. Hence, $\Psi(g)$ has exactly the form mentioned in Step 2.

$6 \quad$ Step 3

Say that an element $g \in R$ is symmetric if $g \circ \phi=g$ for all $\phi \in G$ and also g is integer valued. We established Step 2 by showing that the kernel N, if nonempty, contains a symmetric element. To complete Step 3, we just have to adjust g so that $g(0) \neq 0$.
Lemma 6.1 The product of two symmetric elements is symmetric.
Proof: Suppose that f and g are symmetric. Then, setting $s^{\prime}=\phi^{-1}(s)$ and $t^{\prime}=\phi^{-1}(t)$, we have

$$
f g \circ \phi(a)=\sum_{s+t=\phi(a)} f(s) g(t)=\sum_{s^{\prime}+t^{\prime}=a} f(s) g(t)=\sum_{s^{\prime}+t^{\prime}=a} f\left(s^{\prime}\right) g\left(t^{\prime}\right)=f g(a) .
$$

Hence $f g \circ \phi=f g$.
Given a symmetric $g \in N$, we choose some algebraic integer $a \in K$ such that $g(a) \neq 0$. We define h to be the symmetric element such that $h(-b)=g(a)$ if and only if $b=\phi(a)$ for some $\phi \in G$, and otherwise $h(b)=0$. Finally, we set $f=g h$. By construction $f \in N$ and f is symmetric. We compute

$$
\begin{equation*}
f(0)=\sum_{s+t=0} g(s) h(t)=C g(a)^{2} \neq 0 . \tag{13}
\end{equation*}
$$

The only contributions from this sum arise when s lies in the G-orbit of a. The constant C is the number of points in the G-orbit of a. We have $f(0) \neq 0$ and $f \in N$ and f is symmetric. Hence $\Psi(f)$ is the kind of bad sum advertised in Step 3.

$7 \quad$ Step 4

We can find a polynomial $a(x) \in \boldsymbol{Z}[x]$ such that all the terms $\phi\left(u_{j}\right)$ are roots of a, and 0 is not a root of a.

Choose a prime p and consider the function

$$
\begin{equation*}
f(x)=\frac{1}{(p-1)!} x^{p-1} a(x)^{p} \tag{14}
\end{equation*}
$$

Next, we define

$$
\begin{equation*}
N=f^{(p-1)}(0)+f^{(p)}(0)+\ldots ; \quad F(x)=f^{(p)}(x)+f^{(p+1)}(x)+\ldots \tag{15}
\end{equation*}
$$

These are finite sums because f is a polynomial.
Lemma 7.1 If p is large enough, N is not divisible by p.

Proof: We can write $f(x)=b_{0} x^{p-1}+b_{1} x^{p}+\ldots$, where $b_{0}=a(0)^{p} /(p-1)$!. We have $f^{p-1}(0)=a(0)^{p}$ and all higher derivatives of f vanish at 0 . If p is large then $a(0)^{p}$ is not divisible by p.

Lemma 7.2 $F(x) \in \boldsymbol{Z}[x]$ and all the coefficients are divisible by p.

Proof: Since F is the sum of integer polynomials, $F(x) \in \boldsymbol{Z}[x]$. Note that $f^{(k)}(x)$ has all coefficients divisible by p as long as $k \geq p$. Hence the sum of these polynomials has all coefficients divisible by p.

To finish our proof, it is convenient to introduce the function

$$
\begin{equation*}
G(x)=f(x)+f^{\prime}(x)+f^{\prime \prime}(x) \ldots \tag{16}
\end{equation*}
$$

We have

$$
\begin{equation*}
G(0)=N ; \quad G\left(\phi\left(u_{i}\right)\right)=F\left(\phi\left(u_{i}\right)\right) . \tag{17}
\end{equation*}
$$

The reason this works is that the first $p-2$ derivatives of f vanish at 0 and the first $p-1$ derivatives of f vanish at each $\phi\left(u_{i}\right)$. So, to finish Step 4, we just have to prove that

$$
\begin{equation*}
\left|G(0) e^{t}-G(t)\right|<1 / p ; \quad \forall t=\phi\left(u_{i}\right) \tag{18}
\end{equation*}
$$

The rest of the proof is devoted to the proof of Equation 18. Note that t might be a complex number here. On the first pass, you might want to just consider the case when t is always real. In this case, the derivatives we take are the ordinary derivatives. In the general case, the expression f^{\prime} means $d f / d z$, the complex derivative. The only difference between the general complex case and the real case is that you have to think a bit about why the starred inequality is true in the complex case.

Let

$$
\begin{equation*}
N=\max \left|\phi\left(u_{i}\right)\right| \tag{19}
\end{equation*}
$$

where the max is taken over all possibilities. We have $|t| \leq N$.
Let $\psi(x)=e^{-x} G(x)$. We compute

$$
\psi^{\prime}(x)=-e^{-x}\left(G(x)-G^{\prime}(x)\right)=-e^{-x}\left(\sum_{i=0}^{\infty} f^{(i)}(x)-\sum_{i=1}^{\infty} f^{(i)}(x)\right)=-e^{-x} f(x)
$$

The sums are finite, because f is a polynomial. Our equation tells us that

$$
\begin{equation*}
\left|\psi^{\prime}(x)\right| \leq e^{N}|f(x)| \tag{20}
\end{equation*}
$$

for all $x \in \boldsymbol{C}$ such that $|x| \leq N$. Letting B be the disk of radius N centered at the origin, we have

$$
\begin{gathered}
\left|G(t)-e^{t} G(0)\right|= \\
\left|e^{t}\right||\psi(t)-\psi(0)| \leq^{*} \\
t e^{t} \max _{B}\left|\psi^{\prime}\right| \leq \\
N e^{2 N} \max _{B}|f| \leq \frac{C^{p}}{(p-1)!},
\end{gathered}
$$

where C is a constant that only depends on the original polynomial a and not on any properties of p. For p sufficiently large, this last bound is less than $1 / p$. This finishes Step 4.

