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1 Introduction

The purpose of this work is to rigorously verify the phase-transition for 5
point energy minimization first observed in [MKS], in 1977, by T. W. Mel-
nyk, O, Knop, and W. R. Smith. Our results contain, as special cases,
solutions to Thomson’s 5-electron problem [S1] and Polya’s 5-point problem
[HS]. This work is an updated version of my monograph from 6 years ago.
I simplified the proof significantly and also I wrote this version in an experi-
mental style designed to facilitate the verification process. This work is less
than half as long as the original.

I wrote the proof in a tree-like form. Thus, the Main Theorem is an
immediate consequence of Lemma A, Lemma B, and Lemma C. These three
Lemmas are independent from each other. Lemma A is an immediate conse-
quence of Lemma A1 and Lemma A2. And so on. All the “ends” of the tree,
such as Lemma B313, either have short and straightforward proofs or are
computer calculations which I will describe in enough detail that a compe-
tent programmer could reproduce them. At the same time, all my computer
programs are available to download and use. Figure 0 below maps out the
complete logical structure of the proof of the Main Theorem.

The rest of this introduction states the results and explains how to divide
the verification of the proof into small pieces. Following this, §2 contains a
discussion of the history and context of the results, a high-level discussion of
the ideas in the proof, a discussion of the computer experiments I did, and a
guide to the relevant software I wrote. Following this we get to the proof.
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Results: Let S2 be the unit sphere in R3. Given a configuration {pi} ⊂ S2

of N distinct points and a function F : (0, 2]→ R, define

EF (P ) =
∑

1≤i<j≤N

F (‖pi − pj‖). (1)

This quantity is commonly called the F -potential or the F -energy of P . A
configuration P is a minimizer for F if EF (P ) ≤ EF (P ′) for all other N -point
configurations P ′.

We are interested in the Riesz potentials :

Rs(d) = d−s, s > 0. (2)

Rs is also called a power law potential , and R1 is specially called the Coulomb
potential or the electrostatic potential . The question of finding the N -point
minimizers for R1 is commonly called Thomson’s problem.

We consider the case N = 5. The Triangular Bi-Pyramid (TBP) is the
5 point configuration having one point at the north pole, one point at the
south pole, and 3 points arranged in an equilateral triangle on the equator. A
Four Pyramid (FP) is a 5-point configuration having one point at the north
pole and 4 points arranged in a square equidistant from the north pole.

Define

15+ = 15 +
25

512
. (3)

Theorem 1.1 (Main) There exists ש ∈ (15, 15+) such that:

1. For s ∈ (0, (ש the TBP is the unique minimizer for Rs.

2. For s = ש the TBP and some FP are the two minimizers for Rs.

3. For each s ∈ ,ש) 15+) some FP is the unique minimizer for Rs.

The number ש is a new constant of nature. Its decimal expansion starts

ש = 15.0480773927797...

This constant is computable in the sense that an ideal computing machine
can rigorously compute as many digits of ש as desired in finite time. See §3.5.

In §3.5 I will also explain the main details of the following theorem.

Theorem 1.2 (Auxiliary) Let Fs(d) = −d−s be the Fejes-Toth potential.
The TBP is the unique minimizer for Fs for all s ∈ (−2, 0).
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Logic Tree: Figure 0 shows all the results we prove and how they contribute
to the proof of the main theorem. The color coding indicates different inde-
pendent parts of the proof. There are 7 colors. Each color (so to speak) may
be read independently from the others.
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Figure 0: The tree of implications.

I have indicated the nature of each colored part and the page numbers
containing that part. In the interest of space I have not given the full name
of every lemma. Thus, the specially starred red lemma at the top is A222.
The green arrow indicates that Lemma C31 and Lemma C222 are the same.
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The starred lemmas are the divide-and-conquer computer calculations.
The big one, for A13, is done with interval arithmetic. The others are done
with exact integer arithmetic. The square nodes indicate sizeable but exact
calculations done with rational polynomials in Mathematica. The 2 two-
tone vertices (A222 and B43) indicate really lucky computer proofs I am
especially proud of. For instance, I prove Lemma B43 by showing that a
4-variable polynomial with over 100000 terms (about half of which are neg-
ative) is positive on (0, 1)4. For these two lemmas my computer code also
has alternate proofs (with documentation) that do not rely on pure good luck.

Verification: As Figure 0 indicates, a team of 7 readers could check the
mathematical part of the proof, with the team-leader reading the blue out-
line and the other 6 people reading the other colors. Each color involves
at most 12 pages of material. Some readers might also want to consult the
discussion on pp 5-13 to get insight into where the ideas come from but this
discussion is logically independent from the proof.

I wrote the computer code in such a way that the programs for each part
are independent from the programs for each other part. It is probably easier
in each case to reproduce the code rather than check that mine is correct.
(Much of my code is wrapped inside graphical user interfaces that let the
user see it working.) Each reader could team up with a strong computer
programmer who could reproduce the relevant code. This would be a serious
job only for Lemma A135, which a good programmer could probably recreate
in few days. For the rest of the parts, the code could be recreated in a day.
§2.4 discusses my software further.

Acknowledgements: I thank Henry Cohn, Javier Gomez-Serrano, Doug
Hardin, John Hughes, Ian Jauslin, Alex Kontorovich, Abhinav Kumar, Cur-
tis McMullen, Stephen D. Miller, Jill Pipher, Ed Saff, Sergei Tabachnikov,
and Alexander Tumanov for discussions and/or encouragement related to this
work. I thank I.C.E.R.M. for facilitating this project. My interest in this
problem was rekindled during discussions about point configuration prob-
lems at the I.C.E.R.M. Science Advisory Board meeting in Nov. 2015. After
writing the original version of the monograph around 2016, I let the thing
languish on my website for some years. After giving the Lewis Lectures at
Rutgers University in Nov, 2022, I got inspired to re-write my monograph
and make it easier to understand. Finally, I thank the National Science
Foundation for their continued support, currently grant DMS-2102802.
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2 Discussion

This chapter discusses the history and context for the result, and the high
level ideas in the proof. Following this, I explain some of my experimental
methods and discuss the computer parts of the proof. None of this is logically
needed for the proof, but it will shed light on why the proof looks like it does.

2.1 History and Context

We take up the question discussed in the introduction: Which configurations
of points on the sphere minimize a given potential function F : (0, 2] → R.
The classic choice for this question is F = Rs, the Riesz potential , given by
Rs(d) = d−s. The Riesz potential is defined when s > 0. When s < 0 the
corresponding function Rs(d) = −d−s is called the Fejes-Toth potential . The
main difference is the minus sign out in front.

The case s = 1 is specially called the Coulomb potential or the electro-
static potential . This case of the energy minimization problem is known as
Thomson’s problem. See [Th]. The case of s = −1, in which one tries to
maximize the sum of the distances, is known as Polya’s problem.

There is a large literature on the energy minimization problem. See [Fö]
and [C] for some early local results. See [MKS] for a definitive numerical
study on the minimizers of the Riesz potential for n relatively small. The
website [CCD] has a compilation of experimental results which stretches all
the way up to about n = 1000. The paper [SK] gives a nice survey of results,
with an emphasis on the case when n is large. See also [RSZ]. The paper
[BBCGKS] gives a survey of results, both theoretical and experimental,
about highly symmetric configurations in higher dimensions.

When n = 2, 3 the problem is fairly trivial. In [KY] it is shown that when
n = 4, 6, 12, the most symmetric configurations – i.e. vertices of the relevant
Platonic solids – are the unique minimizers for all Rs with s ∈ (−2,∞)−{0}.
See [A] for just the case n = 12 and see [Y] for an earler, partial result
in the case n = 4, 6. The result in [KY] is contained in the much more
general and powerful result [CK, Theorem 1.2] concerning the so-called sharp
configurations.

The case n = 5 has been notoriously intractable. There is a general feeling
that for a wide range of energy choices, and in particular for the power law
potentials (when s > −2) the global minimizer is either the TBP or an FP.
Here is a run-down on what is known so far:
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• The paper [HS] has a rigorous computer-assisted proof that the TBP is
the unique minimizer for the potential F (r) = −r. (Polya’s problem).

• My paper [S1] has a rigorous computer-assisted proof that the TBP
is the unique minimizer for R1 (Thomson’s problem) and R2. Again
Rs(d) = d−s.

• The paper [DLT] gives a traditional proof that the TBP is the unique
minimizer for the logarithmic potential.

• In [BHS, Theorem 7] it is shown that, as s → ∞, any sequence of
5-point minimizers w.r.t. Rs must converge (up to rotations) to the
FP having one point at the north pole and the other 4 points on the
equator. In particular, the TBP is not a minimizer w.r.t Rs when s is
sufficiently large.

• In 1977, T. W. Melnyk, O. Knop, and W. R. Smith, [MKS] conjectured
the existence of the phase transition constant, around s = 15.04808, at
which point the TBP ceases to be the minimizer w.r.t. Rs. This is the
phase transition which our Main Theorem estabishes.

• Define
Gk(r) = (4− r2)k, k = 1, 2, 3, ... (4)

In [T], A. Tumanov proves that the TBP is the unique minimizer for
G2. The minimizers for G1 are those configurations whose center of
mass is the origin. The TBP is included amongst these.

Tumanov points out that the G2 potential does not have an obvious ge-
ometric interpretation, but it is amenable to a traditional analysis. He also
mentions that his result might be a step towards proving that the TBP min-
imizes a range of power law potentials. Inspired by similar material in [CK],
he observes that if the TBP is the unique minimizer for G2, G3 and G5, then
the TBP is the unique minimizer for Rs provided that s ∈ (0, 2].

We will establish implications like this during the course of our proof of
the Main Theorem. The family of potentials {Gk} behaves somewhat like the
Riesz potentials. The TBP is the unique minimizer for G3, G4, G5, G6 (as a
consequence of our work here) but not a minimizer for any of G7, G8, G9, G10.
I checked up to about k = 100 that the TBP does not mininize Gk when
k > 10 and I am sure this pattern persists.
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2.2 Ideas in the Proof

Here are the three ingredients in the proof of the Main Theorem.

• The divide-and-conquer approach taken in [S1].

• Elaboration of Tumanov’s observation.

• A symmetrization trick that works on a small domain.

Divide and Conquer: For certain choices of F , we are interested in search-
ing through the moduli space of all 5-point configurations and eliminating
those which have higher F -potential than the TBP. We win if we eliminate
everything but the TBP. For the functions we consider, most of the configu-
rations have much higher energy than the TBP and we can eliminate most
of the configuration space just by crude calculations. What is left is just a
small neighborhood Ω0 of the TBP. The TBP is a critical point for EF , and
(it turns out) that the function EF is convex in Ω0. In this case, we can say
that the TBP must be the unique global minimizer.

To implement this, we normalize so that (0, 0, 1) is a point of the con-
figuration, and then we map the other 4 points into R2 using stereographic
projection:

Σ(x, y, z) =
( x

1− z
,

y

1− z

)
. (5)

We call the 4-point planar configuration the avatar . We use crude a priori
estimates to produce a subset Ω of a 7-dimensional rectangular solid that
(up to symmetry) contains all avatars that could have lower potential than
the TBP for all the relevant functions. Inside Ω the divide-and-conquer
algorithm is easy to manage. Our basic object is a block , a rectangular solid
subset of Ω. A main feature of our proof is a result which gives a lower bound
on the energy of any configuration in a block based on the energies of the
configurations corresponding to the vertices, and an error term.

Having an efficient error term makes the difference between a feasible
calculation and one which would outlast the universe. Our error term is
fairly sharp, and also the error term is a rational function of the vertices of
the block. For the potentials we end up using, we could run all our com-
puter programs using exact integer arithmetic. Such integer calculations are
too slow (in this century). I implemented the big calculations using interval
arithmetic. Since everything in sight is rational, our calculations only involve
the operations plus, minus, times, divide, min, and max.
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Elaborations of Tumanov’s Observation: So far we have discussed one
function at a time, but we are interested in a 1-parameter family of power
laws and we can only run our program finitely many times. Using the divide
and conquer approach we show that the TBP is the unique global minimizer
for Gk when k = 3, 4, 5, 6 and also for the wierd energy hybrids G5 − 25G1

and G]]
10 = G10 +28G5 +102G2. Converting these results to statements about

the power law potentials comes down to variants of Tumanov’s observation.
After a lot of experimenting I found variants which cover large ranges of
exponents. The results for the potentials above combine to prove that the
TBP is the unique minimizer for Rs as long as s ∈ (−2, 0) ∪ (0, 13].

Symmetrization: The methods above cannot be sharp enough to arrive
at the exact statement of our Main Theorem, because of the phase transi-
tion. We get around this problem as follows. First, we use the divide and
conquer approach to identify a small subset Υ of the configuration space such
that every configuration not in Υ, and not the TBP, has higher G]

10-energy,
where G]

10 = G10 + 13G5 + 68G2. This combines with the previous calcula-
tions to show that every configuration not in Υ, and not the TBP, has higher
s potential than the TBP whenever s ∈ [13, 15+]. The configurations in Υ
very nearly have 4-fold symmetry.

To analyze configurations in Υ we use a symmetrization operation which
maps Υ to the subset Υ4 ⊂ Υ consisting of configurations having 4-fold sym-
metry. This retraction turns out to reduce the s-potential for exponent values
s ∈ [13, 15+]. Finally (and slightly simplifying) we produce a retraction from
Υ4 to a subset Υ8 ⊂ Υ4 consisting entirely of FPs. This new retraction re-
duces the s-potential when s ∈ [15, 15+]. Now we are left with an analysis of
the s-potential on a 1-dimensional set.

Extending the Range: My techniques run out just past the value .ש The
obvious conjecture, already observed by Melnyk, Knop, and Smith, is some
FP is the minimizer for any Riesz potential with exponent larger than .ש The
original version of my monograph contained a proof that some FP beat the
TBP for all exponents up to 100. I omitted this material because it didn’t
seem like such a strong result and mostly it was just a tedious calculation.
I would say that the main bottleneck to proving that some FP is the mini-
mizer for Rs for all s > ש is the delicacy of the symmetrization process which
I discuss above and also below.
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2.3 Experimentation

The proof of the Main Theorem is mostly just a verification of the things I
discovered experimentally using the software I created. I will follow 3 main
lines of experimental investigation in this discussion.

Experiments with Interpolation: This discussion has to do with what
I called “Tumanov’s observation” in the preceding section. These kinds of
methods go under the name of interpolation.

For the purpose of giving results about the Riesz potentials, the functions
Gk lose their usefulness at k = 7 because the TBP is not a minimizer for
G7, G8, ... At the same time, the general method requires Gk for k large in
order to extend all the way to the phase transition, a phenomenon that occurs
at ש = 15.04...

I built a graphical user interface which allows me to explore combinations
of the form

∑
ckGk and see whether various lists of these energy hybrids

produce the desired results. The computer program takes a quadruple of
hybrids, Γ1,Γ2,Γ3,Γ4, and then solves a linear algebra problem to find a
linear combination

Λs = a0 +
4∑
i=1

ai(s)Γi (6)

which matches the values of Rs at the values
√

2,
√

3,
√

4, the distances in-
volved in the TBP. (I will usually write 2 as

√
4 because then the distances

involved in the TBP are easier to remember.)
Concerning Equation 6, what we need for the quadruple to “work” on the

interval (s0, s1) is that the functions a1(s), a2(s), a3(s), a4(s) are nonnegative
for s ∈ (s0, s1) and that simultaneously the comparison function 1− (Λs/Rs)
is positive on (0, 2) − {

√
2,
√

3,
√

4}. So, my computer program lets you
manipulate the coefficients defining the energy hybrids and then see plots of
the functions just mentioned.

At the same time as this, my program computes the energy hybrid eval-
uated on the space of FPs to see how it compares to the value on the TBP.
I call this the TBP/FP competition. On intervals (s0, s1) ⊂ (0, (ש we want
the TBP to win the competition, as judged by the given energy hybrids.
Repeatedly running these competitions and looking at the plots of the co-
efficients and the comparison function, I eventually arrived at the energy
hybrids mentioned in the previous section.
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You can use this program too. If you actually get my Java program to
run on your computer, you can get the same intuition I eventually got about
what works and what doesn’t. If you don’t play around with the software,
then choices like

G[
5 = G5 − 25G1, G]]

10 = G10 + 28G5 + 102G2

will just seem like random lucky guesses. In fact they are practically the
unique (at most 3 term) energy hybrids which do the job!

To extend all the way to ,ש I had to accept an energy hybrid for which
the TBP would lose the TBP/FP competition. At the same time, the TBP
would still do well in the overall competition, beating most of the other
configurations. Eventually I hit upon the energy hybrid G]

10 and the small
neighborhood Υ mentioned above and defined precisely in the next chapter.
The quadruple (G1, G2, G

[
5, G

]
10) extends a bit past ,ש up to 15+, and G]

10 is
a pretty kind judge: With respect to this judge, the TBP wins against all
configurations outside the tiny Υ.

The intuition I came away with is that you need to use some Gk for fairly
large k, to get enough extension, and then you need to tune it by sharpening
and flattening . To sharpen means to add in more of the lower Gks. To flat-
ten means to do the opposite. When you sharpen, you get an energy hybrid
which is a kinder but less extensive judge: It works better but on a smaller
range of exponents. When you flatten, you get a harsher but more extensive
judge. The final quadruple (G1, G2, G

[
5, G

]
10) extends to the neighborhood

[13, 15+]. The TBP is the minimizer for the first 3 potentials, and for G]
10

the TBP wins outside of Υ.

Experiments with Symmetrization: Most successful energy minimiza-
tion results are about symmetry. The work culminating in that of Cohn-
Kumar [CK] shows how to exploit the extreme symmetry of some special
configurations, like the Leech cell, to show that they are the energy mini-
mizers with respect to a wide range of potentials. These methods only work
for very special numbers of points. The number N = 5 is not special in this
way, because there are no Platonic solids with 5 points.

For N = 5 the TBP and the FPs are competitors for the most symmetric
configurations. They have different symmetries. However, they do have
one thing in common: 4 fold dihedral symmetry. One dream for proving the
Main Theorem is to use a kind of symmetrization operation which replaces an
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arbitrary configuration with one having 4-fold dihedral symmetry and lower
potential energy. This would reduce the overall problem to an exploration of
a 2-dimensional moduli space and would possibly bring the result within the
range of rather ordinary calculus.

Such a symmetrization operation in general will surely fail due to the vast
range of possible configurations. However, certain operations might work well
in very specific parts of the configuration space and for very specific functions.
Fortunately, the divide-and-conquer-plus-interpolation method rules out ev-
erything of interest except the magical domain Υ and the exponent range
[13, 15+]. What I did is test various symmetrizations and various choices of
Υ until I found a pair that worked.

Once I found a symmetrization operation which worked, the question
became: How to prove it? Proving that symmetrization lowers the energy
seems to involve studying what happens on the tiny but still 7-dimensional
moduli space Υ. The secret to the proof is that, within Υ, the symmetrization
operation is so good that it reduces the energy in pieces. What I mean is
that the 10 term sum for the energy can be written as

e1 + ....+ e10 = (e1 + e2) + (e3 + e4) + (e5 + e6 + e7) + (e8 + e9 + e10)

so that the symmetrization operation decreases each bracketed sum sepa-
rately. This replaces one big verification by a bunch of smaller ones, con-
ducted over lower dimensional configuration spaces.

I use a second symmetrization which improves a configuration with 4-fold
symmetry to one with 8-fold symmetry. This symmetrization, though rather
simple, is extremely delicate. It works on a tiny domain Ψ̂4 ⊂ Υ and only for
power laws with potential greater than about 13.53. At the same time, this
symmetrization has great algebraic properties when restricted to the tiny do-
main where I use it. I found this operation, once again, by experimentation,
and then the algebraic properties took me by surprise.

Experiments with Local Analysis: Another part of the proof deals with
configurations that are very near the TBP. Here we are fortunate because
the functions EF are convex near the TBP. That means that the TBP is
the unique minimizer in a small neighborhood around the TBP. I want to
emphasize that what we need for convexity is not just a calculation at the
TBP. In order to use this information effectively in a computational proof, we
need an explicit neighborhood of convexity. Proving this sets up a recursive
problem.
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Consider the simpler situation where we would like to show that some
function f is positive on some interval I = [0, ε]. Let’s say that we have
free access to the values f(0), f ′(0), f ′′(0), ... and we can also look at the
explicit expressions for f and its derivatives. If we had some information
about maxI |f ′| we could combine it with information about f(0) to perhaps
complete the job. But how do we get information about maxI |f ′|? Well, if
we had information about maxI |f ′′| we could combine it with information
about f ′(0) to perhaps complete the job. And so on.

This is the situation we find ourselves in. We can compute all the partial
derivatives of EF at the TBP, though we have a function of 7 variables, and
so eventually it gets expensive to compute them all . However, no matter
how many derivatives we compute, it seems that we need to compute more
of them to get the bounds we need.

There is something that saves us: The error multiplier in Taylor’s The-
orem with Remainder. This multiplier is essentially εN/N !, a number that
becomes tiny as N increases. If we can get any kind of reasonable bounds
on high derivatives of our function, then we get pretty good bounds when
we multiply through by the tiny number. I eventually found a combinato-
rial trick for getting reasonable bounds on high dimensional derivative. The
magic formula is Equation 46.

2.4 Guide to the Software

The software for my proof can be dowloaded from

http//www.math.brown.edu/ ∼ res/Java/TBP.tar

Once you untar this program, you get a directory with a suite of smaller pro-
grams. There are 5 subdirectories, corresponding to 5 of the 7 parts of the
monograph. The outline and the part having to do with the error estimate
do not rely on any computer assists. The reader who is interested in veri-
fying any part of the monograph need only look at the programs for that part.

Main: This does the interval arithmetic calculation for the main divide-
and-conquer result, Lemma A135. This program is quite extensive, and
spread out in about 20 Java files, but almost all the length comes from the
visual/experimental part. I show the calculations in action, allow the user
to experiment with fairly arbitrary energy hybrids, and also give detailed
written instructions on the operation of the program.
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The reason for the extensive program is debugging. The big infrastructure
is designed to prevent errors in the actual computation. I have also included
a stripped down version that runs without all the bells and whistles. I try to
explain the main computation in §5 in enough detail that a reasonably good
programmer would be able to reproduce it.

Interpolation: The main program in this section, contained in the direc-
tory JavaMain, does all the experimentation with the energy hybrids dis-
cussed above, and also formally proves that the given energy hybrids extend
to their advertised ranges. However, the code I actually use in this version
of the proof is different. The subdirectory Proof has this shorter method.
Why both? I only discovered the method in Proof recently, and the method
in JavaMain is more robust. It doesn’t require the kind of ad hoc argument
I give in §9.5 and also (a very small part of) it is still needed logically for
the Auxiliary Theorem. I include a PDF file which explains the method in
JavaMain. Independent from all this, I also include Mathematics files such as
LemmaA221.m which generate all the plots for the corresponding lemmas. One
can compare the Mathematica and Java plots and see that they are the same.

Local Analysis: This directory has 3 Mathematica files, LemmaL21.m and
LemmaL22.m and Lemma23.m, which perform the straightforward and exact
calculations needed for these lemmas. The calculations involve manipulating
rational polynomials and evaluating them at special points.

Symmetrization: This directory has 4 Mathematica files, with names like
Lemma B22.m which do the calculations for the corresponding lemmas in this
part of the monograph. These short files essentially just manipulate rational
polynomials using standard operations in Mathematica. I also include things
in other subdirectories, such as a Java program that lets the user experiment
with the symmetrization operation.

Endgame: This directly contains a program which is a baby version of
the main divide-and-conquer program. This program does the calculation
for Lemma C2. I explain it in detail in §13. The calculation is done with ex-
act integer arithmetic over a 3-dimensional space. We also include a number
of Mathematica files such as LemmaC3.m.
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3 Main Theorem: Proof Outline

3.1 Preliminaries

Stereographic Projection: Let S2 ⊂ R3 be the unit 2-sphere. Stere-
ographic projection is the map Σ : S2 → R2 ∪ ∞ given by the following
formula.

Σ(x, y, z) =
( x

1− z
,

y

1− z

)
. (7)

Here is the inverse map:

Σ−1(x, y) =
( 2x

1 + x2 + y2
,

2y

1 + x2 + y2
, 1− 2

1 + x2 + y2

)
. (8)

Σ−1 maps circles in R2 to circles in S2 and Σ−1(∞) = (0, 0, 1).

Avatars: Stereographic projection gives us a correspondence between 5-
point configurations on S2 having (0, 0, 1) as the last point and planar con-
figurations:

p̂0, p̂1, p̂2, p̂3, (0, 0, 1) ∈ S2 ⇐⇒ p0, p1, p2, p3 ∈ R2, p̂k = Σ−1(pk). (9)

We call the planar configuration the avatar of the corresponding configura-
tion in S2. By a slight abuse of notation we write EF (p1, p2, p3, p4) when we
mean the F -potential of the corresponding 5-point configuration.

Figure 3.1 shows the two possible avatars (up to rotations) of the trian-
gular bi-pyramid, first separately and then superimposed. We call the one
on the left the even avatar , and the one in the middle the odd avatar . The
points for the even avatar are (±1, 0) and (0,±

√
3/3). When we superimpose

the two avatars we see some extra geometric structure that is not relevant
for our proof but worth mentioning. The two circles respectively have radii
1/2 and 1 and the 6 segments shown are tangent to the inner one.

0

1

2

3

02

3

1

02

even odd both

Figure 3.1: Even and odd avatars of the TBP.
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The Special Domain: We let Υ ⊂ (R2)4 denote those avatars p0, p1, p2, p3

such that

1. ‖p0‖ ≥ ‖pk‖ for k = 1, 2, 3.

2. 512p0 ∈ [433, 498]× [0, 0]. (That is, p0 ∈ [433/512, 498/512]× {0}.)

3. 512p1 ∈ [−16, 16]× [−464,−349].

4. 512p2 ∈ [−498,−400]× [0, 24].

5. 512p3 ∈ [−16, 16]× [349, 464].

We discuss the significance of Υ extensively in §2.3. In brief, the set Υ
contains the avatars that compete with the TBP near the exponent .ש

p0

p1

p2

p3

Figure 3.2: The sets defining Υ compared with two TBP avatars.

Symmetrization: Let (p0, p1, p2, p3) be an avatar with p0 6= p2. We define

d02 = 2‖p0 − p2‖, d13 = 2‖π02(p1 − p3)‖. (10)

Here π02 is the projection onto the subspace perpendicular to the vector
p0 − p2. Finally, we define

p∗0 = (d02, 0), p∗1 = (0,−d13), p∗2 = (−d02, 0), p∗3 = (0, d13). (11)

The avatar p∗1, p
∗
2, p
∗
3, p
∗
4 is invariant under reflections in the coordinate axes.
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3.2 Reduction to Three Lemmas

We now reduce the Main Theorem to Lemmas A, B, C. Let

15+ = 15 +
25

512

as in the Main Theorem. Let Υ be as in §3.1. Recall that Rs is the Riesz
potential.

Lemma 3.1 (A) For s ∈ (0, 13] the TBP uniquely minimizes the Rs-potential.
For s ∈ (13, 15+], any Rs-potential minimizer is either the TBP or else iso-
metric to a configuration whose avatar lies in Υ.

Lemma A focuses our attention on the small domain Υ and the parameter
range [13, 15+]. Now we bring in the symmetrization operation from §3.1.

Lemma 3.2 (B) Let s ∈ [12, 15+] and (p0, p1, p2, p3) ∈ Υ. Then

ERs(p
∗
0, p
∗
1, p
∗
2, p
∗
3) ≤ ERs(p0, p1, p2, p3)

with equality if and only if the two avatars are equal.

Let Υ4 denote the subset of Υ consisting of avatars which are invariant
under reflections in the coordinate axes. Lemma B (which also works for
s ∈ [12, 13]) focuses our attention on the same small parameter range [13, 15+]
and on the symmetric avatars living in Υ4.

Lemma 3.3 (C) Let ξ0 denote a avatar of the TBP. There exist ש ∈ (15, 15+)
such that the following is true.

1. For s ∈ (13, (ש we have Es(ξ0) < Es(ξ) for all ξ ∈ Υ4.

2. For s ∈ ,ש) 15+) we have Es(ξ0) > Es(ξ) for some ξ ∈ Υ4.

Also, for s ∈ [15, 15+] the restriction of Es to Υ4 has a unique minimum,
and this minimum represents an FP.

The Main Theorem is an obvious consequence of Lemma A (§3.3), Lemma
B (§10), and Lemma C (§3.4.) As a matter of convention we will point the
reader to where the proof of the given lemma starts. Thus, the proof of
Lemma A starts in §3.3.
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3.3 Proof of Lemma A

Define
Gk(r) = (4− r2)k. (12)

Also define
G[

5 = G5 − 25G1,

G]]
10 = G10 + 28G5 + 102G2,

G]
10 = G10 + 13G5 + 68G2 (13)

Lemma 3.4 (A1) The following is true.

1. The TBP is the unique minimizer for G4, G
[
5, G6.

2. The TBP is the unique minimizer for G]
10 among 5-point configurations

which are not isometric to ones which have avatars in Υ.

3. The TBP is the unique minimizer for G]]
10 among 5-point configurations

which have avatars in Υ.

We note two implications of Lemma A1:

• Since G5 is a positive combination of G[
5 and G1, Lemma A1 immedi-

ately implies that the TBP is the unique minimizer for G5.

• Since G]]
10 is a positive combination of G]

10 and G5 and G2, Lemma A1
immediately implies that the TBP is the unique minimizer for G]]

10.

Interpolation: Let T0 be the TBP. We say that a pair (Γ3,Γ4) of functions
forces the interval I if the following is true: If T is another 5-point config-
uration such that Γk(T0) < Γk(T ) for k = 3, 4 then Es(T0) < Es(T ) for all
s ∈ I.

Lemma 3.5 (A2) The following is true.

1. The pair (G4, G6) forces (0, 6].

2. The pair (G5, G
]]
10) forces [6, 13].

3. The pair (G[
5, G

]
10) forces [13, 15+].

Lemma A is an immediate consequence of Lemma A1 (§4) and Lemma
A2 (§9).
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3.4 Proof of Lemma C

Let Ψ4 denote the set of avatars of the form

(x, 0), (0,−y), (−x, 0), (0, y), 64(x, y) ∈ [43, 64]. (14)

We have Υ4 ⊂ Ψ4. We like Ψ4 better because it is more symmetric. We
identify Ψ4 with the square [43/64, 1]2 and we think of ERs as a function on
this square. We usually write Es = ERs . Again, the point (a, b) corresponds
to the avatar with points −p2 = p0 = (a, 0) and −p1 = p3 = (0, b). Though
the TBP does not lie in Ψ4, it corresponds to (1,

√
3/3).

The FP avatars in Ψ4 lie along the main diagonal. We call this diagonal
Ψ8. We define a smaller square Ψ̂4 ⊂ Ψ4 such that

64Ψ̂4 = [55, 56]. (15)

We think of Ψ̂4 as the sweet spot, the place where all the action happens.
We now define another symmetrization.

σ(x, y) = (z, z), z =
x+ y + (x− y)2

2
. (16)

We have σ : Ψ̂4 → Ψ8.

Lemma 3.6 (C1) If s ∈ [14, 16] and p ∈ Ψ̂4 Then Es(σ(p)) ≤ Es(p) with
equality if and only if σ(p) = p.

Remark: The operation σ is delicate. If we take the exponent s = 13, the
operation actually seems to increase the energy for all points of Υ̂4 − Υ̂8.
The magic only kicks in around exponent 13.53.

Our next result eliminates exponents and avatars not in [13, 15+]× Ψ̂4.

Lemma 3.7 (C2) Let ξ0 be the point in the plane representing the TBP.

1. If s ∈ [13, 15] and p ∈ Ψ4 then Es(ξ0) < Es(ξ).

2. If s ∈ [15, 15+] and p ∈ Ψ4 − Ψ̂4 then Es(ξ0) < Es(ξ).

3. If s ∈ [15, 15+] the restriction of Es to Ψ̂8 has a unique minimum.
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Statements 1 and 2 of Lemma C2 imply that for any s ∈ [13, 15+], any

minimizer ξ of Es, not equal to the TBP avatar, lies in Ψ̂4. Furthermore,
such a ξ can only exist when s ∈ [15, 15+]. Lemma C1 now says that ξ in

fact lies in Ψ̂8. Statement 3 of Lemma C2 adds the information that ξ is the
unique minimizer in Ψ̂8.

Lemma 3.8 (C3) For any ξ ∈ Ψ̂8 let Θ(s, ξ) = Es(ξ) − Es(ξ). Then for
s ∈ [15, 15+] we have ∂Θ/∂s < 0.

Here is how to deduce Lemma C from Lemma C1 (§12), Lemm C2 (§13)

and Lemma C3 (§14). By Lemma C2, we have Θ(15, ∗) > 0 on Ψ̂8. We
compute that Θ(15+, x, x) < 0 for x = 445/512 ∈ [55, 56]/64. Combining this
with Lemma C3, we see that there exists a smallest parameter ש ∈ (15, 15+)

such that Θ(ש, p∗) = 0 for some p∗ ∈ Ψ̂8. For s > ,ש Lemma C3 now says
that Θ(s, p∗) < 0. This establishes Lemma C.

3.5 Afterword

(1) Lemma C22 (§13), Lemma C3, and Equation 133 give a basis for an algo-
rithm to rigorously compute as many digits of ש as we like, up to the practical
limits of the computer. If we pick s ∈ (15, 15+) and exhibit x ∈ I such that
Θ(s, x, x) < 0 then ש < s by Lemma C3. By Equation 133, the function Θ

is convex on Ψ̂8 so it is easy to find the minimum with as much accuracy as
we like. At the same time, if Θ(s, x, x) > 0 for all x ∈ I then s < .ש Lemma
C22 gives us the computational tools to rigorously prove a result like this.
Running these two calculations simultaneously and updating the choices of
s as we go, we can theoretically get as close an approximation to ש as we like.

(2) Here I explain the main details of the proof of the Auxiliary Theorem:
All we need here is Lemma A for the interval (−2, 0). Lemma A1 also applies
to G3. The only differences in the proof are discussed in the remarks in §4.5
and §6.4. Once these details are in place, our software gives a computational
proof of Lemma A1 for G3 in the same way it does for the other potentials.
A variant of Lemma A2, with the same kind of proof, shows that the pair
(G3, G5) forces (−2, 0) with respect to Fs. The main extra detail needed here
is the matrix of power combos given in §9.4. My software also shows this
case, and gives a rigorous positivity proof as well.
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4 Main Theorem: Proof of Lemma A1

4.1 Odd and Even Avatars

We call a pair of points p̂, q̂ ∈ S2 far if ‖p̂ − q̂‖ ≥ 4/
√

5. Note that (p̂, q̂)
is a far pair if and only if (q̂, p̂) is a far pair. Our rather strange definition
has a more natural interpretation in terms of the avatars. If we rotate S2 so
that p̂ = (0, 0, 1) then q = Σ(q̂) lies in the disk of radius 1/2 centered at the
origin if and only if (p̂, q̂) is a far pair.

We say that a point in a 5-point configuration is odd or even according
to the parity of the number of far pairs it makes with the other points in
the configuration. Correspondingly, define the parity of the avatar to be the
parity of the number of points which are contained in the closed disk of radius
1/2 about the origin. This extends our definition for the TBP avatars.

We call 2 avatars isomorphic if the corresponding 5-point configurations
on S2 are isometric. Every avatar is isomorphic to an even avatar. To see
this, we form a graph by joining two points in a 5-point configuration by an
edge if and only if they make a far pair. As for any graph, the sum of the
degrees is even. Hence there is some vertex having even degree. When we
rotate so that this vertex is (0, 0, 1), the corresponding avatar is even. By
focusing on the even avatars, and further using symmetry, we arrive at a
configuration space where there is just one TBP avatar.

4.2 The Domains

Given an avatar ξ = (p0, p1, p2, p3), we write pk = (pk1, pk2). We define a
domain Ω ⊂ R7 to be the set of avatars ξ satisfying the following conditions.

1. ξ is even.

2. ‖p0‖ ≥ max(‖p1‖, ‖p2‖, ‖p3‖).

3. p12 ≤ p22 ≤ p32 and p22 ≥ 0.

4. p01 ∈ [0, 2] and p01 = 0.

5. pj ∈ [−3/2, 3/2]2 for j = 1, 2, 3.

6. min(p1k, p2k, p3k) ≤ 0 for k = 1, 2.
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We define Ω[ (to be used specially with G[
5) by the same conditions except

that we leave off Condition 6.

Closed Versus Open Conditions: If we want to check for inclusion in
the interior of Ω or Ω[, all the inequalities above must be strict. We find it
useful to work with the interior of Ω and Ω[ because we won’t need to spe-
cially treat some boundary cases. This will make for a cleaner calculation.

A Tiny Cube: We specially treat avatars very near the TBP. When we
string out the points of ξ0, we get (1, 0,−u,−1, 0, 0, u) where u =

√
3/3. See

Figure 3.1. The space indicates that we do not record p02 = 0. We let Ω0

denote the cube of side-length 2−17 centered at ξ0.

4.3 Reduction to Simpler Lemmas

Recall that we mean EF (ξ) to be the F -potential of the 5-point configuration
on the sphere corresponding to a planar avatar ξ. Lemma A1 makes 3 claims:

1. When F = G4, G
[
5, G6, the TBP avatar uniquely minimizes EF .

2. When F = G]
10, the TBP avatar uniquely minimizes EF among avatars

which are not isomorphic to ones in Υ.

3. When F = G]]
10, the TBP avatar has smaller EF value than all avatars

in Υ.

Lemma 4.1 (A11) Let F be any of G4, G
[
5, G6, G

]
10. Then ξ0 is the unique

minimizer for EF inside Ω0.

Lemma 4.2 (A12) The following is true:

1. Let F = G4, G6, G
]
10. If ξ is not equivalent to any avatar in Ω then

then ξ does not minimize EF .

2. Let F = G[
5. If ξ is not equivalent to any avatar in Ω[ then then ξ does

not minimize EF .

Let [F ] be the EF value of the TBP avatars.

Lemma 4.3 (A13) The following is true.
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1. The infimum of EG4 on interior(Ω)− Ω0 is at least [G4] + 2−50.

2. The infimum of EG6 on interior(Ω)− Ω0 at at least [G6] + 2−50.

3. The infimum of EG[
5

on interior(Ω)− Ω0 is at least [G[
5] + 2−50.

4. The infimum of EG]
10

on interior(Ω)−Υ− Ω0 is at least [G]
10] + 2−50.

5. The infimum of EG]]
10

on Υ is at least [G]]
10] + 2−50.

Lemma A13 is the main calculation. It follows from continuity that
Lemma A13 remains true if we replace the interior of Ω by Ω itself. But
then Lemma A1 follows immediately from Lemma A11 (§4.4), Lemma A12
(§4.5), and Lemma A13 (§5). Our choice of 2−50 is somewhat arbitrary.

4.4 Proof of Lemma A11

Recall that Ω0 is the cube of side length 2−17 centered at ξ0. For all our
choices of F , the function EF is a smooth function on R7. We check first
of all that the gradient of EF vanishes at ξ0. This probably follows from
symmetry, but to be sure we make a direct calculation in all cases.

Recall that the Hessian of a function is its matrix of second partial deriva-
tives.

Lemma 4.4 (A111) For each F = G4, G6, G
[
5, G

]
10, the Hessian of EF is

positive definite at every point of Ω0.

Let ξ ∈ Ω0 be other than ξ0. Lemma A111 (§6) together with the vanish-
ing gradient implies that the restriction of EF to the line segment γ joining
ξ0 to ξ is convex and has 0 derivative at ξ0. Hence EF (ξ) > EF (ξ0). This
proves Lemma A11

4.5 Proof of Lemma A12

Recall that ξ0 is the avatar of the TBP. Let [F ] = EF (ξ0). Since the TBP
has 6 bonds of length

√
2, and 3 of length

√
3, and 1 of length

√
4, we have

[Gk] = 6× 2k + 3. Using this result, and Equation 13, we compute

[G4] = 99, [G6] = 387, [G[
5] = −180, [G]

10] = 10518. (17)

Let ξ = p0, p1, p2, p3 some other avatar.
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Lemma 4.5 (A121) Let F = G6, G
[
5, G

]
10. If ‖p0‖ > 3/2 then ξ does not

minimize EF . If F = G4 then ξ does not minimize EF provided that either
‖p0‖ > 2 or ‖p0‖, ‖pj‖ > 3/2 for some j = 1, 2, 3.

Proof: Let τj be the term in EF corresponding to the pair (pj, p4). Rather
than work with G[

5 we work with G∗5 = G[
5 + 30 so that all our functions are

non-negative on (0, 2]. We have [G∗5] = 120. When ‖p0‖ > 3/2 we check that
τ0 > 450, 123, 26909, which respectively exceeds [G6], [G∗5], [G]

10]. (We check
this by computing that the distance involved is at most d0 = 4/

√
13 and that

F is monotone decreasing on [0, d0]. Then we evaluate F (d0) in each case.)
Now we treat the case F = G4. When ‖p0‖ > 2 we have τ0 > 104 > [G4].

When ‖p0‖, ‖pi‖ > 3/2 we have τ0 + τj > 58 + 58 > [G4]. ♠

Lemma 4.6 (A122) Let F be any strictly monotone decreasing potential.
If min(p1k, p2k, p3k) > 0 for one of k = 1, 2 then ξ does not minimize EF .

Proof: The corresponding 5-point configuration in S2 is contained in a hemi-
sphere H, and at least 3 of the points are in the interior of H. If we reflect
one of the interior points across ∂H then we increase at least 2 of the dis-
tances in the configuration and keep the rest the same. ♠

Assume ξ is a minimizer for EF . As discussed in §4.1, we normalize so
that ξ is even. Reordering p0, p1, p2, p3 and rotating, about the origin, we
make ‖p0‖ ≥ ‖pi‖ for i = 1, 2, 3 and we move p0 into the positive x-axis.
Reflecting in the x-axis if necessary and reordering the points p1, p2, p3 if
necessary, we arrange that p12 ≤ p22 ≤ p32 and p22 ≥ 0. Lemma A121 tells
us that, in all cases, p01 ∈ [0, 2] and pj ∈ [−3/2, 3/2]2 for j = 1, 2, 3. We have
also arranged that p02 = 0. For F = G[

5 we have nothing left to check. Other-
wise, Lemma A122 shows that ξ satisfies min(p1k, p2k, p3k) ≤ 0 for k = 1, 2, 3.

Remark: (Auxiliary Theorem) We need to analyze G3 for this case. We
have [G3] = 51. When ‖p0‖ > 2 we have τ0 ∈ [32, 33], which is not help-
ful. When ‖p0‖ > 4 we have τ0 > 53, which works. So, we take 4 in place
of 2 in our computer calculation for G3. When ‖p0‖, ‖pj‖ > 3/2 we have
τ0 + τj > 21 + 21, which is not quite enough, but here we can scramble to
overcome the difference. The G3-potential of the 4 point configuration on S2

not involving (0, 0, 1) is at least that of the regular tetrahedron, 14+ 2
9
. Since

14 + 42 > 51 we see that a minimizer for G3 cannot have ‖p0‖, ‖pj‖ > 3/2.
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5 Main Calculation: Lemma A13

5.1 Blocks

We first list the ingredients in our main calculation and then explain the
calculation itself.

Dyadic Subdivision: The dyadic subdivision of a D-dimensional cube is
the list of 2D cubes obtained by cutting the cube in half in all directions. We
sometimes blur this terminology and say that any one of these 2D smaller
cubes is a dyadic subdivision of the big cube.

Blocks: We define a block to be a product of the form

B = Q0 ×Q1 ×Q2 ×Q3 ⊂ � := [0, 2]× [−2, 2]2 × [−2, 2]2 × [−2, 2]2. (18)

where Q0 is a segment and Q1, Q2, Q3 are squares, each obtained by iterated
dyadic subdivision respectively of [0, 2] and [−2, 2]2.

We call B acceptable if Q0 has length at most 1 and Q1, Q2, Q3 have
sidelength at most 2. If B is not acceptable we let the offending index be
the lowest index where the condition fails.

The kth subdivision of a block amounts to performing dyadic subdivi-
sion to the kth factor and leaving the others alone. We call these operations
S0, S1, S2, S3. Thus S0 cuts B into two pieces and each other Sk cuts B into
4 pieces for k = 1, 2, 3. We let Sk(B) denote the list of the blocks obtained
by performing Sk on B. All the blocks our algorithm produces come from
iterated subdivision of �.

Rational Block Calculations: We say that a rational block computation
is a finite calculation, only involving the arithmetic operations and min and
max. The output of a rational block computation will be one of two things:
yes, or an integer. A return of an integer is a statement that the computa-
tion does not definitively answer to the question asked of it. If the integer
is −1 then there is no more information to be learned. If the integer lies
in {0, 1, 2, 3} we use this integer as a guide in our algorithm. For example,
we might ask if the block is acceptable. If not, then we would return the of-
fending index, and our algorithm would subdivide the block along this index.
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5.2 The Main Calculation

Recall that
ξ0 = (1, 0,−

√
3/3,−1, 0, 0,

√
3/3) ∈ Ω

is the avatar of the TBP and Ω0 is the cube of side length 2−17 around ξ0.
Recall also that Υ is the special domain defined in §3.1.

Lemma 5.1 (A131) There exists a rational block computation C1 such that
an output of yes for a block B implies that B ⊂ Ω0.

Lemma 5.2 (A132) There exists a rational block computation C3 such that
an output of yes for an acceptable block B implies that B is disjoint from
the interior of Ω. The same goes for Ω[.

Lemma 5.3 (A133) There exists a rational block computation C]
3 such that

an output of yes for a block B implies that B ⊂ Υ. Likewise, there exists
a rational block computation C]]

3 such that an output of yes for a block B
implies that B is disjoint from Υ.

The proofs of the Lemmas A131, A132, A133, given below, just amount to
checking the conditions in a fairly straightforward way. The final ingredient
is the main ingredient. It is much more involved. All the energy potentials
we consider are what we call energy hybrids . They have the form

F =
m∑
k=1

ckGk, Gk(r) = (4− r2)k, c1 ∈ Q, c2, ..., ck ∈ Q+. (19)

With some modification of Lemma E below we could also handle the case
when some of c2, ..., ck are negative. See Remark (1) after the statement of
Lemma E.

Lemma 5.4 (A134) For any function F given by Equation 19, there exists
a rational block computation C4,F such that an output of yes for an acceptable
block B implies that the minimum of EF on B is at least EF (ξ0) + 2−50.
Otherwise C4,F (B) is an integer in {0, 1, 2, 3}.

Here is the main calculation.

1. We start with the list L = {�}.
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2. If L = ∅ then HALT. Otherwise let B = Q0 × Q1 × Q2 × Q3 be the
last block of L.

3. If B is not acceptable we delete B from L and append to L the subdi-
vision of B along the offending index. We then return to Step 2. Any
blocks considered beyond this step are acceptable.

4. If C1(B) = yes or C2(B) = yes we remove B from L and go to Step
2. Here we are eliminating blocks disjoint from the interior of Ω or else
contained in Ω0.

5. If F = G]
10 and C]

3(B) = yes we remove B from L and go to Step 2. If
F = G]]

10 and C]]
3 (B) = yes we remove B from L and go to Step 2.

6. If C4,F (B) = yes then we remove B from L and go to Step 2. Here we
have verified that the F -energy of any avatar in B exceeds [F ] + 2−50.

7. If C4,F (B) = k ∈ {0, 1, 2, 3} then we delete B from L and append to L
the blocks of the subdivision Sk(B) and return to step 2.

If the algorithm reaches the HALT state for a given choice of F , this
constitutes a proof that the corresponding statement of Lemma A13 is true.

Lemma 5.5 (A135) The Main Computation reaches the HALT state for
each choice of F listed in Lemma A13.

Lemma A13 follows from Lemma A131 (§5.3), Lemma A132 (§5.4), Lemma
A133 (§5.5), Lemma A134 (§5.6) and Lemma A135 (§5.8).

5.3 Proof of Lemma A131

Define intervals I0, I1, I√3/3 such that

I0 = [−2−17, 2−17], I1 = [1− 2−17, 1 + 2−17] 230I√3/3 = [619916940, 619933323] (20)

I√3/3 is a rational interval that is just barely contained inside the interval

of length 2−17 centered at
√

3/3. Define

Ω00 = (I1 × {0})× (I0 ×−I√3/3)× (−I1 × I0)× (I0 × I√3/3). (21)

We have Ω00 ⊂ Ω0, though just barely. There are 128 vertices of B. We
simply check whether each of these vertices is contained in Ω00. If so then
we return yes. In practice our program scales up all the coordinates by 230

so that this test just involves integer comparisons.
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5.4 Proof of Lemma A132

Let B = Q0×Q1×Q2×Q3 be an acceptable block. These blocks are such that
the squares Q1, Q2, Q3 do not cross the coordinate axes. For such squares,
the minimum and maximum norm of a point in the square is realized at a
vertex. Thus, we check that a square lies inside (respectively outside) a disk
of radius r centered at the origin by checking that the square norms of each
vertex is at most (respectively at least) r2.

We check whether there is an index j ∈ {1, 2, 3} such that all vertices of
Qj have norm at least maxQ0. We return yes if this happens, because then
all avatars in the interior of B will have some pj with ‖pj‖ > ‖p0‖.

We check whether there is an index j ∈ {1, 2, 3} such that all vertices
of Qj have norm at least 3/2. If so, we return yes. If this happens then
‖p0‖, ‖pj‖ > 3/2 for all avatars in the interior of B.

We count the number a of indices j such that the vertices of Qj all have
norm at most 1/2. We then count the number b of indices j such that all
vertices of Qj have norm at least 1/2. We return yes if a is odd and a+b = 4.
In this case, every avatar in the interior of B is odd.

We write I ≤ J to indicate that all values in an interval I are less or
equal to all values in an interval J . We also allow I and J to be single points
in this notation. For each j = 0, 1, 2, 3 we let Qjk be the projection of Qj

onto the kth factor. Thus Qj1 and Qj2 are both line segments in R.
We return yes for any of the following reasons.

• If Qjk ≤ −3/2 or Qjk ≥ 3/2 for any j = 1, 2, 3 and k = 1, 2.

• Q12 ≥ Q22 or Q12 ≥ Q32 or Q22 ≥ Q32 or Q22 ≤ 0.

• Qj1 ≥ 0 for j = 1, 2, 3 or Qj2 ≥ 0 for j = 1, 2, 3.

If any of these things happens, all avatars in Q violate some condition for
membership in the interior of Ω. We don’t check the last item for Ω[. ♠

5.5 Proof of Lemma A133

For C]
3 we return yes if all the vertices of B lie in Υ. For C]]

3 we return
yes if one of the factors of B is disjoint from the corresponding factor of Υ.
This amounts to checking whether a pair of rational squares in the plane are
disjoint. We do this using the projections defined for Lemma A132.

27



5.6 Proof of Lemma A134

We say that an acceptable block B = Q0 × Q1 × Q2 × Q3 is good if we
have Qj ∈ [−3/2, 3/2]2 for all j = 1, 2, 3. We first test whether B is a good
block. If not, we return the lowest index i such that Qi has a vertex outside
[−3/2, 3/2]2. Otherwise we proceed as follows.

We let Q denote the set of components of good blocks – either segments
or squares. We also let {∞} be a member of Q. We first define some mea-
surements we take of members in Q.

0. The Flat Approximation: Let Σ−1 be inverse stereographic projection,
as in Equation 8. Given Q ∈ Q we define

Q• = Convex Hull(Σ−1(v(Q)). (22)

The set Q• is either the point (0, 0, 1), a chord of S2 or else a convex planar
quadrilateral with vertices in S2 that is inscribed in a circle. We let d• be
the diameter of Q•. The quantity d2

• is a rational function of the vertices of Q.

1. The Hull Approximation Constant: We think of Q• as the linear
approximation to

Q̂ = Σ−1(Q). (23)

The constant we define here turns out to measure the distance between Q̂
and Q•. When Q = {∞} we define δ(Q) = 0. Otherwise, let

χ(D, d) =
d2

4D
+

(d2)2

4D3
. (24)

This wierd function turns out to be an upper bound to a more geometrically
meaningful non-rational function that computes the distance between an
chord of length d of a circle of radius D and the arc of the circle it subtends.

When Q is a dyadic segment we define

δ(Q) = χ(2, ‖q̂1 − q̂2‖). (25)

Here q1, q2 are the endpoints of Q. When Q is a dyadic square we define

δ(Q) = max(s0, s2) + max(s1, s3), sj = χ(1, ‖qj − qj+1‖). (26)

Here q1, q2, q3, q4 are the vertices of Q and the indices are taken cyclically.
These are rational computations because χ(2, d) is a polynomial in d2.

28



2. The Dot Product Estimator: By way of motivation, we point out
that if V1, V2 ∈ S2 then Gk(‖V1 − V2‖) = (2 + 2V1 · V2)k.

Now suppose that Q1 and Q2 are two dyadic squares. We set δj = δ(Qj).
Given any p ∈ R2 ∪∞ let p̂ = Σ−1(p). Define

Q1 ·Q2 = max
i,j

(q̂1i · q̂2j) + (τ)× (δ1 + δ2 + δ1δ2). (27)

Here {q1i} and {q2j} respectively are the vertices of Q1 and Q2. The constant
τ is 0 if one of Q1 or Q2 is {∞} and otherwise τ = 1. Finally, we define

T (Q1, Q2) = 2 + 2(Q1 ·Q2). (28)

3. The Local Error Term: For Q1, Q2 ∈ Q and k ≥ 1 we define

εk(Q1, Q2) =
1

2
k(k − 1)T k−2d2

1 + 2kT k−1δ1, (29)

where
d1 = d•(Q1), δ1 = δ(Q1), T = T (Q1, Q2).

One of the terms in the error estimate comes from the analysis of the flat
approximation and the second term comes from the analysis of the difference
between the flat approximation and the actual subset of the sphere. The
quantity is not symmetric in the arguments and εk({∞}, Q2) = 0.

4. The Global Error Estimate: Given a block Q0 × Q1 × Q2 × Q3

we define

ERRk(B) =
N∑
i=0

ERRk(B, i), ERRk(B, i) =
∑
j 6=i

ε(Qi, Qj). (30)

More generally, when F =
∑
ckGk is as in Equation 19, we define

ERRF (B) =
N∑
k=0

ERRF (B, i), ERRF (B, i) =
∑
|ck| ERRk(B, i)

(31)
Now we state the main error estimate, proved in §7. For the most part

we only care about the (+) case of the lemma. We only need the (−) case
when we deal with the potential G5 − 25G1.
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Lemma 5.6 (E) Let B be a good block. Let F = Gk for any k ≥ 1 or
F = −G1. Then

min
p∈B
EF (v) ≥ min

p∈v(B)
Ek(v)− ERRk(B)

Proof of Lemma A134: Now we can prove lemma A134. Let B be an
acceptable block. Once again, we mention that we immediately return an
integer if our block B is not a good block. So, assume B is a good block.
Let F be an energy hybrid. Let [F ] denote the F -potential of the TBP. If

min
p∈v(B)

EF (v)− ERRk(B) ≥ [F ] + 2−50 (32)

we return yes. Otherwise we return the index i such that ERRF (B, i) is the
largest. In case of a tie, which probably never happens, we pick the lowest
such index. ♠

Remarks: (1) Lemma E is true more generally for F = ±Gk but we do not
need the general result and so (in the interest of simplicity) we ignore it. (2)
The integer we return is designed to be a recommendation for the subdivision
that is most likely to speed the computation along. We try to subdivide in
such a way as to decrease the error term as fast as possible.

5.7 Discussion of the Implementation

Representing Blocks: We represent the coordinates of blocks by longs,
which have 31 digits of accuracy. What we list are 230 times the coordinates.
Our algorithm never does so many subdivisions that it defeats this method
of representation. In all but the main step (Lemma A134) in the algorithm
below we compute with exact integers. When the calculation (such as squar-
ing a long) could cause an overflow error, we first recast the longs as a
BigIntegers in Java and then do the calculations.

Interval Arithmetic: For the main step of the algorithm we use inter-
val arithmetic. We use the same implementation as we did in [S1], where we
explain it in detail. Here is how it works in brief. If we have a calculation
involving numbers r1, ..., rn, and we produce intervals I1, ..., In with dyadic
rational numbers represented exactly by the computer such that ri ∈ Ii for
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i = 1, ..., n. We then perform the usual arithmetic operations on the inter-
vals, rounding outward at each step. The final output of the calculation, an
interval, contains the result of the actual calculation.

In our situation here, the numbers r1, ..., rn are, with one exception,
dyadic rationals. (The exception is that the coordinates of the point rep-
resenting the TBP are quadratic irrationals.) In principle we could do the
entire computation, save for this one small exception, with expicit integer
arithmetic. However, the complexity of the rationals involved, meaning the
sizes of their numerators and denominators, qets quite large this way and the
calculation is too slow.

One way to think about the difference between our explicitly defined ex-
act integer arithmetic and interval arithmetic is that the integer arithmetic
interrupts the calculation at each step and rounds outward so as to keep the
complexity of the rational numbers from growing too large.

Guess and Check: Here is how we speed up the calculation. When we
do Steps 6-7, we first do the calculation C4,F using floating point operations.
If the floating version returns an integer, we use this integer to subdivide the
box and return to step 2. If C4,F says yes then we retest the box using the
interval arithmetic. In this way, we only pass a box for which the interval
version says yes. This way of doing things keeps the calculation rigorous but
speeds it up by using the interval arithmetic as sparingly as possible.

Parallelization: We also make our calculation more flexible using some
parallelization. We classify each block B = Q0 × Q1 × Q2 × Q3 with a
number in {0, ..., 7} according to the formula

type(B) = σ(c01 − 1) + 2σ(c11) + 4σ(c31) ∈ {0, ..., 7}.

Here cj1 is the first coordinate of the center of Bj and σ(x) is 0 if x < 0 and
1 if x > 0. Step 3 of our algorithm guarantees that σ(·) is always applied to
nonzero numbers.

We wrote our program so that we can select any subset S ⊂ {0, ..., 7} we
like and then (after Step 3) automatically pass any block whose type is not
in S. Running the algorithm in parallel over sets which partition {0, ..., 7} is
logically the same as running the basic algorithm without any parallelization.
To be able to do the big calculations in pieces, we run the program for various
subsets of {0, ..., j}, sometimes in parallel.
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5.8 Proof of Lemma A135

Here I give an account of one time I ran the computations to completion
during January 2023. I used a 2017 iMac Pro with a 3.2 GHz Intel Zeon W
processor, running the Mojave operating system. I ran the programs using
Java 8 Update 201. (The Java version I use is not the latest one. The graph-
ical parts of my program use some methods in the Applet class in a very
minor but somehow essential way that I find hard to eliminate.) In listing
the calculations I will give the approximate time and the exact number of
blocks passed. Since we use floating point calculations to guide the algo-
rithm, the sizes of the partitions can vary slightly with each run.

For G4 : 2 hrs 14 min, 10848537 blocks.

For G6: 5 hr 11 min, 25159337 blocks.

For G[
5 types 1&2: 2 hr 31 min, 6668864 blocks.

For G[
5 types 3&4: 1 hr 55 min, 4787489 blocks.

For G[
5 types 5&6: 5 hr 33 min, 14160332 blocks.

For G[
5 types 7&8: 3 hr 49 min, 9219550 blocks.

For G]
10 type 1: 4 hr 23 min, 6885912 blocks.

For G]
10 type 2: 9 hr 47 min, 15982122 blocks.

For G]
10 type 3: 3 hr 47 min, 5872029 blocks.

For G]
10 type 4: 7 hr 59 min, 13475260 blocks.

For G]
10 type 5: 8 hr 30 min, 13313492 blocks.

For G]
10 type 6: 15 hr 16 min, 24110457 blocks.

For G]
10 type 7: 5 hr 19 min, 7862780 blocks.

For G]
10 type 8: 8 hr 33 min, 13478467 blocks.

For G]]
10 (on the domain Υ): 28 minutes, 805242 blocks.
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6 Local Analysis: Proof of Lemma A111

6.1 Reduction to Simpler Statements

We set L=A111, so that we are trying to prove Lemma L. We consider F to
be any of the 4 functions

G4, G6, G[
5 = G5 − 25G1, 2−5G]

10 = 2−5(G10 + 13G5 + 68G2).

Scaling the last function by 2−5 makes our estimates more uniform.
Recall that Ω0 is the cube of side length 2−17 centered at the point

ξ0 =
(

1, 0,
−1√

3
,−1, 0, 0,

1√
3

)
∈ R7 (33)

In general, the point (x1, ..., x7) represents the avatar

p0 = (x1, 0), p1 = (x2, x3), p2 = (x4, x5), p3 = (x6, x7). (34)

The quantity EF (x1, ..., x7) is the F -potential of the 5-point configuration
associated to the avatar under inverse stereographic projection Σ−1.

EF (x1, ..., x7) =
∑
i<j

F (‖p̂i − p̂j‖), p̂ = Σ−1(p). (35)

Equation 8 gives the formula for Σ−1.
Let HEF be the Hessian of EF . Lemma L says HEF is positive definite

in Ω0. Let ∂JEF be the (iterated) partial derivative of EF with respect to a
multi-index J = (j1, ..., j7). Let |J | = j1 + ...+ j7. Let

MN = sup
|J |=N

MJ , MJ = sup
ξ∈Ω0

|∂JEF (ξ)|, (36)

Let λ(M) be the smallest eigenvalue of a real symmetric matrix M . Lemma
L is an immediate consequence of the following two lemmas.

Lemma 6.1 (L1) If M3(EF ) < 212λ(HEF (ξ0)) then λ(HEF (ξ)) > 0 for all
points ξ ∈ Ω0.

Lemma 6.2 (L2) M3(EF ) < 212λ(HEF (ξ0))) in all cases.
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6.2 Proof of Lemma L1

Let
H0 = HEF (ξ0), H = HEF (ξ), ∆ = H −H0. (37)

For any real symmetric matrix X define the L2 matrix norm:

‖X‖2 =

√∑
ij

X2
ij = sup

‖v‖=1

‖Xv‖. (38)

Given a unit vector v ∈ R7 we have H0v · v ≥ λ. Hence

Hv · v = (H0v + ∆v) · v ≥ H0v · v − |∆v · v| ≥ λ− ‖∆v‖ ≥ λ− ‖∆‖2 > 0.

So, to prove Lemma L1 we just need to establish the implication

M3 < 212λ(H0) =⇒ ‖∆‖2 < λ(H0).

Let t→ γ(t) be the unit speed parametrized line segment connecting p0 to
p in Ω0. Note that γ has length L ≤

√
7×2−18. We write γ = (γ1, ..., γ7). Let

Ht denote the Hessian of EF evaluated at γ(t). Let Dt denote the directional
derivative along γ.

Now ‖Dt(Ht)‖2 is the speed of the path t→ Ht in R49, and ‖∆‖2 is the
Euclidean distance between the endpoints of this path. Therefore

‖∆‖2 ≤
∫ L

0

‖Dt(Ht)‖2 dt. (39)

Let (Ht)ij denote the ijth entry of Ht. From the definition of directional
derivatives, and from the Cauchy-Schwarz inequality, we have

(DtHt)
2
ij =

( 7∑
k=1

dγk
dt

∂Hij

∂k

)2

≤ 7M2
3 . ‖Dt(Ht)‖2 ≤ 73/2M3. (40)

The second inequality follows from summing the first one over all 72 pairs
(i, j) and taking the square root. Equation 39 now gives

‖∆‖2 ≤ L× 73/2M3 = 49× 2−18M3 < 2−12M3 < λ(H0). (41)

This completes the proof of Lemma L1.
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6.3 Proof of Lemma L2

Let F be any of our functions. Let H0 = HEF (ξ0).

Lemma 6.3 (L21) λ(H0) > 39.

Proof: Let χ be the characteristic polynomial of H0. This turns out to be
a rational polynomial. We check in Mathematica that the signs of the coef-
ficients of χ(t + 39) alternate. Hence χ(t + 39) has no negative roots. The
file we use is LemmaL21.m. ♠

Recalling that ξ0 ∈ R7 is the point representing the TBP, we define

µN(EF ) = sup
|I|=N

|∂IEF (ξ0)|. (42)

Lemma 6.4 (L22) For any of our functions we have the bound

µ3 < 45893,
(7× 2−18)j

j!
µj+3 < 38, j = 1, 2, 3. (43)

Proof: We compute this in Mathematica. The file we use is LemmaL22.m. ♠

Lemma 6.5 (L23) For any of our functions we have the bound

(7× 2−18)4

4!
M7 < 2354.

Lemma 6.6 (L24) We have

M3 ≤ µ3 +
3∑
j=1

(7× 2−18)j

j!
µj+3 +

(7× 2−18)4

4!
M7 (44)

Proof: Choose any multi-index J with |J | = 3. Let γ be the line segment
connecting ξ0 to any ξ ∈ Ω. We parametrize γ by unit speed and furthermore
set γ(0) = ξ0. Let

f(t) = ∂JEF ◦ γ(t).
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The bound for |MJ | follows from Taylor’s Theorem with remainder once we
notice that

0 ≤ t ≤
√

7× 2−18,
∣∣∣∂nf(0)

∂tn

∣∣∣ ≤ (
√

7)nµn

∣∣∣∂nf
∂tn

∣∣∣ ≤ (
√

7)nMn.

Since this works for all J with |J | = 3 we get the same bound for M3. ♠

Lemmas L21 - L23 and Equation 43 imply

M3 < 45893 + 3× 38 + 2354 ≤ 65536 = 216 ≤ 212λ(H0).

This completes the proof of Lemma L2.

6.4 Proof of Lemma L23

Now we come to the interesting part of the proof, the one place where we
need to go beyond specific evaluations of our functions. When r, s ≥ 0 and
r + s ≤ 2d we have

sup
(x,y)∈R2

xrys

(1 + x2 + y2)d
≤ (1/2)min(r,s). (45)

One can prove Equation 45 by factoring the expression into pieces with
quadratic denominators. Here is a more general version. Say that a function
φ : R4 → R is nice if it has the form

∑
i

Cia
αibβicγidδi

(1 + a2 + b2)ui(1 + c2 + d2)vi
, αi, βi, γi, δi ≥ 0, αi+βi ≤ 2ui, γi+δi ≤ 2vi.

It follows from Equation 45 that

sup
R4

|φ| ≤ 〈φ〉, 〈φ〉 =
∑
i

|Ci|(1/2)min(αi,βi)+min(γi,δi). (46)

Equation 46 is useful to us because it allows us to bound certain kinds of
functions without having to evaluate then anywhere. We also note that if
φ is nice, then so is any iterated partial derivative of φ. Indeed, the nice
functions form a ring that is invariant under partial differentiation. This fact
makes it easy to identify nice functions.
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For any φ : Rn → R we define

M7(ψ) = sup
|J |=7

MJ(ψ), MJ(ψ) = sup
ξ∈Rn

|∂J(φ)|. (47)

We obviously have
M7(EF ) ≤M7(EF ). (48)

Recall that p̂ = Σ−1(p), the inverse stereographic image of p. Define

f(a, b) = 4− ‖(̂a, b)− (0, 0, 1)‖2 =
4(a2 + b2)

1 + a2 + b2
. (49)

g(a, b, c, d) = 4− ‖(̂a, b)− (̂c, d)‖2 =
4(1 + 2ac+ 2bd+ (a2 + b2)(c2 + d2))

(1 + a2 + b2)(1 + c2 + d2)
. (50)

Notice that g is nice. Hence gk is nice and ∂Ig
k is nice for any multi-index.

That means we can apply Equation 46 to ∂Ig
k.

EGk
is a 10-term expression involving 4 instances of fk and 6 of gk. How-

ever, each variable appears in at most 4 terms. So, as soon as we take a
partial derivative, at least 6 of the terms vanish. Moreover, ∂If is a limiting
case of ∂Ig for any multi-index I. From these considerations, we see that

M7(EGk
) ≤ 4×M7(gk). (51)

The function ∂I(g
k) is nice in the sense of Equation 46. Therefore

4×M7(gk) ≤ 4×max
|I|=7

〈∂Igk〉. (52)

Using this estimate, and the Mathematica file LemmaL23.m, we get

max
k∈{1,2,3,4,5,6}

(7× 2−18)4

4!
× 4×M7(gk) ≤ 1

1000
.

2−5 × (7× 2−18)4

4!
× 4×M7(g10) ≤ 2353. (53)

The bounds in Lemma L23 follow directly from Equations 51 - 53 and from
the definitions of our functions.

Remark: (For the Auxiliary Theorem) The analysis above works easily
for G3. In this case, the minimum eigenvalue satisfies λ0 > 14. The bounds
satisfy µ3 ≤ 316 and µj < 1 for j = 4, 5, 6. Again, M7 < 1/1000 in this case.
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7 Error Estimate: Proof of Lemma E

7.1 Guide to the Proof

Lemma E is stated in §5.6. It is the main error estimate that feeds into
Lemma A134, which in turn feeds into Lemma A13, our main computation.

Our proof of Lemma E splits into two halves, an algebraic part and a
geometric part. The algebraic part, which we do in this chapter, simply
promotes a “local” result to a “global result”. The geometric part, done in
the next chapter, explains the meaning of the local error term εk(Q1, Q2) for
Q1, Q2 ∈ Q. Here Q is the space of components of good blocks, and also the
point ∞.

The algebraic part involves what we call an averaging system. For the
purpose of giving a uniform treatment, we treat every member of Q as a
quadrilateral by the trick of repeating vertices. Thus, if we have a dyadic
segment with vertices q1, q2 we will list them as q1, q1, q2, q2. For the point
{∞} we will list the single vertex q1 = ∞ as q1, q1, q1, q1. We say that an
averaging system for a member of Q is a collection of maps λ1, λ2, λ3, λ4 :
Q→ [0, 1] such that

4∑
i=1

λi(z) = 1, ∀ z ∈ Q.

The functions need not vary continuously. In case Q is a segment, we would
have λ1 = λ2 and λ3 = λ4. In case Q = {∞} we would have λj = 1/4 for
j = 1, 2, 3, 4.

We say that an averaging system for Q is a choice of averaging system
for each member Q of Q. The averaging systems for different members need
not have anything to do with each other. In this chapter we will posit some
additional properties of an averaging system and then prove Lemma E under
the assumption such such an averaging system exists. In the next chapter
we will prove the existence of the desired averaging system.

7.2 Reduction to a Local Result

We fix the function F = Gk for some k ≥ 1 or else F = −G1. We write
E = EF . We let ε = εk, as in Equation 29. Our algebraic argument would
work for any choice of F , but we need to use the choices above to actually
get the averaging system we need. Let q1,1, q1,2, q1,3, q1,4 be the vertices of Q1.
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Lemma 7.1 (E1) There exists an averaging system on Q with the following
property: Let Q1, Q2 be distinct members of Q. Given any z1 ∈ Q1 and
z2 ∈ Q2 we have

4∑
i=1

λi(z1)F (‖q̂1,i − ẑ2‖)− F (‖ẑ1 − ẑ2‖) ≤ ε(Q1, Q2). (54)

See §8 for the proof.
We are interested in 5-point configurations but we will work more gen-

erally so as to elucidate the general structure of the argument. We suppose
that we have the good dyadic block B = Q0 × ... × QN . The vertices of B
are indexed by a multi-index

I = (i0, ..., in) ∈ {1, 2, 3, 4}N+1.

Given such a multi-index, which amounts to a choice of vertex of in each com-
ponent member of the block. We define (as always, via inverse stereographic
projection) the energy of the corresponding vertex configuration:

E(I) = E(q0,i0 , ..., qN,iN ) (55)

Here is one more piece of notation. Given z = (z0, ..., zn) ∈ B and a
multi-index I we define

λI(z) =
N∏
i=0

λij(zj). (56)

Here λij is defined relative to the averaging system on Qj.
Now we are ready to state our main global result. The global result uses

the existence of an efficient averaging system. That is, it relies on Lemma
E1.

Lemma 7.2 (E2) Let z = (z0, ..., zN) ∈ B. Then

∑
I

λI(z)E(I)− E(z) ≤
N∑
i=0

N∑
j=0

ε(Qi, Qj). (57)

The lefthand sum is taken over all multi-indices. In the righthand sum, we
set ε(Qi, Qi) = 0 for all i.
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Now let us deduce Lemma E from Lemma E2. Notice that∑
I

λI(z) =
N∏
j=0

( 4∑
a=1

λa(zj)
)

= 1. (58)

Choose some (z1, ..., zN) ∈ B which minimizes E . We have

0 ≤ min
p∈v(B)

E(v)−min
v∈B
E(v) = min

p∈v(B)
E(v)− E(z) ≤∗

∑
I

λI(z)E(I)− E(z) ≤
N∑
i=0

N∑
j=0

ε(Qi, Qj). (59)

The starred inequality comes from the fact that a minimum is less or equal to
a convex average. The last expression is ERR(B) when N = 4 and Q4 =∞.

7.3 From Local to Global

Now we deduce the global Lemma E2 from the local Lemma E1.

Lemma 7.3 (E21) Lemma E2 holds when N = 1.

Proof: In this case, we have a block B = Q0 ×Q1. Setting εij = ε(Qi, Qj),
Lemma E1 gives us

F (‖z0 − z1‖) ≥
4∑

α=1

λα(z0)F (‖q0α − z1‖)− ε01. (60)

Applying Lemma E1 to the pair of points (z1, q0α) ∈ Q1 ×Q0 we have

F (‖z1 − q0α‖) ≥
4∑

β=1

λβ(z1)F (‖q1β − q0α‖)− ε10. (61)

Plugging the second equation into the first and using
∑
λα(z0) = 1, we have

F (‖z0 − z1‖) ≥
∑
α,β

λα(z0)[λβ(z1)F (‖q1β − q0α‖)− ε10]− ε01 =

∑
α,β

λα(z0)λβ(z1)F (‖q1β − q0α‖)− (ε10 + ε01). (62)

Equation 62 is equivalent to Equation 57 when N = 1. ♠

Now we do the general case.
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Lemma 7.4 (E22) Lemma E2 holds when N ≥ 2.

Proof: We rewrite Equation 62 as follows:

F (‖z0 − z1‖) ≥
∑
A

λA0(z0)λA1(z1) F (‖q0A0 − q1A1‖)− (ε01 + ε10). (63)

The sum is taken over multi-indices A of length 2.
We also observe that∑

I′

λI′(z
′) = 1, z′ = (z2, ..., zN). (64)

The sum is taken over all multi-indices I ′ = (i2, ..., iN). Therefore, if we hold
A = (A0, A1) fixed, we have

λA0(z0)λA1(z1) =
∑
I′′

λI′′(z). (65)

The sum is taken over all multi-indices of length N + 1 which have I0 = A0

and I1 = A1. Combining these equations, we have

F (‖z0 − z1‖) ≥
∑
I

λI(z)F (‖q0I0 − q1I1‖)− (ε01 + ε10). (66)

The same argument works for other pairs of indices, giving

F (‖zi − zj‖) ≥
∑
I

λI(z)F (‖qiIi − qjIj‖)− (εij + εji). (67)

Let us restate this as Xij − Yij ≥ Zij, where

Xij =
∑
I

λI(z)F (‖qiIi − qjIj‖), Yij = F (‖zi − zj‖), Zij = εij + εji.

When we sum Yij over all i < j we get the second term in Equation 57.
When we sum Zij over all i < j we get the third term in Equation 57. When
we sum Xij over all i < j we get∑

i<j

(∑
I

ΛI(z)F (‖qiIi − qjIj‖)
)

=
∑
I

∑
i<j

ΛI(z) F (‖qiIi − qjIj‖) =

∑
I

ΛI(z)

(∑
i<j

F (‖qiIi − qjIj‖)
)

=
∑
I

λI(z)E(I).

This is the first term in Equation 57. This proves Lemma E2. ♠
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8 Error Estimate: Proof of Lemma E1

8.1 The Efficient Averaging System

Lemma E1 posits the existence of what we call an efficient averaging system.
Here we define it. Recall that Q• is the convex hull of the vertices q̂1, q̂2, q̂3, q̂4

of Q̂ = Σ−1(Q). What we want from the system is that for any z• ∈ Q•

z• =
4∑
i=1

λi(z
•)q̂i. (68)

If z• lies in the convex hull of q̂1, q̂2, q̂3, then we let λ1(z•), λ2(z•), λ3(z•) be
barycentric coordinates on this triangle and we set λ4(z•) = 0. If z• lies in
the convex hull of q̂1, q̂2, q̂4, then we let λ1(z•), λ2(z•), λ4(z•) be barycentric
coordinates on this triangle and we set λ3(z•) = 0. This definition agrees on
the overlap, which is the line segment joining q̂3 to q̂4.

To get our averaging system on Q ∈ Q we define

λj(z) = λj(z
•), (69)

where z• is some choice of point in Q• which is closest to ẑ. If there are several
closest points we pick the one (say) which has the smallest first coordinate.
We prove Lemma E1 with respect to the averaging system we have just
defined.

8.2 Reduction to Simpler Statements

Let F be either Gk for some k ≥ 1 or else F = −G1. For convenience we
expand out the statement of Lemma E1.

Lemma 8.1 (E1) The efficient averaging system on Q has the following
property. Let Q1, Q2 be distinct members of Q. Given any z1 ∈ Q1 and
z2 ∈ Q2 we have

4∑
i=1

λi(z1)F (‖q̂1,i− ẑ2‖)−F (‖ẑ1− ẑ2‖) ≤
1

2
k(k−1)T k−2d2

1 + 2kT k−1δ1. (70)

Here (as in §5.6) δ1 and d1 respectively are the Hull Approximation constant
and diameter of Q1, and

T = 2 + 2(Q1 ·Q1), Q1 ·Q2 = max
i,j

(q̂1,i · q̂2,j) + (τ)× (δ1 + δ2 + δ1δ2). (71)
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τ = 0 or τ = 1 depending on whether one of Q1, Q2 is {∞}. We are maxi-
mizing over the dot product of the vertices and then either adding an error
term or not.

Define

X• = F (z•1 − ẑ2) = (2 + 2z•1 · ẑ2)k or − 2− 2z•1 · ẑ2. (72)

Lemma E1 is an immediate consequence of the following two results.

Lemma 8.2 (E11)
∑4

i=1 λi(z1)F (‖q̂1,i − ẑ2‖)−X• ≤ 1
2
k(k − 1)T k−2

• d2
1.

Lemma 8.3 (E12) X• − F (‖ẑ1 − ẑ2‖) ≤ 2kT k−1δ.

8.3 Proof of Lemma E11

Suppose first F = −G1. We hold ẑ2 fixed and define

L(q̂) = F (‖q̂ − ẑ2‖) = −2− 2q̂ · ẑ2.

Lemma E2, in this special case, says that

4∑
i=1

λi(z1)L(q̂1,i)− L(z•1) = 0.

But this follows from Equation 69 and the (bi) linearity of the dot product.
Now we deal with the case where F = Gk for k ≥ 1. We prove the

following two lemmas at the end of the chapter.

Lemma 8.4 (E111) For j = 1, 2 let γj be a point on a line segment con-

necting a point of Q̂j to a closest point on Q•j . Then γ1 · γ2 ≤ Q1 ·Q2.

Lemma 8.5 (E112) Let M ≥ 2 and k = 1, 2, 3.... Suppose

• 0 ≤ x1 ≤ ... ≤ xM

•
∑M

i=1 λi = 1 and λi ≥ 0 for all i.

Then

0 ≤
M∑
i=1

λix
k
i −

( M∑
I=1

λixi

)k
≤ 1

8
k(k − 1)xk−2

M (xM − x1)2. (73)
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Recall that q1,1, q1,2, q1,3, q1,4 are the vertices of Q1. Let λi = λi(z1). We
set

xi = 4− ‖q̂1,i − ẑ2‖2 = 2 + 2q̂1,i · ẑ2, i = 1, 2, 3, 4. (74)

Note that xi ≥ 0 for all i. We order so that x1 ≤ x2 ≤ x3 ≤ x4. We have

4∑
i=1

λi(z)F (‖q1,i − z2‖) =
4∑
i=1

λix
k
i , (75)

X• = (2 + 2z•1 · ẑ2)k =
( 4∑
i=1

λi × (2 + q̂i · ẑ2)
)k

=
( 4∑
i=1

λixi

)k
. (76)

By Equation 75, Equation 76, and the case M = 4 of Lemma E112, we
have

4∑
i=1

λi(z)F (‖q1,i− z2‖)−X• =

4∑
i=1

λix
k
i −

( 4∑
i=1

λixi

)k

≤ 1

8
k(k− 1)xk−24 (x4− x1)2. (77)

By Lemma E111
x4 = 2 + 2(q̂4 · ẑ2) ≤ T. (78)

Since d1 is the diameter of Q•1, and ẑ2 is a unit vector,

x4 − x1 = 2ẑ2 · (q̂4 − q̂1) ≤ 2‖q̂4 − q̂1‖ ≤ 2d1 (79)

Plugging Equations 78 and 79 into Equation 77, we get Lemma E12.

8.4 Proof of Lemma E12

Let δ(Q) be the hull approximation constant for Q ∈ Q, as defined (depend-
ing on Q) in Equation 25 or Equation 26.

Lemma 8.6 (E121) Let Q be any good dyadic square or segment. Then

every point of Q̂ is within δ(Q) of the quadrilateral Q•.

Lemma E121 implies that ‖ẑ1−z•1‖ < δ(Q). Let γ1 denote the unit speed
line segment connecting z•1 to ẑ1. The length L of γ1 is at most δ1, by Lemma
E11. So, γ1(0) = z•1 and γ1(L) = ẑ1. Define

f(t) =
(

2 + 2ẑ2 · γ1(t)
)k

or − 2− 2ẑ2 · γ1(t), (80)
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depending on the case. The argument we give works equally well more gen-
erally when we use F = ±Gk.

We have f(0) = X• and f(L) = F (‖ẑ1 − ẑ2‖). Hence

X• − F (‖ẑ1 − ẑ2‖) = f(0)− f(L), L ≤ δ1. (81)

Combining the Chain Rule, the Cauchy-Schwarz inequality, and Lemma
E111, we have

|f ′(t)| =
∣∣∣(2ẑ2 · γ′1(t))× k

(
2 + 2ẑ2 · γ1(t)

)k−1∣∣∣ ≤
2k
∣∣∣(2 + 2ẑ2 · γ1(t))

∣∣∣k−1

≤ 2k(2 + 2(Q1 ·Q2))k−1 = 2kT k−1.

In short
|f ′(t)| ≤ 2kT k−1. (82)

Lemma E13 follows Equation 82, Equation 81, and integration.

8.5 Proof of Lemma E111

See Equation 71 (or §5.6) for the definition of Q1 · Q2. We first treat the
case τ = 1, meaning that neither Q1 nor Q1 is {∞}. Since the dot product
is bilinear,

q•1 · q•2 ≤ max
i,j

(q̂1i · q̂2j). (83)

By Lemma E11, and by hypothesis, we can find points z•1 and z•2 such that

γj = z•1 + h1, γ2 = z•2 + h2, ‖hj‖ ≤ δj.

But then by the triangle inequality and the Cauchy-Schwarz inequality

|(γ1 · γ2)− (z•1 · z•2)| ≤ |z•1 · h2|+ |z•2 · h1|+ |h1 · h2| ≤ δ1 + δ2 + δ1δ2.

This combines with Equation 83 to complete the proof when τ = 1.
Suppose τ = 0. Without loss of generality assume that Q2 = {∞}. The

maximum of q̂1 · (0, 0, 1), for q1 ∈ Q1, is achieved when q1 is vertex of Q1. At
the same time, the maximum of q•1 ·(0, 0, 1), for q•1 ∈ Q•1 is achieved when q•1 is
a vertex of Q•1. But then our lemma is true for the endpoints of the segment
containing γ. Since the dot product with (0, 0, 1) varies linearly along this
line segment, the same result is true for all points on the line segment.
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8.6 Proof of Lemma E112

Lemma 8.7 (E1121) Suppose a, x ∈ [0, 1] and k ≥ 2. Then f(x) ≤ g(x),
where

f(x) = (axk + 1− a)− (ax+ 1− a)k; g(x) =
1

8
k(k − 1)(1− x)2. (84)

Proof: Since f(1) = g(1) = f ′(1) = g′(1) = 0 the Cauchy Mean Value
Theorem (applied twice) tells us that for any x ∈ (0, 1) there are values
y < z ∈ [x, 1] such that

f(x)

g(x)
=
f ′(y)

g′(y)
=
f ′′(z)

g′′(z)
= 4azk−2

[
1−a

(
a+

1− a
z

)k−2]
≤ 4a(1−a) ≤ 1. (85)

This completes the proof. ♠

Remark: The above proof, suggested by an anonymous referee of [S4], is
better than my original proof.

Now we prove the main inequality The lower bound is a trivial conse-
quence of convexity, and both bounds are trivial when k = 1. So, we take
k = 2, 3, 4, ... and prove the upper bound. Suppose first that M ≥ 3. We
have one degree of freedom when we keep

∑
λixi constant and try to vary

{λj} so as to maximize the left hand side of the inequality. The right hand
side does not change when we do this, and the left hand side varies linearly.
Hence, the left hand size is maximized when λi = 0 for some i. But then any
counterexample to the lemma for M ≥ 3 gives rise to a counter example for
M − 1. Hence, it suffices to prove the inequality when M = 2.

In the case M = 2, we set a = λ1. Both sides of the inequality in Lemma
E112 are homogeneous of degree k, so it suffices to consider the case when
x2 = 1. We set x = x1. Our inequality then becomes exactly the one treated
in Lemma E1121. This completes the proof.

8.7 Proof of Lemma E121

We remind the reader of the wierd function χ(D) and we introduce a more
geometrically meaningfun function

χ(D, d) =
d2

4D
+

d4

4D3
, χ∗(D, d) =

1

2
(D −

√
D2 − d2). (86)
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Lemma 8.8 (E1211) χ∗(D, d) ≤ χ(D, d) for all d ∈ [0, D].

Proof: By homogeneity, it suffices to prove the result when D = 1. To
simpify the algebra we define A = 2χ(1, d) − 1 and A∗ = 2χ∗(1, d) − 1. We
compute 4A2− 4(A∗)2 = d4(d− 1)(d+ 1)(d2 + 3). Hence, the sign of A−A∗
does not change on (0, 1). We check that A > A∗ when d = 1/2. Hence
A > A∗ on (0, 1). This implies the inequality. ♠

Segment Case: Let Q be dyadic segment. Here Q̂ is the arc of a great
circle and Q• is the chord of the arc joining the endpoints of this arc. Let
d be the length of Q•. The point of Q̂ farthest from Q• is the midpoint of
this Q̂. Let x be the distance between the midpoint of Q̂ and the midpoint
of Q•. From elementary geometry, x(D − x) = (d/2)2. Solving for x we find
that x = χ∗(2, d). Lemma E1211 finishes the proof.

Square Case: Let Q be a dyadic square and let z ∈ Q be a point. Let
L be the vertical line through x and let z01, z23 be the endpoints of the seg-
ment L ∩ Q. We label the vertices of Q (in cyclic order) so that z01 lies on
the edge joining q0 to q1 and z23 lies on the edge joining q2 to q3.

If M is a horizontal line intersecting Q then the circle Σ−1(M ∪∞) has
diameter at least 1. The point is that this circle contains (0, 0, 1) and also
Σ−1(0, y) for some |y| ≤ 3/2. In fact the diameter is at least 4/

√
13. The

same goes for vertical lines intersecting Q.
Define dj = ‖p̂j − p̂j+1‖ with the indices taken cyclically. The length of

the segment σ joining the endpoints of Σ−1(L∩Q) varies monotonically with
the position of L. Hence, σ has length at most max(d1, d3). At the same
time, Σ−1(L ∩ Q) is contained in a circle of diameter at least 1. The same
argument as in the segment case now shows that there is a point z∗ ∈ σ
which is within t13 = max(χ(1, d1), χ(1, d3)) of ẑ.

The endpoints of σ respectively are on the spherical arcs obtained by map-
ping the top and bottom edge of Q onto S2 via Σ−1. Hence, one endpoint of
σ is within χ(1, d0) of a point on the corresponding edge of ∂Q• and the other
endpoint of σ is within χ(1, d2) of a point on the opposite edge of ∂Q•. But
that means that either endpoint of σ is within t02 = max(χ(1, d0), χ(1, d2))
of a point in Q•. But then every point of the segment σ is within t02 of some
point of the line segment joining these two points of Q•. In particular, there
is a point z• ∈ Q• which is within t of z∗. The triangle inequality completes
the proof of Lemma E121.
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9 Interpolation: Proof of Lemma A2

9.1 Reduction to Smaller Results

Recall that 15+ = 15 + 25
512

. Referring to Equations 12 and 13, we define

P1 = (G4, G6), P2 = (G5, G
]]
10), P3 = (G[

5, G
]
10), (87)

I1 = (0, 6], I2 = [6, 13], I3 = [13, 15+]. (88)

Lemma A2 says that the pair Pj forces the interval Ij for j = 1, 2, 3. The
beginning of our proof of Lemma A21 will recall what this means.

Let Rs be the Riesz s-potential. We say that a pair of functions (Γ3,Γ4)
specially forces s ∈ R−{0} if there are constants a0, ..., a4 (depending on s)
such that

Λs = a0 + a1G1 + a2G2 + a3Γ3 + a4Γ4, (89)

1. Λs(x) = Rs(x) for x =
√

2,
√

3,
√

4.

2. a1, a2, a3, a4 > 0.

3. Λs(x) ≤ Rs(x) for all x ∈ (0, 2].

We say that (Γ3,Γ4) specially forces the interval I if this pair specially forces
all s ∈ I.

Lemma 9.1 (A21) If (Γ3,Γ4) specially forces I then Γ forces I.

Proof: Let T0 be the TBP and let T be some other 5-point configuration. We
simplify the notation and write F (T ) = EF (T ). We assume Γj(T0) < Γj(T )
for j = 3, 4 and we want to show that that Rs(T0) < Rs(T ) for all s ∈ I. It is
well known that Γ1(T0) ≤ Γ1(T ) and, by Tumanov’s result, Γ2(T0) ≤ Γ2(T ).
Let aj = aj(s) for s ∈ I. The quantities

√
2,
√

3,
√

4 are the distances which
appear between pairs of points in T0. Therefore Λs(T0) = Rs(T0). But then

Rs(T ) ≥ Λs(T ) = a0 +
4∑
j=1

ajΓj(T ) > a0 +
4∑
j=1

ajΓj(T0) = Λs(T0) = Rs(T0).

This completes the proof. ♠

Lemma 9.2 (A22) For each i = 1, 2, 3 the pair Pi specially forces Ii.

Lemma A2 is an immediate consequence of Lemma A21 and Lemma A22.
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9.2 Proof of Lemma A22

Referring to Equation 89 we solve the equations

Λs(
√
m) = Rs(

√
m), m = 2, 3, 4, Λ′s(

√
m) = R′s(

√
m), m = 2, 3. (90)

Here f ′ denotes the derivative of f , a function defined on (0, 2]. We don’t need
to constrain f ′(2). For each s this gives us a linear system with 5 variables
and 5 equations. In all cases, our solutions have the following structure

(a0, a1, a2, a3, a4) = M(2−s/2, 3−s/2, 4−s/2, s2−s/2, s3−s/2) (91)

We will list M below for each of the 3 cases.

Lemma 9.3 (A221) For each i = 1, 2, 3 the following is true. When M is
defined relative to the pair Pi then the coefficients a1, a2, a3, a4 are positive
functions on the interval Ii.

We want to see that the function

Hs = 1− Λs

Rs

. (92)

takes its minima at r =
√

2,
√

3 on (0, 2]. Differentiating with respect to
r ∈ (0, 2] we have

H ′s(r) = rs−1(sΛs(r) + rΛ′s(r)). (93)

Using the general equation rG′k(r) = 2kGk(r)− 8kGk−1(r), we see that

ψs = sΛs(r) + rΛ′s(r) (94)

is a polynomial in t = 4− r2.

Lemma 9.4 (A222) For each choice Pj and each s ∈ Ij the following is
true. The function ψs has 4 simple roots in [0, 4]. Two of the roots are 1 and
2 and the other two respectively lie in (0, 1) and (1, 2).

Let us deduce Lemma A2. Our construction and Lemma A221 immedi-
ately take care of Conditions 1 and 2 of special forcing. Condition 3: The
roots of ψs in [0, 4) are in bijection with the roots of H ′s in (0, 2] and their
nature (min, max, simple) is preserved under the bijection. We check for
one parameter in each of the three cases that the roots 1 and 2 correspond
to local minima and the other two roots correspond to local maxima. Since
these roots remain simple for all s in the relevant interval, the nature of the
roots cannot change as s varies. Hence Hs has exactly 2 local minima in
(0, 2], at r =

√
2,
√

3. But then Hs ≥ 0 on (0, 2]. This completes the proof.
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9.3 A Positivity Algorithm

In our proofs of Lemmas A221 and A222 we need to deal with expressions of
the following form:

F (s) =
∑

cis
tib

s/2
i , (95)

where bi, ci ∈ Q and ti ∈ Z and bi > 0. Here we explain how we deal with
such expressions.

For each summand we compute a floating point value, xi. We then con-
sider the floor and ceiling of 232xi and divide by 232. This gives us rational
numbers xi0 and xi1 such that xi0 ≤ xi ≤ xi1. Since we don’t want to trust
floating point operations without proof, we formally check these inequalities
with what we call the expanding out method .

Expanding Out Method: Suppose we want to establish an inequality like
(a
b
)
p
q < c

d
, where every number involved is a positive integer. This inequality

is true iff bpcq − apdq > 0. We check this using exact integer arithmetic. The
same idea works with (>) in place of (<).

To check the positivity of F on some interval [s0, s1] we produce, for each
term, the 4 rationals xi00, xi10, xi01, xi01. Where xijk is the approximation
computed with respect to sk. We then let yi be the minimum of these ex-
pressions. The sum

∑
yi is a lower bound for Equation 95 for all s ∈ [s0, s1].

On any interval exponent I where we want to show that Equation 95 is posi-
tive, we pick the smallest dyadic interval [0, 2k] that contains I and then run
the following subdivision algorithm.

1. Start with a list L of intervals. Initially L = {[0, 2k]}.

2. If L is empty, then HALT. Otherwise let Q be the last member of L.

3. If either Q ∩ I = ∅ or the method above shows that Equation 95 is
positive on Q we delete Q from L and go to Step 2.

4. Otherwise we delete Q from L and append to L the 2 intervals obtained
by cutting Q in half. Then we ago to to Step 2.

If this algorithm halts then it constitutes a proof that F (s) > 0 for all s ∈ I.
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9.4 Proof of Lemma A221 and part of Lemma A222

Referring to Equation 91 we first list out the matrices in all 3 cases. For P1

we get

792M =


0 0 792 0 0

792 1152 −1944 −54 −288
−1254 −96 1350 87 376

528 −312 −216 −39 −98
−66 48 18 6 10

 (96)

For P2 and P3 we list 368536M in each case.
0 0 268536 0 0

88440 503040 −591480 −4254 −65728
−77586 −249648 327234 2361 65896
41808 −19440 −22368 −2430 −9076
−402 264 138 33 68

 (97)


0 0 268536 0 0 0

982890 116040 −1098930 −52629 −267128 0
−91254 −240672 331926 3483 68208 0
35778 −15480 −20298 −1935 −8056 0
−402 264 138 33 68 0

 (98)

Remark: (Auxiliary Theorem) We also list the matrix we get for the
Auxiliary theorem. Here the interval is (−2, 0) and the pair is (G3, G5).

144M =


0 0 −144 0 0
−312 −96 408 24 80
684 −288 −396 −54 −144
−402 264 138 33 68

30 −24 −6 −3 −4

 .
The proof of Lemmas A221 and A22 for this pair is very much like our Case
1 above. Our computer code does it rigorously.

Now we turn to the analysis of the coefficients. For Cases 2 and 3 (mean-
ing j = 2, 3) we get Lemma A22 by running the positivity algorithm for
a1, a2, a3, a4 on the intervals Ij. The algorithm halts and we are done. For
j = 1 the situation is trickier because these coefficients vanish at the endpoint
s = 0 of the interval I1 = (0, 6].
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Before we launch into Case 1, we add two quantities we test, namely ψs(0)
and ψs(4). We have

11ψs(0) =


−88
−128
+216
+6
+32
+11

 ·


2−s/2

3−s/2

4−s/2

s2−s/2

s3−s/2

s4−s/2

 ,
11

s
ψs(4) =


−2112
+1664
+459
+219
288
0

 ·


2−s/2

3−s/2

4−s/2

s2−s/2

s3−s/2

s4−s/2


In other words, these quantities have the same form as the functions aj(s) for
j = 1, 2, 3, 4. We run the positivity algorithm and show that all 6 quantities
are positive on [1/4, 6].

Now we deal with the interval (0, 1/4]. Note that

sup
m=2,3,4

sup
s∈[0,1]

∣∣∣ ∂6

∂s6
m−s/2

∣∣∣ < 1

8
. (99)

All our (scaled) expressions have the form Y · V (s),

V (s) = (2−s/2, 3−s/2, 4−s/2, s2−s/2, s3−s/2, s4−s/2).

For an integer vector Y . Moreover the sum of the absolute values of the
coefficients in each of the Y vectors is at most 5000. This means that, when
we take the 5th order Taylor series expansion for Y · V (s), the error term is
at most

5000× 1

8
× 1

6!
< 1.

We compute each Taylor series, set all non-leading positive terms to 0, and
crudely round down the other terms:

792a1(s) : 98s− 69s2 + 0s3 − 6s4 + 0s5 − 1s6

792a2(s) : 14s− 3s2 − 2s3 + 0s4 − 1s5 − 1s6.

792a3(s) : 1s+ 0s2 − 1s3 + 0s4 + 0s5 − 1s6.

792a4(s) : .03s+ 0s2 + 0s3 − .01s4 + 0s5 − 1s6.

11ψs(0) : .08s+ 0s2 − .02s3 + 0s4 − .01s5 − 1s6.

(11/s)ψs(4) : 11 + 0s+ 0s2 − 1s3 − 1s4 + 0s5 − 1s6.

These under-approximations are all easily seen to be positive on (0, 1/4]. My
computer code does these calculations rigorously with interval arithmetic,
but it hardly seems necessary.
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9.5 Proof of Lemma A222

Case 1: In Case 1 we compute that

ψs(t) = t6 − 48

12 + s
t5 + ... (100)

We don’t care about the other terms. Since ψs has degree 6 we conclude
that ψs has at most N = 6 roots, counting multiplicity. By construction
Hs(
√
m) = H ′s(

√
m) = 0 for m = 2, 3 and Hs(

√
4) = 0. This means that

Hs has extrema at r2 =
√

2 and r3 =
√

3 and at points r23 ∈ (
√

2,
√

3)
and r34 ∈ (

√
3,
√

4). Correspondingly ψs has roots t1 = 1 and t2 = 2 and
t01 ∈ (0, 1) and t12 ∈ (1, 2). The sum of all the roots of ψs is 48/(12 + s) < 4.
Since t1 + t2 + t01 + t12 > 4 we see that not all roots can be positive. Hence
N < 6. Since ψs is positive at t = 0, 4 we see that N is even. Hence N = 4.
This means that the only roots of ψs in (0, 4) are the 4 roots we already know
about. Since these roots are distinct, they are simple roots.

Cases 2 and 3: First of all, the functions Hs are the same in Cases 2
and 3. This is not just a computational accident. In both cases we are build-
ing Hs from the functions G1, G2, G5, G10. So, we combine Cases 2 and 3 by
proving that the common polynomial ψs just has 4 roots for each s ∈ [6, 16].
I will describe a proof which took me quite a lot of experimentation to find.
One tool I will use is positive dominance. This concept is discussed (with
proofs) in more generality in §10.2. Here I will just explain the easy case we
need in this section: A real polynomial a0 + a1t+ ...ant

n is positive on [0, 1]
provided that the sums a0, a0 +a1, a0 +a1 +a2, ..., a0 + ...+an are all positive.

The same analysis as in Case 1 shows that ψs has roots at 1, 2, and in
(0, 1) and in (1, 2). We just want to see that there are no other roots.

We can factor ψs as (t − 1)(t − 2)βs where βs is a degree 8 polynomial.
Taking derivatives with respect to t, we notice that

1. γs = 268536× 12s/2 × (β′′s − β′s) is positive for s× t ∈ [6, 16]× [0, 4].

2. −β′s(0) > 0 for all s ∈ [6, 16].

3. β′s(4) > 0 for all s ∈ [6, 16].

Statement 1 shows in particular that β′s never has a double root. This com-
bines with Statements 2 and 3 to show that the number of roots of β′s in [0, 4]
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is independent of s ∈ [6, 16]. We check explicitly that β′6 has only one root
in [0, 4]. Hence β′s always has just one root. But this means that βs has at
most 2 roots in [0, 4]. This, in turn, means that ψs has at most 4 roots in
[0, 4]. This completes the proof modulo the 3 statements.

Now we establish the 3 statements. We first give a formula for γs. Define
matrices M3,M4,M6 respectively as:

−546840 −1800480 99720 −397440 −234600 −33120 173880 −22080
18366 17112 80766 24288 18630 11592 4830 −1104

0 0 0 0 0 0 0 0


 −345600 −1576320 −509760 −760320 −448800 −63360 332640 −42240
−199296 −698784 75216 −149376 −79960 5856 94920 −12992

7104 8432 33960 11968 9180 5712 2380 −544


 892440 3376800 410040 1157760 683400 96480 −506520 64320
−73350 −246888 −228942 −165792 −110370 −41688 27510 −2064

1473 4092 10557 5808 4455 2772 1155 −264


Define 3 polynomials P3, P4, P6 by the formula:

Pk(s, t) = (1, s, s2) ·Mk · (1, ..., t7) =
2∑
i=0

7∑
j=0

(Mk)ijs
itj, k = 3, 4, 6. (101)

We have
γ = P33s/2 + P44s/2 + P66s/2. (102)

To check the positivity of γs we check that each of the 16 functions

γs(v/4 + 1/4) = av,0 + av,1t+ ...av,7t
7 (103)

satisfies the following condition: Av,k = av,0 + ... + av,k is positive for all
k = 0, ..., 7 and all s ∈ [6, 16]. This shows that the corresponding polynomial
is positive on [0, 1].

For each v = 0, ..., 15 and each k = 0, ...., 7 we have a 3×3 integer matrix
µv,k such that

Av,k = (1, s, s2) · µv,t · (3s/2, 4s/2, 6s,2). (104)

This gives 128 matrices to check. We get two more such matrices from the
conditions −β′s(0) > 0 and β′s(4) > 0. All in all, we have to check that 130
expressions of the form in Equation 104 are positive for s ∈ [6, 16]. These
expressions are all special cases of Equation 95, and we use the method
discussed above to show positivity in all 130 cases. The program runs in
several hours.
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10 Symmetrization: Preliminaries

In this part of the monograph we prove Lemma B. In this preliminary chapter
we discuss a few useful lemmas.

10.1 Exponential Sums

We begin with two easy and well-known lemmas about exponential sums.
The first is an exercise with Lagrange multipliers.

Lemma 10.1 (Convexity) Suppose that α, β, γ ≥ 0 have the property that
α + β ≥ 2γ. Then αs + βs ≥ 2γs for all s > 1, with equality iff α = β = γ.

Lemma 10.2 (Descartes) Let 0 < r1 ≤ r1... ≤ rn < 1 be a sequence of
positive numbers. Let c1, ..., cn be a sequence of nonzero numbers. Define

E(s) =
n∑
i=1

ci r
s
i . (105)

Let K denote the number of sign changes in the sequence c1, ..., cn. Then E
changes sign at most K times on R.

Proof: Suppose we have a counterexample. By continuity, perturbation,
and taking mth roots, it suffices to consider a counterexample of the form∑
cit

ei where t = rs and r ∈ (0, 1) and e1 > ... > en ∈ N . As s ranges in r,
the variable t ranges in (0,∞). But P (t) changes sign at most K times on
(0,∞) by Descartes’ Rule of Signs. This gives us a contradiction. ♠

10.2 Positive Dominance

See [S2] and [S3] for more details about the material here. LetG ∈ R[x1, ..., xn]
be a multivariable polynomial:

G =
∑
I

cIX
I , XI =

n∏
i=1

xIii . (106)

Given two multi-indices I and J , we write I � J if Ii ≤ Ji for all i. Define

GJ =
∑
I�J

cI , G∞ =
∑
I

cI . (107)
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We call G weak positive dominant (WPD) if GJ ≥ 0 for all J and G∞ > 0.
We call G positive dominant if GJ > 0 for all J .

Lemma 10.3 (Weak Positive Dominance) If G is weak positive domi-
nant then G > 0 on (0, 1]n. If G is positive dominant then G > 0 on [0, 1]n.

Proof: We prove the first statement. The second one has almost the same
proof. Suppose n = 1. Let P (x) = a0 + a1x+ .... Let Ai = a0 + ...+ ai. The
proof goes by induction on the degree of P . The case deg(P ) = 0 is obvious.
Let x ∈ (0, 1]. We have

P (x) = a0 + a1x+ x2x
2 + · · ·+ anx

n ≥

x(A1 + a2x+ a3x
2 + · · · anxn−1) = xQ(x) > 0

Here Q(x) is WPD and has degree n− 1.
Now we consider the general case. We write

P = f0 + f1xk + ...+ fmx
m
k , fj ∈ R[x1, ..., xn−1]. (108)

Since P is WBP so are the functions Pj = f0 + ...+ fj. By induction on the
number of variables, Pj > 0 on (0, 1]n−1. But then, when we arbitrarily set
the first n− 1 variables to values in (0, 1), the resulting polynomial in xn is
WPD. By the n = 1 case, this polynomial is positive for all xn ∈ (0, 1]. ♠

Polynomial Subdivision: Let P ∈ R[x1, ..., xn] as above. For any xj and
k ∈ {0, 1} we define

Sxj ,k(P )(x1, ..., xn) = P (x1, ..., xj−1, x
∗
j , xj+1, ..., xn), x∗j =

k

2
+
xj
2
.

(109)
If Sxj ,k(P ) > 0 on (0, 1]n for k = 0, 1 then we also have P > 0 on (0, 1]n.

Positive Numerator Selection: If f = f1/f2 is a bounded rational func-
tion on [0, 1]n, written in so that f1, f2 have no common factors, we always
choose f2 so that f2(1, ..., 1) > 0. If we then show, one way or another, that
f1 > 0 on (0, 1]n we can conclude that f2 > 0 on (0, 1]n as well. The point
is that f2 cannot change sign because then f blows up. But then we can
conclude that f > 0 on (0, 1]n. We write num+(f) = f1.
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11 Symmetrization: Proof of Lemma B

11.1 Reduction to Smaller Steps

Now we define the domains involved in our proof. Recall that the domain Υ
is defined in §3.1 and shown in Figure 3.1. In this section we describe the
domains that play a role in the proof of Lemma B. The various transforma-
tions we make start in Υ but then move us into slightly different domains.

Rotation: We let (p′1, p
′
2, p
′
3, p
′
4) be the planar configuration which is ob-

tained by rotating X about the origin so that p′0 and p′2 lie on the same
horizontal line, with p′0 lying on the right. We call this operation rotation.
Rotation does not quite map Υ into itself. To find a suitable image, let Υ′

denote the domain of avatars p′0, p
′
1, p
′
2, p
′
3 such that

1. ‖p′0‖ ≥ ‖p′k‖ for k = 1, 2, 3.

2. 512p′0 ∈ [432, 498]× [−16, 16]. (Compare [433, 498]× [0, 0].)

3. 512p′1 ∈ [−32, 32]× [−465,−348]. (Compare [−16, 16]× [−464,−349].)

4. 512p′2 ∈ [−498,−400]× [−16, 16]. (Compare [−498,−400]× [0, 24].)

5. 512p′3 ∈ [−32, 32]× [348, 465]. (Compare [−16, 16]× [349, 464].)

6. p′02 = p′22. (Compare p02 = 0.)

The comparisons are with Υ.

Lemma 11.1 (B21) Rotation gives a map from Υ to Υ′ where

Horizontal Symmetrization: Given an avatar X ′ = (p′0, p
′
1, p
′
2, p
′
3) ∈ Υ′,

there is a unique configuration X ′′ = (p′′0, p
′′
1, p
′′
2, p
′′
3), invariant under under

reflection in the y-axis, such that p′j and p′′j lie on the same horizontal line for
j = 0, 1, 2, 3 and ‖p′′0 − p′′2‖ = ‖p′0 − p′2‖. We call this horizontal symmetriza-
tion. In a straightforward way we see that horizontal symmetrization maps
Υ′ into Υ′′, the set of avatars p′′0, p

′′
1, p
′′
2, p
′′
3 such that

1. 512p′′0 ∈ [416, 498]× [−16, 16] and (p′′21, p
′′
22) = (−p′′01, p

′′
02).

2. −512p1, 512p′′3 ∈ [0, 0]× [348, 465].
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Vertical Symmetrization: Given a configuration X ′′ = (p′′0, p
′′
1, p
′′
2, p
′′
3) ∈

Υ′′ there is a unique configuration X ′′′ = (p′′′0 , p
′′′
1 , p

′′′
2 , p

′′′
3 ) ∈ K4 such that

p′′j and p′′′j lie on the same vertical line for j = 0, 1, 2, 3. The configuration
X ′′′ coincides with the configuration X∗ defined in Lemma B. We call this
operation vertical symmetrization.

In summary (and using obvious abbreviations) we have

Υ
−→
Rot Υ′

−→
HS Υ′′

−→
VS K4.

Symmetrization, as an operation on Υ′, is the composition of vertical and
horizontal symmetrization.

Each avatar corresponds to a 5-point configuration on S2 via stereo-
graphic projection. The energy of the 5 point configuration involves 10 pairs
of points. A typical term is:

Rs(pi, pj) =
1

‖Σ−1(pi)− Σ−1(pj)‖s
. (110)

Given a list L of pairs of points in the set {0, 1, 2, 3, 4} we define Es(P,L) to
be the sum of the Rs-potentials just over the pairs in L. Thus, for instance

L = {(0, 2), (0, 4), (2, 4)} =⇒ Es(P,L) = Rs(p0, p2)+Rs(p0, p4)+Rs(p2, p4).

We call the subset L good for the parameter s, and with respect to one of
the operations, if the operation does not increase the value of Es(P,L). We
call L great if the operation strictly lower Es(P,L) unless the operation fixes
P . When we make this definition we mean to take the appropriate domains.

Lemma 11.2 (B2) The lists {(0, 2), (0, 4), (2, 4)} and {(1, 3), (1, 4), (3, 4)}
are both great for all s ≥ 2 and with respect to symmetrization.

Lemma 11.3 (B3) The lists {(0, 1), (1, 2)} and {(0, 3), (3, 2)} are both good
for all s ≥ 2 and with respect to horizontal symmetrization.

Lemma 11.4 (B4) The lists {(0, 1), (0, 3)} and {(2, 1), (2, 3)} are both good
for all s ≥ 12 and with respect to vertical symmetrization.

Lemma B follows from Lemma B1 (§11.2), Lemma B1 (§11.3), Lemma
B3 (§11.4) and Lemma B4 (§11.5). Lemma B2 is pretty robust and Lemma
B4 is very delicate. Lemma B3 is in the middle.
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11.2 Proof of Lemma B1

The proof of Lemma B1 is a tedious exercise in trigonometry and arithmetic.
Let P ∈ Υ and let P ′ be the rotation of P . Rotation about the origin

does not change the norms, so P ′ satisfies Condition 1. Moreover, Condition
6 holds by construction. Now we verify the other properties.

Let ρθ denote the counterclockwise rotation through the angle θ. Since
p0 lies on the x axis and p2 lies on or above it, we have to rotate by a small
amount counterclockwise to get p′0 and p′2 on the same horizontal line. That
is, the rotation moves the right point up and the left one down. Hence θ ≥ 0.
This angle is maximized when p0 is an endpoint of its segment of constraint
and p2 is one of the two upper vertices of rectangle of constaint. Not thinking
too hard which of the 4 possibilities actually realizes the max, we check for
all 4 pairs (p0, p2) that the second coordinate of ρ1/34(p0) is larger than the
second coordinate of ρ1/34(p0). From this we conclude that θ < 1/34. This
yields

512 cos(θ) ∈ [0, 1], 512 sin(θ) ∈ [0, 16]. (111)

From Equation 111, the map 512p0 → 512p′0 changes the first coordinate
by 512δ01 ∈ [0, 16] and 512δ02 ∈ [−1, 0]. This gives (something stronger
than) Condition 2 for Υ′. (We are symmetrizing Υ′ for the purposes of later
steps in the arguement and that is why we have weakened the conditions
needed for inclusion.) At the same time, we have p′21 = p′01 and the change
512p2 → 512p′2 changes the second coordinate by 512δ21 ∈ [0, 1]. This gives
Condition 4 for Υ′ once we observe that |p′21| ≤ |p′01|.

For Condition 3 we just have to check (using the same notation) that
512δ11 ∈ [0, 16] and 512δ12 ∈ [−1, 1]. The first bound comes from the in-
equality 512 sin(θ) < 16. For the second bound we note that the angle that
p1 makes with the y-axis is maximized when p1 is at the corners of its con-
straints in Υ. That is,

p1 =
(±16

512
,
349

512

)
.

Since tan(1/21) > 16/349 we conclude that this angle is at most 1/21. Hence

|512δ12| ≤ max
|x|≤1/21

∣∣∣ cos
(
x+

1

34

)
− cos(x)

∣∣∣ < 1.

This gives Condition 3. The same argument gives Condition 5.

59



11.3 Proof of Lemma B2

Let (u, v) stand for either (0, 2) or (1, 3). Also all rotations we consider fix the
origin. For the points associated with {(u, v), (u, 4), (v, 4)} our symmetriza-
tion operation on Υ′ is a special case of the following general operation.

1. Start with pu, pv so that ‖pu‖, ‖pv‖ < 1 and 2d := ‖pu − pv‖ > 2
√

3/3.

2. Replace pu, pv with points qu = (−d, 0) and qv = (d, 0).

3. Let λ ∈ (0, 1) satisfy λd >
√

3/3. Let ru = (−λd, 0) and rv = (λd, 0).

4. Let p∗u, p
∗
v be respective images of ru, rv under any rotation.

The operaton is (pu, pv)→ (p∗u, p
∗
v). Lemma B2 is implied by:

‖r̂u − r̂v‖−2 + ‖r̂u − (0, 0, 1)‖−2 + ‖r̂v − (0, 0, 1)‖−2 ≤

‖p̂u − p̂v‖−2 + ‖p̂u − (0, 0, 1)‖−2 + ‖p̂v − (0, 0, 1)‖−2 (112)

with equality if and only if ru = pu and rv = pv up to a rotation.

Lemma 11.5 (B21) Let s ≥ 2 and

As = ‖p̂u − p̂v‖−s − ‖q̂u − q̂v‖−s,
Bs = ‖p̂u − (0, 0, 1)‖−2 + ‖p̂v − (0, 0, 1)‖−2 − ‖q̂u − (0, 0, 1)‖−2 − ‖q̂v − (0, 0, 1)‖−2.

Then As, Bs ≥ 0, with equality iff pu = qu and pv = qv up to a rotation.

Proof: The case s = 2 of this result combines with the Convexity Lemma
to get the case s > 2. So, we take s = 2. We rotate so that

pu = (−x+ h, y), pv = (x+ h, y), qu = (−x, 0), qv = (x, 0). (113)

We compute

A2 =
h4 + y2(2 + 2x2 + y2) + h2(2− 2x2 + 2y2)

16x2
, B2 =

y2 + h2

2
. (114)

Since x ∈ (0, 1) we have A2 > 0 unless h = y = 0. Likewise we have B2 > 0
unless h = y = 0. ♠

Lemma B21 implies that Step 2 of our construction above decreases en-
ergy unless it fixes the points up to rotation. We just need to see that Step
3 of the construction does not increase the energy. So far we have not used
the condition d >

√
3/3 but now we will. The following result is perhaps a

standard result for 3-point energy minimization on a circle.
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Lemma 11.6 (B22) As long as s ≥ 2 we have

‖r̂u − r̂v‖−s + ‖r̂u − (0, 0, 1)‖−s + ‖r̂v − (0, 0, 1)‖−s ≤

‖q̂u − p̂v‖−s + ‖q̂u − (0, 0, 1)‖−s + ‖q̂v − (0, 0, 1)‖−s (115)

Proof: We prove this equation under more general assumptions. Define

Fs(au, av) = ‖ζ̂u − ζ̂v‖−s + ‖ζ̂u − (0, 0, 1)‖−s + ‖ζ̂v − (0, 0, 1)‖−s, (116)

Where
ζu = (−

√
3/3− au, 0), ζv = (

√
3/3 + av). (117)

Our assumption d >
√

3/3 lets us take au, av > 0. Next for 0 < bu < au and
0 < bv ≤ av define

E(s) = Fs(au, av)− Fs(bu, bv) (118)

We will show that E(s) ≥ 0 when s ≥ 2. It suffices to prove this result in the
intermediate case when au = bu or av = bv because then we can apply the
intermediate result twice to get the general case. Without loss of generality
we consider the case when av = bv and bu < au. We think of ζu as moving
from its old location defined by au inward to its new location defined by bu.

With the file LemmaB22.m we compute that

∂F2

∂au

∣∣∣
(au,av)

, −∂F−2

∂au

∣∣∣
(au,av)

are both rational functions of au, av with all positive coefficients. Hence
E(2) > 0 and E(−2) < 0.

When au = av = 0 the points ζ̂u, ζ̂v and (0, 0, 1) make an equilateral tri-

angle on a great circle. Hence, when au, av, bu, bv > 0 the point ζ̂u is closer to
(0, 0, 1) than it is to ζ̂v both in its old location and in its new location. The
inward motion of the point ζu increases the shorter (corresponding spher-
ical) distance and decreases the longer (corresponding spherical) distance.
More to the point, our move decreases the longer inverse-distance and in-
creases the shorter inverse-distance. Thus the sign sequence (§10.1) for E(s)
is +,−.−,+. By Descartes’ Lemma, E(s) changes sign at most twice and
also E(s) > 0 when |s| is sufficiently large.

Since E(−2) < 0 as see that E changes sign on (−∞,−2). If E changes
sign on (2,∞) then in fact E changes sign twice because it starts and ends
positive on this interval. But then E changes sign 3 times, a contradiction.
Hence E(s) ≥ 0 for s ≥ 2. ♠
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11.4 Proof of Lemma B3

By symmetry, it suffices to prove Lemma B3 for the list {(0, 1), (1, 2)}. Let
D denote the set of triples of points (q0, q1, q2) ∈ (R2)3 such that there is
some q3 such that q0, q1, q2, q3 ∈ Υ′. The symmetrization operation is given
by (q0, q1, q2)→ (q′1, q

′
2, q
′
3), where

q′0 =
(q01 − q21

2
, q02

)
, q′1 = (0, q21), q′2 =

(q21 − q01

2
, q22

)
,

(119)
Note that ‖q′0 − q′1‖ = ‖q′2 − q′1‖. Therefore, by the Convexity Lemma, it
suffices to prove that {(0, 1), (1, 2)} is good for the parameter s = 2.

We define
[u, v]t = u(1− t) + vt. (120)

The map t→ [u, v]t maps [0, 1] to [u, v].
For all 4 choices of signs we define φ±,± : [0, 1]5 → (R2)3 as follows:

φ±,±(a, b, c, d, e) = q0(a, d,±b), q1(±e, c), q2(a, d,±b), (121)

where
512q0(a, d,±b) = ([416, 498]a+ 49e,±16b).

512q1(±d, c) = (±32d, [348 + 465]c)

512q2(a, d,±b) = ([−416,−498]a+ 49e,±16b).

In these coordinates, horizontal symmetrization is the map (a, b, c, d, e) →
(a, b, c, 0, 0).

Lemma 11.7 (B31) We have

D ⊂ φ+,+([0, 1]5) ∪ φ+,−([0, 1]5) ∪ φ−,+([0, 1]5) ∪ φ−.−([0, 1]5).

Proof: Let Dij denote the set of possible coordinates qij that can arise for
points in D. This, for instance D01 = [−16, 16]/512. Let D∗ij denote the set of
possible coordinates qij that can arise from the union of our parametrizations.
By construction Di2 ⊂ D∗i2 for i = 0, 1, 2 and D11 ⊂ D∗11.

Remembering that we have q01 ≥ |q21|, we see that the set of points pairs
(q01, q21) satisfying all the conditions for inclusion in D lies in the triangle X
with vertices (498,−498) and (498,−400) and (432,−400). At the same time,
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the set of pairs (512)(p∗01, p
∗
21) that we can reach with our parametrization is

the rectangle X∗ with vertices

(498,−498), (416,−416), (498,−498)+(49, 49), (416,−416)+(49, 49).

We have X ⊂ X∗ because

(432,−400) = (416,−416)+(16, 16), (498,−400) = (449,−449)+(49, 49).

This completes the proof. ♠

Using our coordinates above, we define

F±,±(a, b, c, d, e) = ‖p̂0 − p̂1‖−2 + ‖p̂2 − p̂1‖−2,

Φ±,±(a, b, c, d, e) = num+(F±,±(a, b, c, d, e)− F±,±(a, b, c, 0, 0)). (122)

Lemma 11.8 (B32) For any sign choice Φ±,± > 0 on (0, 1)5.

Proof: Let Φ be any of the 4 polynomials. The file LemmaB32.m computes
that

• F and Φd and Φe are zero when d = e = 0.

• Φd + 2Φe and Φdd and Φee are weak positive dominant and hence non-
negative on [0, 1]5.

Let Qd ⊂ [0, 1]5 be the sub-cube where d = 0. Let φ(d) be the restriction of Φ
to a line segment which starts at some point (a, b, c, 0, 0) and moves parallel
to (0, 0, 0, 1, 0). By Lemma B321 we have φ(0) = φ′(0) and also φ′′(d) ≥ 0.
Hence φ(d) ≥ 0 for d ≥ 0. Hence Φ ≥ 0 on Qd. A similar argument shows
that likewise Φ ≥ 0 on Qe. Any point in (0, 1)5 can be joined to a point
in Qd ∪ Qe by a line segment L which is parallel to the vector (0, 0, 0, 1, 2).
By Lemma B3121, Φ increases along such a line segment as we move out of
Qd ∪Qe. Hence Φ ≥ 0 on [0, 1]5. ♠

Lemma B312 implies F±(a, b, c, d, e) ≥ F±(a, b, c, 0, 0). See §10.2. Lemma
B3 thus follows from Lemma B31 and Lemma B32.
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11.5 Proof of Lemma B4

By symmetry, it suffices to prove that {(0, 1), (3, 1)} is good for all s ≥ 12.
For ease of notation set qk = p′′k. Let D be the set of configurations (q0, q1, q3)
such that (q0, q1, q2, q3) ∈ Υ′′ when q2 is the reflection of q0 in the y-axis. By
symmetry, it suffices to treat the case when q02 ≥ 0. We let D± ⊂ D denote
those configurations with ±(q12 + q32) ≥ 0. Obviously D = D+ ∪D−.

As in Equation 120, let [u, v]t = u(1 − t) + vt. Similar to the horizontal
case, we define φ±(a, b, c, d) = (q0(b, d), q1(a, c), q3(a, c)), where

512q0(b, d) = ([416, 498]b, 16d).

512q1(a, c) = (0,−[348, 465]a± 59c).

512q3(a, c) = (0,+[348, 465]a± 59c).

In these coordinates, the symmetrization operation is (a, b, c, d)→ (a, b, 0, 0).

Lemma 11.9 (B41) D± ⊂ φ±([0, 1]4).

Proof: This is just like the proof of Lemma B21. The only non-obvious
point is why every pair (p12, p32) is reached by the map φ±. The essential
point is that for configurations in D± we have 512|p12 + p32| ≤ 2× 59. ♠

Following the same idea as in the proof of Lemma B3, we define

Fs,±(a, b, c, d) = ‖Σ−1(q0)− Σ−1(q1)‖−s + ‖Σ−1(q0)− Σ−1(q3)‖−s, (123)

Φs,±(a, b, c, d) = num+(Fs,±(a, b, c, d)− Fs,±(a, b, 0, 0)). (124)

The points on the right side of Equation 123 are coordinatized by the map
φ±. We can finish the proof by showing that φ2,+ ≥ 0 and φ12,− ≥ 0 on
[0, 1]4. The Convexity Lemma then takes care of all exponents greater than
2 on D+ and all exponents greater than 12 on D−.

Lemma 11.10 (B42) Φ2,+ ≥ 0 on [0, 1]4.

Proof: Let Φ = Φ2,+. Let Φ|c=0 denote the polynomial we get by setting
c = 0. Etc. Let Φc = ∂Φ/∂c, etc. The Mathematica file LemmaB42.m com-
putes that Φ|c=0 and Φ|d=0 and Φc + Φd are weak positive dominant. Hence
Φ ≥ 0 when c = 0 or d = 0 and the directional derivative of Φ in the direction
(0, 0, 1, 1) is non-negative. This suffices to show that Φ ≥ 0 on [0, 1]4. ♠
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Lemma 11.11 (B43) Φ12,− ≥ 0 on [0, 1]4.

Proof: The file LemmaB43.m has the calculations for our argument. Let
Φ = Φ12,−. This monster has 102218 terms and we simplify it carefully.

Let M denote the maximum coefficient of Φ. We let Φ∗ be the polynomial
we get by taking each coefficient of c of Φ and replacing it with the greatest
integer less than 1010c/M . This has the effect of killing off about half the
terms of Φ, namely the positive terms that are less than 10−10M . The “small”
negative coefficients are changed to −1. The polynomial 1010Φ −MΦ∗ has
all non-negative coefficients. Hence, if Φ∗ ≥ 0 on [0, 1]4 so is MΦ ≥ 0 and
so is 1010Φ and finally so is Φ. Now Φ∗ has 37760 monomials in which the
coefficient is −1. We check that each such monomial is divisible by one of c2

or d2 or cd. We therefore define

Ψ = Φ∗∗ − 37760(c2 + d2 + cd),

where Φ∗∗ is obtained from Φ∗ by setting all the (−1) monomials to 0. We
have Ψ ≤ Φ∗ on [0, 1]4. Hence, if Ψ is non-negative on [0, 1]4 then so is Φ. We
have reduced the problem to showing that Ψ ≥ 0 on [0, 1]4. The polynomial
Ψ has 5743 terms, which is more manageable.

Again we let Fa = ∂F/∂a, etc. We check that Ψaaa is weak positive
dominant and hence non-negative on [0, 1]4. This massive calculation reduces
us to showing that the restrictions Ψ|a=0 and Ψa|a=0 and Ψaa|a=0 are all non-
negative on [0, 1]3. Letting F be any of these 3 functions, we consider

F |c=0, F |d=0 4Fc + Fd, (125)

We show that all three functions are weak positive dominant for Ψa|a=0 and
Ψaa|a=0. This shows that Ψa|a=0 and Ψaa|a=0 are non-negative on [0, 1]3.
Concerning the choice F = Ψ|a=0, all that remains is showing (in some other
way) that G = 4Fc + Fd ≥ 0.

We check that Gd is weak positive dominant and hence non-negative on
[0, 1]3. This reduces us to showing that H = G|d=0 is non-negative on [0, 1]2.
Here H is a 2-variable polynomial in b, c. We check that the two subdivi-
sions Sb,0(H) and Sb,1(H) are weak positive dominant. This proves that H
is non-negative on [0, 1]2. ♠

Remark: The proof of Lemma B43 is pretty crazy. Along with my computer
code, I include a PDF document having an alternate (but longer) proof that
involves much smaller polynomials.
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12 Endgame: Proof of Lemma C1

The proof here uses the material in §10.
We also recall some notation that we use repeatedly. Σ−1 is inverse stere-

ographic projection, as in Equation 8. We often write p̂ = Σ−1(p) for p ∈ R2.

The sets Ψ4 and Ψ̂4 are defined by

64Ψ4 = [43, 64]2, 64Ψ̂4 = [55, 56]2. (126)

The sets Ψ8 and Ψ̂8 respectively are the main diagonals of Ψ4 and Ψ̂4. A
point (x, y) in these domains defines the avatar with −p2 = p0 = (x, 0)
and −p1 = p3 = (0, y); we define Es(x, y) to be the Rs potential of the
corresponding configuration in S2.

12.1 Reduction to Two Halves

We have the symmetrization operation σ : Ψ̂4 → Ψ8 given by

σ(x, y) = (z, z), z =
x+ y + (x− y)2

2
. (127)

Lemma C1 says Es ◦σ ≤ Es on Ψ̂4 for all s ∈ [14, 16], with equality iff x = y.
Using notation special to this chapter, we write Es(x, y) = Gs(x, y)+Hs(x, y),
where

Gs(x, y) = ‖p̂0, p̂2‖−s + ‖p̂1, p̂3‖−s,
Hs(x, y) = 2‖p̂0, (0, 0, 1)‖−s + 2‖p̂1, (0, 0, 1)‖−s + 4‖p̂0, p̂1‖−s. (128)

Lemma C1 follows immediately from Lemmas C11 and C12.

Lemma 12.1 (C11) Gs(x, y) ≥ Gs(z, z) for s ≥ 2 and (x, y) ∈ Ψ̂4. When
s > 2 we get equality if and only if x = y.

Proof: By the Convexity Lemma from §10.1 it suffices for us to prove that
G2(x, y) ≥ G2(z, z) for all x, y ∈ Ψ4. Let φ : [0, 1]2 → Ψ̂4 be the affine
isomorphism whose linear part is a positive diagonal matrix. Define

Φ = num+(G2 ◦ φ−G2 ◦ σ ◦ φ). (129)

The file LemmaC11.m computes that Φ(a, b) = (a − b)2Φ∗, where Φ∗ is weak
positive dominant. Hence Φ∗ > 0 on (0, 1)2. This does it. ♠

Lemma 12.2 (C12) Hs(x, y) ≥ Hs(z, z) for s ∈ [14, 16] and (x, y) ∈ Ψ̂4.
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12.2 Proof of Lemma C12

Lemma 12.3 (C121) The following is true:

1. H2(x, y) ≤ H2(z, z) for all (x, y) ∈ Ψ̂4.

2. H14(x, y) ≥ H14(z, z) for all (x, y) ∈ Ψ̂4.

3. H16(x, y) ≥ H16(z, z) for all (x, y) ∈ Ψ̂4.

We get strict inequalities for points in the interior of Ψ̂4 −Ψ8.

Proof: For integers k = 2, 14, 16 define

Φk = num+(Hk ◦ φ−Hk ◦ σ ◦ φ). (130)

An algebraic miracle happens. The file LemmaC121.m computes that

1. −Φ2(a, b) = (a− b)2Φ∗2(a, b) and Φ∗2 is weak positive dominant.

2. Φ14(a, b) = (a− b)2Φ∗14(a, b) and Φ∗14 is weak positive dominant.

3. Φ16(a, b) = (a− b)2Φ∗16(a, b) and Φ∗16 is weak positive dominant.

This does it. ♠

Now suppose there is some (x, y) ∈ Ψ̂4 −Ψ8 and some s0 ∈ (14, 16) such
that Hs0(x, y) < Hs0(z, z). Perturbing, we can assume that (x, y) lies in

the interior of Ψ̂4 −Ψ8. Let p0, p1, p2, p3 and p′0, p
′
1, p
′
2, p
′
3 respectively be the

configurations corresponding to (x, y) and (z, z). Define

1. r01 = ‖Σ−1(p0)− Σ−1(p1)‖−1.

2. r0 = ‖Σ−1(p0)− (0, 0, 1)‖−1 and r1 = ‖Σ−1(p1)− (0, 0, 1)‖−1.

3. r′01 = ‖Σ−1(p′0)− Σ−1(p′1)‖−1.

4. r′0 = ‖Σ−1(p′0)− (0, 0, 1)‖−1 = ‖Σ−1(p′1)− (0, 0, 1)‖−1.

Replacing (x, y) by (y, x) if necessary, we arrange that r0 < r1. The purpose
of the next result is to get us into shape to apply Descartes’ Lemma from
§10.1.
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Lemma 12.4 (C122) r0, r1, r
′
0 < 1/

√
2 < r01, r

′
01 and r01 < r′01.

Proof: We have x, y, z ∈ (0, 1). We compute

(1/2)−r2
0 =

1− x2

4
> 0, (1/2)−r2

1 =
1− y2

4
> 0, (1/2)−(r′0)2 =

1− z2

4
> 0,

(r01)2 − (1/2) =
(1− x2)(1− y2)

4(x2 + y2)
> 0, (r′01)2 − (1/2) =

(1− z2)2

8z2
> 0.

This proves the first statement.
For the second statement, we define J = ‖p̂0 − p̂1‖−2 = r2

01 and then de-
fine Φ in terms of J just as in Equation 130. The file LemmaC122.m computes
that Φ(a, b) = −(a− b)2Φ∗(a, b) where Φ∗ is weak positive dominant. Hence
Φ∗ > 0 on (0, 1)2. Hence Φ < 0 on (0, 1)2. Hence J(z, z) > J(x, y). But this
implies that r01 < r′01. ♠

We now deduce Lemma C12 from Lemma C121 and Lemma C122. We
fix (x, y) and (z, z) = σ(x, y) and define

h(s) := Hs −Hs ◦ σ = +2rs0 − 4(r′0)s + 2rs1 + 4rs01 − 4(r′01)s (131)

Now we observe the following consequences of Lemma C121:

• h(2) < 0 and h(14) > 0. Hence h changes sign in (2, 14).

• h(14) > 0 and h(s0) < 0. Hence h changes sign in (14, s0).

• h(s0) < 0 and h(16) > 0. Hence h changes sign in (s0, 16).

• h(s) < 0 for s sufficiently large because the term −4(r′01)s eventually
dominates. Hence h changes sign in (16,∞).

Hence h vanishes at least 4 times. By Descartes’ Lemma, the sign sequence
must change signs at least 4 times. Lemma C122 implies that the sign se-
quence must be one of

−,+,+,+,−, +,−,+,+,−, +,+,−,+,−.

In no case does it change sign at least 4 times. This is a contradiction. The
proof of Lemma C12 is done, but we remark that more analysis would show
that Equation 131 has the terms in the correct order and the middle sign
seqence is correct.
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13 Endgame: Proof of Lemma C2

13.1 The Goal

Recall that the point (1,
√

3/3) represents the TBP avatar. We define

Θ(s, x, y) = Es(x, y)− E(1,
√

3/3). (132)

Lemma C2 is equivalent to the following statements

1. If s ∈ [15, 15+] then Θ has a unique minimum in Ψ̂8.

2. Θ > 0 on [13, 15]×Ψ4 and on [15, 15+]× (Ψ4 − Ψ̂4).

13.2 Proof of Statement 1

Let Θx be the partial derivative of Θ with respect to x, etc. Statement 1 is
equivalent to the statement that the single variable function f(x) = Θ(s, t, t)
has only one minimum for s ∈ I. Here 64I = [55, 56].

Lemma 13.1 (C21) For all s ∈ [13, 15+] and (x, y) ∈ Ψ4 the quantities
Θxx,Θyy,Θxy are all positive.

We prove this result below. By the Chain Rule,

ftt = Θxx + Θyy + 2Θxy > 0 (133)

Hence f is a convex function on I. Hence f has a unique minimum in I.

13.3 Proof of Statement 2

The proof of Statement 2 is a divide-and-conquer calculation. We first ex-
plain some details of the calculation.

The Expanding Out Method: This is a repeat of the definition in §9.3.
Suppose we want to establish an inequality like (a

b
)
p
q < c

d
, where every num-

ber involved is a positive integer. This inequality is true iff bpcq − apdq > 0.
We check this using exact integer arithmetic. The same idea works with (>)
in place of (<). We call this the expanding out method .
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Rational Approximation Method: More generally, we will want to verify
inequalities like

10∑
i=1

b−si −
10∑
i=1

a
−s/2
i > C. (134)

where all ai belong to the set {2, 3, 4}, and bi, c, s are all rational. more
specifically s ∈ [13, 15+] will be a dyadic rational and c will be positive. The
expression on the left will be Es(p)− Es(p0) for various choices of p, and the
constant C is related to the error term we define below.

Here is how we handle expressions like this. For each index i ∈ {1, ..., 10}
we produce rational numbers Ai and Bi such that

A
s/2
i > ai Bs

i < bi. (135)

We use the expanding out method to check these inequalities. We then check
that

10∑
i=1

Bi −
10∑
i=1

Ai > C. (136)

This last calculation is again done with integer arithmetic. Equations 135
and 136 together imply Equation 134. Logically speaking, the way that we
produce the rational Ai and Bi does not matter, but let us explain how we
find them in practice. For Ai we compute 232a

−s/2
i and round the result up

to the nearest integer Ni. We then set Ai = Ni/2
32. We produce Bi in a

similar way. When we have verified Equation 134 in this manner we say that
we have used the rational approximation method to verify Equation 134. We
will only need to make verifications like this on the order of 20000 times.

Error Estimate: We say that a block is a rectangular solid, having the
following form:

X = I ×Q ⊂ [0, 16]× [0, 1]2, (137)

where I is a dyadic interval and Q is a dyadic square. We define |X|1 to be
the length of I and |X|2 to be the side length of Q.

Lemma 13.2 (C22) For any block X ⊂ [13, 16]×Ψ4,

min
X

Θ ≥ min
v(X)

Θ− (|X|21/512 + |X|22).
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Here v(X) denotes the vertex set of X. Thus, to show that Θ|X > 0 we just
need to show that

Θv(X) >
|X|21
512

+ |X|22.

Grading a Block: We perform the following pass/fail evaluation of X.

1. If I ⊂ [0, 13] or I ⊂ [15+, 16] or Q ∩ Ψ4 = ∅, we pass X because X is
irrelevant to the calculation.

2. If s0 ≥ 15 and Q ⊂ Ψ̂4 we pass X.

3. s0 < 13 and s1 > 13 we fail X because we don’t want to make any
computations which involve exponents less than 13.

4. If X has not been passed or failed, we try to use the rational approxi-
mation method to verify that Θ(v) > |X|21/512 − |X|22 for each vertex
v of X. If we succeed at this, then we pass X. Otherwise we fail X.

To prove Statement 2 above it suffices to find a partition of [0, 16]× [0, 1]2

into blocks which all pass the evaluation.

Subdivision: Let X = I × Q. Here is the rule we use to subdivide X:
If 16|X|2 > |X|1 we subdivide X along Q dyadically, into 4 pieces. Other-
wise we subdivide X along I, into two pieces. This method takes advantage
of the lopsided form of Lemma C22 and produces a small partition.

The Main Algorithm: We perform the following algorithm.

1. We start with a list L of blocks. Initially L has the single member
{0, 16} × {0, 1}2.

2. We let B be the last block on L. We grade B. If B passes, we delete
B from L. If L = ∅ then HALT. If B fails, we delete B from L and
append to L the subdivision of B. Then we go back to Step 1.

Lemma 13.3 (C23) When the algorithm runs it halts.

Proof: As for the other calculations, I used a 2017 iMac Pro with a 3.2 GHz
Intel Zeon W processor, running the Mojave operating system. When I run
the algorithm, it halts with success after 21655 steps and in about 1 minute.
The partition it produces has 14502 blocks. ♠

This proves Statement 2.
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13.4 Proof of Lemma C21

We will show that Θxx > 0 and Θxy > 0 on [13, 16] × Ψ4. The case of Θyy

follows from the case of Θxx and symmetry. Setting u = s/2 we compute

Es(x, y) = A(s, x) + A(s, y) + 2B(s, x) + 2B(s, y) + 4C(s, x, y), (138)

A(x) = a(x)u, B(x) = b(x)u, C(x) = c(x)u,

a(x) =
(1 + x2)2

16x2
b(x) =

1 + x2

4
c(x, y) =

(1 + x2)(1 + y2)

4(x2 + y2)

Hence
Θxx = Axx + 2Bxx + 4Cxx, Θxy = Cxy. (139)

For each choice of F = A,B,C we have

Fxx = u(u−1)fu−2f 2
x+ufu−1fxx, Cxy = u(u−1)cu−2cxcy+uc

u−1cxy. (140)

(The second equation is just relevant for C.) We compute

axx =
3 + x4

8x4
> 0, bxx =

1

2
, cxx =

(1− y4)(3x2 − y2)

2(x2 + y2)3
≥ 0.

cx =
x(y4 − 1)

2(x2 + y2)2
< 0, cy =

y(x4 − 1)

2(x2 + y2)2
< 0, cxy =

2xy(1 + x2y2)

(x2 + y2)3
> 0.

Equation 140 combines with all this to prove that Θxx > 0 and Θxy > 0 on
[13, 16]×Ψ4.

13.5 Proof of Lemma C22

Lemma 13.4 (C221) |Θxx|, |Θyy| ≤ 4 on [13, 16]×Ψ4.

Proof: By symmetry it suffices to prove this for Θxx. We already know
Θxx > 0 on our domain. We use the notation from §13.4. An easy exercise in
calculus shows that f ∈ (0, 3/5) on Ψ4 for each f = a, b, c. From this bound,
we see that the expression in Equation 140 is decreasing as a function of u
for u ≥ 6. (Recall that u = s/2.) Hence it suffices to prove that 4−Θxx ≥ 0
on {12} × [43/64, 1]2.

We define φ(t) = (43/64)(1− t) + t. The file LemmaC221.m computes that
for s = 12 the polynomial Φ = num+(4−Θxx ◦ φ) is weak positive dominant
and hence non-negative on [0, 1]2. Hence 4 − Θxx ≥ 0 when s = 12 and
(x, y) ∈ Ψ4. ♠
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Lemma 13.5 (C222) |Θss| ≤ 1/64 on [13, 16]×Ψ4.

Proof: Let ψ(s) = b−s. Let β = (1.3,
√

2,
√

3) and γ = (440, 753, 4184). We
first establish the following bound:

0 < min
b≥βj

ψss(s, b) ≤ 1/γj, j = 1, 2, 3, ∀s ≥ 13. (141)

As a function of s, and for b > 1 fixed, ψss(s, b) = b−s log(b)2 is decreasing.
Hence, it suffices to prove Equation 141 when s = 13. Choose b ≥ 1.3.
The equation ψssb(13, b) = 0 has its unique solution in [1,∞) at the value
b = exp(2/13) < 1.3. Moreover, the function ψss(13, b) tends to 0 as b →
∞. Hence the restriction of the function b → ψss(13, b) to [b,∞) takes its
maximum value at b. Evaluating at b = 1.3,

√
2,
√

3 we get Equation 141.
For x, y ∈ [43/64, 1] we easily check the inequalities

A(−1, x) ≥ 3, B(−1, x) ≥ 2, C(−1, x, y) ≥ (1.3)2.

The quantities on the left are the square distances of the various pairs of
points in the corresponding configuration on S2. From this analysis we con-
clude that the 10 distances associated to a 5-point configuration parametrized
by a point in Ψ4 exceed 1.3, and at least 6 of them exceed

√
2, and at least

2 of them exceed
√

3. The same obviously holds for the TBP.
Now, 10 of the 20 terms comprising Θss(s, x, y) are positive and 10 are

negative. Also, for the terms of the same sign, all 10 of them are less than
1/440, and at least 6 of them are less than 1/753, and at least 2 of them
are less than 1/4184. Hence, by Equation 141, we have the final bound
|Θss| ≤ (4/440) + (4/753) + (2/4184) < 1/64. ♠

Write I = [s0, s1] and Q = [x0, x1]×[y0, y1]. Choose (s, x, y) ∈ X = I×Q.
Taylor’s Theorem with remainder tells that for any function f : [a, b] → R
and any x ∈ [a, b] we have

f(x) ≥ min(f(a), f(b))− 1

8
max
[a,b]
|f ′′|.

Applying this result 3 times, using Lemmas C221 and C222, we have

Θ(s, x, y) ≥ min
i

Θ(si, x, y)− |I|/512 ≥ min
i,j

Θ(si, xj , y)− |I|/512− |x0 − x1|/2 ≥

min
i,j,k

Θ(si, xj , yj)− |I|/512− |x0 − x1|/2− |y0 − y1|/2 = min
v(X)

Θ− |X|1/512− |X|2.

This completes the proof of Lemma C22.
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14 Endgame: Proof of Lemma C3

14.1 Reduction to a Simpler Statement

We carry over the notation from the previous two chapters. In particular, we
define Θ as in Equation 132. We use the same equation for Es(t, t), in terms
of the functions A,B,C, as in Equation 138. Recall that I = [55, 56]/64. Let
t0 = 55/64 be the left endpoint of I. We claim that

Θstt(15, t, t) < 0, ∀t ∈ I. (142)

We compute that

Θst(15, t0, t0) < 0, Θs(15, t0, t0) < −2−7, (143)

and these conditions combine with Equation 142 to show that

Θs(15, t, t) < −2−7. ∀t ∈ I. (144)

Lemma 14.1 (C31) |Θss| ≤ 2−6 on [13, 16]×Ψ4.

This is just Lemma C222. By Lemma C31 we have

|Θss| × |15+ − 15| ≤ 2−6 × 25

512
< 2−7. (145)

Hence Θs(s, t, t) varies by less than 2−7 as s ranges in [15, 15+]. Hence
Θs(s, t, t) < 0 for all s ∈ [15, 15+] and all t ∈ I. This is Lemma C3.

Now we prove Equation 142. The file LemmaC3.m does the calculations
for this proof. Because the s-energy of the TBP does not depend on the
t-variable, we have

Θstt(15, t, t) = 2Astt|s=15 + 4Bstt|s=15 + 4Cstt|s=15. (146)

Call the three functions on the right α(t), β(t), and γ(t). To finish the proof,
we just need to see that each of these is negative in I. We write f ∼ f ∗ if

f

f ∗
= 2utv(1 + t2)w(2 + t2 + t−2)x

for exponents u, v, w, x ∈ R. In this case, f and f ∗ have the same sign.
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Lemma 14.2 (C32) β < 0 on I.

Proof: Taking (u, v, w, x) = (−14, 0, 11/2, 0) we have β ∼ −β∗,

β∗(t) = (−2 + 30 log(2)) + t2(−58 + 420 log(2))− 15(1 + 14t2) log(1 + t2).

Noting that log(2) = 0.69... we eyeball β∗ and see that it is positive for t ∈ I.
The term +420 log(2)t2 dominates. Hence β < 0 on I. ♠

Lemma 14.3 (C33) γ < 0 on I.

Proof: Taking (u, v, w, x) = (−41/2,−16, 12, 1/2) we have γ ∼ −γ∗,

γ∗(t) = (−31 + 360 log(2)) + t2(56− 585 log(2)) + t4(−29 + 315 log(2))+

15(−8 + 13t2 − 7t4) log(2 + t2 + t−2).

We have γ∗(55/64) > 24 and we estimate easily that γ∗t > −210 on I. Only
the underlined term has negative derivative in I. Noting that I has length
2−6, we see that γ∗ cannot decrease more than 24 as we move from x0 to any
other point of I. Hence γ∗ > 0 on I. Hence γ < 0 on I. ♠

Lemma 14.4 (C34) α < 0 on I.

Proof: Taking (u, v, w, x) = (−29,−14, 10, 3/2) we have α ∼ −α∗,

α∗(t) = γ∗(t) + δ∗(t), δ∗(t) = 15 log 2× (8− 13t2 + 7t4).

We see easily that δ∗ > 0 on I. So, from Lemma C33, we have α∗ > 0 on I.
Hence α < 0 on I. ♠
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