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Takeaway message

I New strategy to construct singular solutions to PDE at endpoints of
bifurcation branches, and to develop uniqueness even without maximum
principles.

I Simple ideas, qualitative information of the solution.
I Computer-assisted proof.
I Applicable to other “bad” situations: low regularity problems, even in

unstable / ill-posed regimes
I Special functions are your friend, not the enemy
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The Whitham Equation

Consider the KdV equation:

vt − 6vvx + vxxx = 0
“Issues”:

I Local.
I Does not capture many phenomena: wave breaking, sharp crests,

non-smooth solutions, etc.



Interested in (singular) solutions of greatest height:
I Corners:

I Cusps:



KdV features a 2nd order approximation of the full dispersion relation of
gravity water waves on finite depth:(

tanh(ξ)
ξ

) 1
2

∼ 1− 1
6ξ

2

“Better approximation”: change the linear part in KdV using the full dispersion
relation.



The Whitham equation
Whitham proposed

∂tv + 2vvx + Lvx = 0,

L̂v(ξ) =
(

tanh(ξ)
ξ

) 1
2

v̂(ξ)

as a shallow water approximation.

For small ξ: (
tanh(ξ)

ξ

) 1
2

∼ 1− 1
6ξ

2

⇒ Whitham ∼ KdV for small frequencies and small times, different for large
times.
For large ξ: (

tanh(ξ)
ξ

) 1
2

∼ 1
ξ

1
2

⇒ Whitham is a very weakly dispersive perturbation of Burgers.
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Features of the Whitham equation

I Nonlocal, fractional, inhomogeneous.

I LWP standard, GWP open.
I Travelling waves - local bifurcation (Ehrnström-Kalisch, 2009).
I Solitary waves (Ehrnström-Groves-Wahlén, 2013).
I Global bifurcation of solitary waves (Truong-Wahlén-Wheeler, 2021).
I Numerics, asymptotics (Klein-Saut, 2013).
I Wave breaking (Hur, 2015).
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Whitham’s conjecture

Conjecture (Whitham, 1967)
There exists a limiting traveling wave of C 1

2 regularity.

Theorem (Ehrnström-Wahlén, 2016)
The conjecture is true.
The proof uses careful global bifurcation arguments. Not constructive.

Conjecture (Ehrnström-Wahlén, 2016)
Whitham’s highest wave is everywhere convex and its asymptotic behavior at 0
is

v(x , t) = µ

2 −
√
π

8 |x − µt|1/2 + o(|x − µt|) .

Here, µ is part of the problem and needs to be found.
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Water waves & Whitham

Water waves Whitham

Existence Existence
Amick-Fraenkel-Toland, Plotnikov-Toland, 80’s. Ehnrström-Wahlén, 2016

Convexity Convexity
Plotnikov-Toland, 2004 Enciso-JGS-Vergara, 2018

Local uniqueness
Fraenkel, 2007 ???

Uniqueness
Kobayashi, 2010 ???
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Theorem (Enciso–JGS–Vergara, 2018)
There exists a 2π-periodic highest cusped traveling wave of the Whitham
equation which is a convex, C1/2 function and behaves asymptotically as

v(x , t) = µ

2 −
√
π

8 |x − µt|1/2 + O(|x − µt|1+η)

for some η > 0.

The limiting wave is at the end of the branch.



Proof

I Travelling wave ansatz: v(x , t) = ϕ(x − µt), where the positive constant
µ represents the wave speed.

I The Whitham equation becomes

Lϕ− µϕ+ ϕ2 = 0 , L̂ϕ =
(

tanh(ξ)
ξ

) 1
2

ϕ̂(ξ) .

I Whitham’s heuristic argument: crest cusped with ϕ(x) ∼ µ
2 − c|x |1/2.
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Proof

Imposing u(x) = µ
2 − ϕ(x − µt) and through the symmetries of the equation

we can get rid of µ. In particular, u(x) satisfies the reduced equation:

u2 = Lu,

with

Lu =
∫ π

−π

(
K(x − y) + K(x + y)− 2K(y)

)
u(y)dy

and K is related to the dispersive multiplier.
Once u is known we can recover µ via

µ
(

1− µ

2

)
= 4

∫ π

0
K(y)u(y).

Step 0: We reduced the problem to only find u.
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Main Idea

I Construct u0 (“sufficienty good” approximation) by hand.

I Write u = u0 + ū, where ū is expected to be very small: O(ε). Then:

2u0ū − Lū = −ū2 −
(
u2

0 − Lu0
)

(I − 1
2u0
L)ū = 1

2u0

(
−ū2 −

(
u2

0 − Lu0
))

If we can invert (I − 1
2u0
L):

I First term of RHS: O(ε2)
I Second term of RHS: “sufficiently small”

Close using a fixed point argument ⇒ Explicit estimates of ‖ū‖ (small).
Expected: u0 strictly convex ⇒ u0 + ū strictly convex
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Tasks

1. Construct a good u0.

2. Prove that (I − 1
2u0
L) is invertible.

3. Check that the involved (explicit) constants are “small enough”.



Step 1: Construction of a good approximation

I Formal asymptotics: very good at x � 1, terrible at x � 1.
Nontrivial exponents: u0 ∼ c1

√
x + c2x1.11120... + . . .

0.5 1.0 1.5 2.0 2.5 3.0

0.0002

0.0004

0.0006

0.0008

0.0010

I Formal asymptotics + correction: we add
∑N

n=1 bn(cos(nx)− 1) for some
N, bn. Better global control. In our case N = 11.



Step 1: Construction of a good approximation

I Formal asymptotics: very good at x � 1, terrible at x � 1.
Nontrivial exponents: u0 ∼ c1

√
x + c2x1.11120... + . . .

0.5 1.0 1.5 2.0 2.5 3.0

0.0002

0.0004

0.0006

0.0008

0.0010

I Formal asymptotics + correction: we add
∑N

n=1 bn(cos(nx)− 1) for some
N, bn. Better global control. In our case N = 11.



I Special functions save the day: (Clausen functions)

Cz (x) =
∞∑

n=1

cos(nx)
nz , Sz (x) =

∞∑
n=1

sin(nx)
nz .

I Features: periodic, singular behaviour at 0, interact well with (power-like)
Fourier multipliers, HUGE performance gain:
(10 Clausen functions � 5000 Fourier modes)

I Approximate solution u0= combination of Clausen functions +
trigonometric polynomials:

u0(x) =
Nj∑

k=0

1∑
j=0

ajk
(
ζ
(

3/2 + kp0 + jp1
)
− C 3

2 +kp0+jp1
(x)
)

+
N2∑

n=1

bn
(

cos(nx)− 1
)
,

where ajk bk are real, pj solve the equation

Γ(−1/2− pj )
Γ(−1− pj )

(
1− cot(π2 pj )

)
= 2√

π
,

for j = 0, 1 and Nj are fixed positive integers.
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I We choose the above coefficients so that the defect is small when
measured in L∞:

u0(x) =
Nj∑

k=0

1∑
j=0

Ajk |x |
1
2 +kp0+jp1 + O(|x |2)

Lu0(x) =
Nj∑

k=0

1∑
j=0

Ãjk |x |1+kp0+jp1 + O(|x |2) ,

with Ajk and Ãjk real (combinations of the previous ajk ).

I Nonlinear system of equations for the coefficients Ajk , Ãjk :

u2
0(x)− Lu0(x) = O(|x |p) ,

for a sufficiently large power p.



Error measured in L∞((0, π]):

0.5 1.0 1.5 2.0 2.5 3.0

5. ´ 10-8

1. ´ 10-7

1.5 ´ 10-7



A few words on the implementation

I No implementation of Cz and Sz available.

I One possibility is through the polylogarithm function (Arb):

Cz (x) = 1
2 (Liz (e ix ) + Liz (e−ix ))

Not good enough, especially for large (interval) arguments since the
polylog is not optimized for complex numbers on the unit circle. Good
enough for singletons.

I Instead, use monotonicity (in x) of Cz (x) and

C ′z (x) = −Sz−1(x), S ′z (x) = Cz−1(x)

together with a Taylor expansion.
I Multiprecision (∼ 100 bits) needed.
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Step 2: The linear part is invertible

Obs: 1
2u0(x)L is compact, but it doesn’t help to bootstrap.

If f (x) ∼ xn, 1
2u0(x)Lf (x) ∼ xn.

1
2u0(x)Lf (x) = 1

2u0(x)

∫
(K(x + y) + K(x − y)− 2K(y))f (y)dy

=
∫

K0(x , y)f (y)dy .

We work in (weighted) L∞-based spaces∥∥∥∥ 1
2u0(x)L

∥∥∥∥
∞

= sup
x

∫
|K0(x , y)|dy .

= 0.99736 . . .

⇒ (I − 1
2u0
L) is invertible and

∥∥(I − 1
2u0
L)−1

∥∥
∞
≤ 1

1−0.99736... ∼ 380 .
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To prove the red estimate:
I Expansions at x ∼ 0 for 0 ≤ x ≤ ε to avoid 0

0 situations (by hand).

I Lots of terms.

I Computer-assisted calculation of
∫
|K0(x , y)|dy for ε ≤ x ≤ π.

I To compute
∫
|K0(x , y)|dy for small x we exploit the asymptotics

K(x) = 1√
2π|x |

+ Kreg(x) ,

with Kreg real analytic.
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Rigorous Singular integrals

Hf (0) = −PV
π

∫
f (y)

y dy

= PV
π

∫
|y|<ε

f (0)− f (y)
y dy − PV

π

∫
|y|>ε

f (y)
y dy

1. The second integral is not singular, we integrate as usual.
2. For the first integral, we expand around zero. For example, up to order 1:

f (0)− f (y) ∈ −yf ′([−ε, ε])

Then we cancel factors of y in the integrand.

PV
π

∫
|y|<ε

f (0)− f (y)
y dy ∈ PV

π

∫
|y|<ε

−f ′([−ε, ε])dy ∈ −2εf ′([−ε, ε])
π

Obs: The boundary |y | < ε can be optimized.
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Fixed point argument

I For convenience, we write: u = u0 + |x |v0, where v0 satisfies

(I − T0)v0 = 1
2|x |u0

(
(Lu0 − u2

0)− |x |2v 2
0
)
.

I For small enough error Lu0 − u2
0 ,

v0 7→ (1− T0)−1( 1
2|x |u0

(
(Lu0 − u2

0)− |x |2v 2
0
) )

maps a ball of radius ε0 � 1 in L∞ into itself and is contractive.

I This only proves the existence of a solution with almost the conjectured
asymptotic behavior. ⇒ Perturbation of the weight.



Fixed point argument

I For convenience, we write: u = u0 + |x |v0, where v0 satisfies

(I − T0)v0 = 1
2|x |u0

(
(Lu0 − u2

0)− |x |2v 2
0
)
.

I For small enough error Lu0 − u2
0 ,

v0 7→ (1− T0)−1( 1
2|x |u0

(
(Lu0 − u2

0)− |x |2v 2
0
) )

maps a ball of radius ε0 � 1 in L∞ into itself and is contractive.

I This only proves the existence of a solution with almost the conjectured
asymptotic behavior. ⇒ Perturbation of the weight.



Fixed point argument

I For convenience, we write: u = u0 + |x |v0, where v0 satisfies

(I − T0)v0 = 1
2|x |u0

(
(Lu0 − u2

0)− |x |2v 2
0
)
.

I For small enough error Lu0 − u2
0 ,

v0 7→ (1− T0)−1( 1
2|x |u0

(
(Lu0 − u2

0)− |x |2v 2
0
) )

maps a ball of radius ε0 � 1 in L∞ into itself and is contractive.

I This only proves the existence of a solution with almost the conjectured
asymptotic behavior. ⇒ Perturbation of the weight.



Completion of the proof

I C2 estimates follow similar ideas but more calculations

I Very sensitive numbers (too delicate estimates / too small numbers to be
done by hand)

I We are not using too much special structure of the equation.
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New results

Theorem (Dahne–JGS, forthcoming)
There exists a 2π-periodic highest cusped traveling wave of the Burgers-Hilbert
equation

vt + vvx + Hv = 0
which behaves asymptotically as

v(x , t) = µ

2 + C |x − µt| log(|x − µt|) + O(|x − µt| log(|x − µt|)
1
2 )

for some explicit C.

Main difficulties:
I Much more careful bounds needed: we need to work with x ∼ 10−106

.
I Unclear what is the next term in the asymptotic expansion (even formally)
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Back to Whitham: Uniqueness

Is the convex travelling wave that we found before the only solution?

I As in the case of Stokes wave, existence in the class of convex solutions
does not imply uniqueness.

I There are 2π/k-periodic solutions, so any attempt to prove uniqueness
must rule out k-folds!

I Thus, we will consider the problem in the class of even, monotone
solutions u which are increasing in [0, π].

I Monotonicity + greatest height imply that solutions u are positive.
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Uniqueness

Theorem (Enciso–JGS–Vergara, 2021)
The Whitham equation admits a unique, even, 2π-periodic traveling wave
solution of greatest height between crest and trough that is non-increasing on
[0, π].
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Uniqueness

I Main idea: obtain non-trivial upper and lower bounds u+
0 , u

−
0 which are

iteratively refined until they converge to the unique solution u of the
equation:

u−0 ≤ u−1 ≤ · · · ≤ u−N ≤ u ≤ u+
N ≤ · · · ≤ u+

1 ≤ u+
0 ,

‖u+
N − u−N ‖ → 0

as N →∞. The conclusion will follow by the contraction mapping
principle.

I The proof relies on very fine bounds for the dispersive multiplier as well
as computer assisted estimates.

I The operator is not monotone and does not satisfy a maximum principle.
We get contractivity only when we are sufficiently close to the unique
solution u.
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Uniqueness: setup

Derive estimates in L∞(T) for the function w(x) := |x |−1/2u(x),

w2 = Fw − Gw ,

for positive (rather involved) linear operators F and G:

F(w)(x) : = 1
|x |

∫ π

y∗(x)
Kx (y)

√
|y |w(y) dy ,

G(w)(x) : = 1
|x |

∫ y∗(x)

0
|Kx (y)|

√
|y |w(y) dy ,

where
Kx (y) = K(x − y) + K(x + y)− 2K(y) .



Uniqueness: setup

The kernel Kx (y) is positive when y∗(x) < y < π and negative for
0 < y < y∗(x), with y∗(x) a curve on [0, π]:
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The proof follows the next scheme:

1. First we prove rough initial bounds using fine estimates on the Whitham
kernel.

2. Then we iterate those bounds using the monotonicity assumption until we
can truly exploit the structure of the equation.

3. Finally we reach the regime in which we can make automatic iterations
for a discrete (but large) approximation of our nonlinear system, plus
small errors.
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Uniqueness: initial bounds
I We exploit this behavior to obtain initial estimates in L∞. For instance:

‖w‖L∞ ≤ ‖F(1)‖L∞ ≤
1√
2π

∫ 1/r

0

( 1√
|1− t|

+ 1√
1 + t

−2
)
· 1
t2 dt+ error ,

where r is the slope of the line tangent to the curve y∗(x) at x = 0.

I The curve y∗(x) is enclosed through asymptotic analysis and computer
assisted estimates.

I Asymptotic estimates yield r = 0.652 . . . which in the end give us

w(x) ≤ w+
0 (x) := 0.8425 + C |x | ,

for some explicit C > 0.
I Analogously, we have the lower bound

w(x) ≥ 1√
π

(
2
√
δ +
√

2(1− δ)−
√

2(1 + δ)
)√
|x | − c|x | ,

Optimizing in δ:

w(x) ≥ w−0 (x) := 0.1940− c|x | , c > 0 .
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Uniqueness: self-improving bounds

I We have found then rough (but non-trivial!) bounds

w−0 (x) ≤ w(x) ≤ w+
0 (x) .

I Define the operator J : L∞(T)→ L∞(T)

J (w−,w+)(x) := [Fw−(x)− Gw+(x)]1/2 .

We would like to set up an iteration scheme that yields improved bounds

w−n+1(x) := max{w−n (x),J (w−n ,w+
n )(x)} ,

w+
n+1(x) := min{w+

n (x),J (w+
n ,w−n )(x)} .

I However, J (w−0 ,w
+
0 )(x) is not well defined for our initial bound. We

need to work more!



Uniqueness: self-improving bounds

I There are threshold bounds w−n0 (x) ,w+
n0 (x) for which the previous

iteration scheme is well defined for all n > n0.

I We introduce then a new operator J̃ : L∞(T)→ L∞(T) that helps us to
iterate lower bounds,

w−n+1(x) ≥ J̃ (w−n ,w+
n )(x) , 0 ≤ n ≤ n0 .

I This operator is crafted so that one can exploit the monotonicity in a
clever way. In particular, it is build upon integral estimates for

K(δx − y) + K(δx + y)− K(x − y)− K(x + y) , 0 < δ < 1 .

I This procedure yields sharper bounds

w−n0+1(x) = 0.3373− 0.1172
√
|x |+ 0.0023|x | ,

w+
n0+1(x) = 0.7356− 0.0194

√
|x | − 0.0824|x | .



Uniqueness: self-improving (automatized) bounds
I We are now in position to use J to improve our bounds.

I This step only is similar to the iteration by Kobayashi for Euler (though
with a much harder kernel)

I Spatial discretization to approximate the operators F and G by N × N
(interval) matrices

Fij := F1(xj−1,xj )(xi ) , Gij := G1(xj−1,xj )(xi ) ,

and piecewise constant functions

w−n (x) :=
N∑

j=1

w−n;j 1(xj−1,xj )(x) , w+
n (x) =

N∑
j=1

w+
n;j−11(xj−1,xj )(x) ,

where n0 ≤ n < N0 and

w±n;j := w±n (xj ) , xj := π

N∗ j
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Uniqueness: how to deal with so many integrals of a
complicated kernel

I Special functions to the rescue (again):

I Fresnel integral

FS(z) :=
∫ z

0
sin
(
π

2 t2
)

dt

I Then: ∫ x2

0
Kx (y)√ydy = 1

π
(fx2,x − fx2,0) + small error

where

fx2,x3 :=
MF∑
n=1

cos(nx3)
n2

[√
2π
(
FS(0)− FS(

√
2
π

nx2)
)]

+
√

x2
(
S3/2(x2 + x3) + S3/2(x2 − x3)

)
,

MF is ”medium-sized” (around 300) and S is a Clausen function.
I The Fresnel integral is implemented in Arb.
I Bonus: Other necessary integrals involving Kx use the 2F1

hypergeometric for a faster calculation.
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hypergeometric for a faster calculation.
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Uniqueness

We need one last pass to go from red to pink, changing our operators again
and using the monotonicity.
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Uniqueness: fixed point argument

I After one last refinement (that only uses the monotonicity), we get sharp
bounds w−N0

(x) ,w+
N0

(x).

I Key: the nonlinear map u 7→
√
Lu is parity and monotonicity preserving

in the space

X :=
{

u even and monotone:
√
|x |w−N0

(x) ≤ u(x) ≤
√
|x |w+

N0 (x)
}
.

I Our fine bounds allow us to prove the uniqueness of Whitham’s highest
wave by using a fixed point argument in (X , L∞(T, |x |−1/2 dx)):

‖
√
Lu −

√
Lv‖X ≤ C‖u − v‖X ,

so that
√
L is contractive provided that C > 0 is a constant less than 1.

I Life is hard: C > 1 if we work directly in X .
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Uniqueness: fixed point argument

I Fortunately, there is room to circumvent this problem:
√
L becomes

contractive in X endowed with the norm

‖u‖X := sup
0<x<π

|x |−1/2a−1(x)|u(x)| , a(x) = 1 + 2
√
|x | .

I The conclusion follows then from Banach’s fixed point theorem:
monotonically increasing solutions verify our bounds and so they belong
automatically to X .

I This yields uniqueness in the class of even and monotone functions!
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Final remarks

I We strongly use monotonicity to establish our result.

I There exists a unique function that is even, monotone in [0, π] and
convex such that v(x , t) := ϕ(x − µt) satisfies

∂tv + ∂x (Lv + v 2) = 0 , L̂f (ξ) :=
√

tanh(ξ)
ξ

f̂ (ξ) .

This solution is the one we found in the existence part.
I Moreover, this solution can be written as

v(x , t) = µ

2 −
√
π

8 |x − µt|1/2 + l. o. t.

where µ = 0.768 . . .
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THANK YOU!


