Ergodicity of Markov processes: theory and computation

Yao Li

Department of Mathematics and Statistics, University of Massachusetts Amherst
September 9, 2021

ICERM, Brown University

Outline

(1) Markov processes on measurable state space.
(2) Coupling method and renewal theory
(3) Exponential and power-law ergodicity
(2) Construction of Lyapunov functions
(3) Numerical computation of ergodicity
(3) Numerical computation of invariant probability measures

Basic setting 1

(1) Φ_{n}-discrete time Markov process
(2) $(X, \mathcal{B}(X))$ - state space with a sigma algebra $\mathcal{B}(X)$
(3) P - transition probability. $P(x, A)=\mathbb{P}\left[\Phi_{1} \in A \mid \Phi_{0}=x\right]$.
(2) $P(x, \cdot)$ is a probability measure on $(X, \mathcal{B}(X)), P(x, A)$ is a measurable function for any $A \in \mathcal{B}$.
(0) By Markov property, this is enough to determine a Markov process

Basic setting 2

Markov property: only depends on the nearest history

$$
\mathbb{P}\left[\Phi_{n+1} \in A \mid \Phi_{0}, \cdots, \Phi_{n}\right]=\mathbb{P}\left[\Phi_{n+1} \in A \mid \Phi_{n}\right]
$$

- $P^{m}(x, A)=\mathbb{P}\left[\Phi_{n+m} \in A \mid \Phi_{n}=x\right]$.
-

$$
P^{m+n}(x, A)=\int_{X} P^{n}(y, A) P^{m}(x, \mathrm{~d} y)
$$

- First arrival time: $\eta_{A}=\inf _{n \geq 1}\left\{\Phi_{n} \in A\right\}$
- Note that η_{A} is a stopping time (random time that only depends on historical and present states of Φ_{n}.)
- Hitting probability: $L(x, A)=\mathbb{P}\left[\Phi_{n} \in A\right.$ for some $\left.n \mid \Phi_{0}=x\right]$

Irreducibility

Main difference from discrete Markov chain: $P(x, y)$ does not make sense any more!
Φ_{n} is irreducible if there exists a reference measure ψ on X such that
(1) If $\psi(A)>0$, then $L(x, A)>0$ for all $x \in X$
(2) If $\psi(A)=0$, then $\psi(\{y: L(y, A)>0\})=0$
Φ_{n} can reach everywhere that could be "seen" by ψ.

Example

Stochastic differential equation X_{t}. Euler-Maruyama method.

$$
X_{n+1}=X_{n}+f\left(X_{n}\right) h+\sigma\left(X_{n}\right) \mathcal{N}(0,1) \sqrt{h}
$$

Transition kernel

$$
P(x, A)=\int_{A} \frac{1}{\sqrt{2 \pi \sigma(x)^{2} h}} e^{-(y-x-f(x) h)^{2} / 2 \sigma^{2}(x) h} \mathrm{~d} y
$$

Let Lebesgue measure be the reference measure. Easy to check that X_{n} is irreducible.

Atom and pseudo-atom

(1) Discrete state space: $P(x, y)>0$. Very useful!
(2) Atom: α is an atom if $P(x, \cdot)=P(y, \cdot)$ for all $x, y \in \alpha$. Atom is like a discrete state.
(3) Atom usually does not exist
(3) Pseudo-atom: small set C
(3) $C \in \mathcal{B}(X)$ is a small set if there exist an integer $n \in \mathbb{N}$ and a nontrivial measure ν such that

$$
P^{n}(x, A) \geq \nu(A) \text { for all } x \in C
$$

Example

Euler-Maruyama scheme again

$$
X_{n+1}=X_{n}+f\left(X_{n}\right) h+\sigma\left(X_{n}\right) \mathcal{N}(0,1) \sqrt{h}
$$

Every bounded set is a small set because the probability density of P is everywhere strictly positive.

Random walk: $X_{n+1}=X_{n}+U_{n}, U_{n} \sim U(-1 / 2,1 / 2)$. $[-1 / 4,1 / 4]$ is a small set with $n=1$ and $\nu=$ Lebesgue measure.

(A)periodicity

Discrete space

Assume irreducibility. Define $E=\left\{n \mid P^{n}(x, x)>0\right\}$. Period d is the greatest common divisor of E.

General space

Assume irreducibility. C is a small set. Define

$$
E_{C}=\left\{n \mid P^{n}(x, \cdot) \geq \nu(\cdot), x \in C, \nu(C)>0\right\}
$$

(positive probability that the chain will return to C after n steps.) Period d is the greatest common divisor of E.
Φ_{n} is aperiodic if $d=1$.

Ergodicity

From now on we assume that Φ_{n} is irreducible and aperiodic.
(1) Left operator: μ - probability measure. $\mu P^{n}(A)=\mathbb{P}_{\mu}\left[\Phi_{n} \in A\right]$.
(2) Right operator: f - observable (function). $P^{n} f(x)=\mathbb{E}_{x}\left[f\left(\Phi_{n}\right)\right]$.
(3) Invariant probability measure. π is said to be invariant if $\pi P=\pi$.

Let μ and ν be two probability measures. Does

$$
\left\|\mu P^{n}-\nu P^{n}\right\|_{T V}
$$

converge to zero? If yes, how fast??

Main approach: Coupling

A Markov process $\left(\Phi_{n}^{1}, \Phi_{n}^{2}\right)$ on the state space $X \times X$ is said to be a Markov coupling if
(1) Two marginal distributions are Markov processes Φ_{n} with initial distribution μ and ν, respectively
(2) If $\Phi_{n}^{1}=\Phi_{n}^{2}$, then $\Phi_{m}^{1}=\Phi_{m}^{2}$ for all $m \geq n$.
$\tau_{C}=\inf _{n \geq 0}\left\{\Phi_{n}^{1}=\Phi_{n}^{2}\right\}$ is the coupling time.

Coupling Lemma

Coupling Lemma

$$
\left\|\mu P^{n}-\nu P^{n}\right\|_{T V} \leq 2 \mathbb{P}\left[\tau_{C}>n\right]
$$

(See whiteboard for the proof.)

Optimal coupling (Pitman 1970s)

There exists a coupling ($\Phi_{n}^{1}, \Phi_{n}^{2}$) (may not be Markov) such that

$$
\left\|\mu P^{n}-\nu P^{n}\right\|_{T V}=2 \mathbb{P}\left[\tau_{C}>n\right]
$$

The existence of "honest" optimal coupling remains open.

Coupling at atom

(1) Assume Φ_{n} admits an atom α.
(2) Let $\left(\Phi_{n}^{1}, \Phi_{n}^{2}\right)$ be a coupling such that Φ_{n}^{1} and Φ_{n}^{2} are independent until their first simultaneous visit to α, and run together after that.
Easy to check: $\left(\Phi_{n}^{1}, \Phi_{n}^{2}\right)$ is a Markov coupling. Difficulty: property of $\mathbb{P}\left[\tau_{C}>n\right]$?
(1) Exponential: $\mathbb{P}\left[\tau_{C}>n\right] \sim \rho^{-n}$ for $\rho>1$
(2) Power-law: $\mathbb{P}\left[\tau_{C}>n\right] \sim n^{-\beta}$ for $\beta>0$

Renewal process

Let

$$
S_{n}=\sum_{i=0}^{n} Y_{i}
$$

such that Y_{1}, Y_{2}, \cdots are i.i.d. random nonnegative integers. (Y_{0} could be different). S_{n} is a renewal process. Y_{i} is called inter-occurrence time.

Let $u_{n}=\mathbb{P}\left[n=S_{m}\right.$ for some m$]$. If S is aperiodic, $u_{n} \rightarrow 1 / \mathbb{E}\left[Y_{1}\right]$.

Renewal process from Φ_{n}

(1) α is the atom.
(2) $Y_{0}=\eta_{\alpha}$
(8) S_{n} is the n-th visit to α
(7) S_{n} is a renewal process because α is an atom. $Y_{i}=\left.\eta_{\alpha}\right|_{\Phi_{0}=\alpha}$. (Markov property: history is independent of the future.)

Simultaneous renewal

(1) Now let S_{n} and S_{n}^{\prime} be two renewal processes corresponding to Φ_{n}^{1} and Φ_{n}^{2}, respectively.
(2) The coupling time τ_{C} is the first simultaneous renewal time.

$$
\tau_{C}=\inf _{n}\left\{n=S_{k_{1}}=S_{k_{2}}^{\prime} \text { for some } k_{1} \text { and } k_{2}\right\}
$$

Three questions

1 What if there is no atom?
2 First simultaneous renewal time? \checkmark
3 How to estimate the first visit time η_{α} (probably tomorrow)

How to make an atom? (1)

(1) Atom does not exist in most scenarios
(2) Small set is much easier to get
(© Simplest case. Let C be a small set that satisfies

$$
P(x, A) \geq \delta \mathbf{1}_{C}(x) \nu(A) \quad, \quad A \in \mathcal{B}(X), x \in X
$$

where ν is a probability measure with $\nu(C)=1$.
(3) Split X into $\hat{X}=X \times\{0,1\}$ with $X_{0}=X \times\{0\}$ and $X_{1}=X \times\{1\}$.
(0) Similarly, split A into A_{0} and A_{1}

How to make an atom? (2)

(1) Let λ be a measure on X. Split λ into $\hat{\lambda}$ on \hat{X} such that

$$
\begin{gathered}
\lambda^{*}\left(A_{0}\right)=\lambda(A \cap C)(1-\delta)+\lambda\left(A \cap C^{C}\right) \\
\lambda^{*}\left(A_{1}\right)=\lambda(A \cap C) \delta
\end{gathered}
$$

(3) In other words, $\lambda^{*}\left(A_{0} \cup A_{1}\right)=\lambda(A)$

- Split transition kernel P into \hat{P} :

$$
\begin{gathered}
\hat{P}(x, \cdot)=P(x, \cdot)^{*} \quad x \in X_{0} \backslash C_{0} \\
\hat{P}(x, \cdot)=(1-\delta)^{-1}\left[P(x, \cdot)^{*}-\delta \nu^{*}(\cdot)\right] \quad x \in C_{0} \\
\hat{P}(x, \cdot)=\nu^{*}(\cdot) \quad x \in C_{1}
\end{gathered}
$$

How to make an atom? (3)

(1) A Markov process $\hat{\Phi}_{n}$ is defined on \hat{X} with transition probability \hat{P}.
(2) C_{1} becomes an atom.
(3) Most result (irreducibility, aperiodicity, recurrence etc.) still holds for $\hat{\Phi}_{n}$

First simultaneous renewal time?

(1) $S_{n}=Y_{0}+Y_{1}+\cdots+Y_{n}, S_{n}^{\prime}=Y_{0}^{\prime}+Y_{1}^{\prime}+\cdots+Y_{n}$
(2) $Y_{0}=\left.\eta_{\alpha}\right|_{\Phi_{0} \sim \mu}, Y_{0}=\left.\eta_{\alpha}\right|_{\Phi_{0} \sim \nu}$
(3) $Y_{1}, Y_{1}, Y_{2}, Y_{2}^{\prime}, \cdots$ are i.i.d. with distribution $\eta_{\alpha} \|_{\Phi_{0}=\alpha}$
(3) Let T be the simultaneous renewal time

$$
T=\inf _{n}\left\{n=S_{k_{1}}=S_{k_{2}}^{\prime} \text { for some } k_{1}, k_{2}\right\}
$$

(0) From renewal theorem: There exist n_{0} and c such that

$$
\mathbb{P}[n \text { is a renewal time }]=\mathbb{P}\left[n=S_{k} \text { for some } k\right] \geq c
$$ for all $n \geq n_{0}$.

Theorems

Exponential tail

If $\mathbb{E}\left[\rho_{1}^{Y_{0}}\right], \mathbb{E}\left[\rho_{1}^{Y_{0}}\right], \mathbb{E}\left[\rho_{1}^{Y_{1}}\right]<\infty$ for some $\rho_{1}>1$, then there exists $\rho_{0}>1$ such that $\mathbb{E}\left[\rho_{0}^{T}\right]<\infty$.

Power-law tail

If $\mathbb{E}\left[Y_{0}^{\beta}\right], \mathbb{E}\left[\left(Y_{0}\right)^{\beta}\right], \mathbb{E}\left[Y_{1}^{\beta}\right]<\infty$ for some $\beta>0$, then $\mathbb{E}\left[T^{\beta}\right]<\infty$.
(Note that finite exponential/power-law moment is equivalent to exponential/power-law tail.)
Proof on whiteboard.

Ref: Lectures on the Coupling Method by Torgny Lindvall

Thank
 you

