
RELATIVISTIC FLUID EQUATIONS

BENOIT PAUSADER

1. Introduction

This note is a compilation from [1, 2, 3, 4, 6]. We also point out [9] as nice references.

1.1. Notations. We consider Minkowski space (R1+3, gαβ) with g00 = −c2, gij = δij and g0j = gj0 = 0.
Its inverse is denoted gµν where g00 = −c−2, gij = δij and g0j = 0 = gj0. We use the Einstein convention
that repeated up-down indices be summed and we raise and lower indices using the metric as follows:

Aα = gαβAβ , Bα = gαβB
β .

In addition, latin indices i, j . . . vary from 1 to 3, while greek indices µ, ν . . . vary from 0 to 3.
Note in particular that the coordinate along uν is given by cν = |uµuµ|−

1
2uν and that the projection

along u is given by1

(proju)µν =
1

uαuα
uµuν .

We denote T d(M) the set of contravariant d-tensors on the Minkowski space.

1.1.1. Poincaré group. The Poincaré group is the group of isometries of (the affine space) M . Besides
translations, we have the Lorentz transformations O(3, 1), i.e. the set of linear transformations L such
that

g(LX,LX) = g(X,X),

or in other words, LαβL
αγ = δγβ .

The first postulate is that all the laws of special relativity should be invariant (in fact co-variant) under
Poincaré transformations2.

1.2. Vocabulary. The vectors of M are naturally separated into

• time-like vectors vν such that gµνv
µvν < 0 (just as for ∂t).

• null vectors for which gµνv
µvν = 0.

• space-like vectors for which gµνv
µvν > 0 (just as ∂i).

In fact, one can also look at causality to define 6 different types of vectors3 (future-oriented time-like,
future-oriented null, zero, space-like, past-oriented null and past-oriented time-like). We can easily see
that all of the above categories are invariant under Lorentz transform.

1The tensors with up indices are vectors; the tensor with down indices are forms. While the use of the metric allows to

largely identify the two (especially in special relativity), it is often convenient to keep in mind which objects are naturally
vectors and which are naturally 1-forms. For example, the 4-velocity is naturally a vector, while the momentum will

naturally be a 1-form.
2Another way of stating this is that the laws of special relativity should be the same when expressed in any inertial

frame, i.e. in any coordinate frame which is the image of the standard coordinate frame ((0, 0, 0, 0), ∂t, ∂1, ∂2, ∂3) under a

Poincaré transform
3The six different types are the cosets under dilation and isometries. As I understand this, the idea is that dilating

amounts to choosing a scale; an isometry amounts to choosing an admissible frame; the relevant information should be
independent of these two operations. For comparison, in the Euclidean space, there are only 2 different equivalence class:

{0} and nonzero vectors. In this sense, even at this rough level, the geometry of Minkowski space is much richer.

1
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In the Minkowski space, there is no notion of absolute time and the time axis depends on the observer.
We define an event to be a point (t, x) of M . We define an observer to be a point and a time axis v
(defined by a time-like vector v). We define the rest space (or simultaneity space) of an observer to be
the 3-space (t, x) + v⊥. Thus, now the notion of simultaneity depends on the observer.

Note that if v = p − q is (future-oriented) time-like or null, then, for all the observers, q precedes
p, whereas if p − q is space-like, then there are observers for which p precedes q and some for which q
precedes p.

1.2.1. Point particles. A particle in motion is then only described by its curve p(s) : R→ M , its world-
line. Physically, we only consider particle such that the tangent vector ṗ = ∂sp is time-like. Since only
the curve is relevant, we might as well parameterize it by arc length. Thus, from now on, we assume that
for any world line p, we have that4

gαβ ṗ
αṗβ = −c2.

1.2.2. Stress-energy tensor (or energy-momentum tensor). In relativity, the properties of a matter field
are all summarized in a stress-energy tensor Tµν ∈ T 2(M), which is symmetric Tµν = T νµ and positive
in the sense that for any time-like vector v, we have that Tµνvµvν ≥ 0. This tensor is defined from the
energy, momentum and stress of the matter in the following way: for any observer with axis v5,

• The energy of the matter field he measures is given by ε = c−2Tµνvµvν ,
• The linear momentum density he measures is given by pν = −c−2Tµνvµ,
• The matter stress tensor that he measures is given by S = T|v⊥ .

In general relativity, the total stress-energy tensor T (given by the sum of all the stress-energy tensors
of each matter field present) determines the metric through the Einstein equations:

Eµν − Λgµν =
8πG

c4
Tµν (1.1)

where E = Ric − 1
2Rg is the Einstein tensor of the metric, Λ is the cosmological constant and G is the

gravity constant (coming from Newtonian theory). In particular, from the Bianchi identity we obtain
that

∇νTµν = 0. (1.2)

where ∇ denotes the covariant derivative.
In special relativity, we assume that E = Λ = 0 here and we neglect (1.1). However, it is desirable that

we retain (1.2) for the total stress-energy tensor (in this case, the covariant derivative becomes a simple
partial derivative).

1.3. Perfect fluid. A perfect fluid or simple fluid is a (relativistic) model for a fluid in which the fluid
is modeled by

• a 4-velocity uν ∈ T 1(M) whose integral curve give the world-line of all the particles of fluid. It
satisfies

uµu
µ = −c2; (1.3)

• a density function n ∈ T 0(M) such that n(t, x) gives the density of particles at the event (t, x)
• an energy-density ε which gives the (density of) total energy of a fluid particle at rest
• an isotropic stress in its rest frame given by pI3.

4Sometimes the world-line is parameterized by gαβ ṗ
αṗβ = −mc2 instead, but when we have several fluids, we find it

better to use this notation.
5The formula above are better understood if we keep in mind that c−1vµ is normalized.
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From all these assumptions, we see that the stress energy-momentum is then given by

Tµν = (ε+ p)
uµuν

c2
+ pgµν = ε

uµuν

c2
+ pηµν , (1.4)

where ηµν = gµν + c−2uµuν is the (Euclidean) metric on the rest-space of u.
The precise form of ε, p depends on thermodynamics assumptions.

1.3.1. Other noteworthy types of fluids. A dust is a pressureless perfect fluid; thus its stress-energy tensor
is given by

Tµν = ρ
uµuν

c2
.

A radiation field is a perfect fluid for which ε = 3p; thus its stress-energy tensor is given by

Tµν = p

[
4
uµuν

c2
+ gµν

]
.

1.4. Thermodynamics. The first principle of thermodynamics states that there exists an equation of
states6:

d{εV } = Td{sV }+ µd{nV } − pdV (dE = TdS + µdN − pdV ),

dε = Tds+ µdn, p = Ts+ µn− ε, (1.5)

where

• T denotes the temperature,
• s denotes the entropy,
• µ denotes the chemical potential of the fluid,
• V denotes any volume.

One can understand these equations by saying that there is an equation of state ε = ε(s, n) depending
on the density and the entropy, and this defines the temperature and chemical potential by

T =
∂ε

∂s
, µ =

∂ε

∂n
. (1.6)

Note that ε denotes the total energy, ε = nmc2 + εint where εint accounts for the internal energy
(including the microscopic energy density, the potential energy density from microscopic interactions. . . ).
Therefore, we see that µ = mc2 + µint.

1.5. Dynamics for one neutral fluid. For simplicity, we start with the simpler case of a simple neutral
fluid. In this case, we can derive the equations of motion for a fluid starting from 2 “first principles”.

• The particle are conserved (neither created nor annihilated), in which case

∂ν(nuν) = 0. (1.7)

• The Bianchi identity (1.2) holds

∀µ, ∂ν

[
(ε+ p)

uµuν

c2
+ pgµν

]
= 0.

Note that (1.3), (1.7) and (1.2) constitute 6 equations for the 6 unknowns uν , n, s.
It is convenient to introduce the enthalpy h defined by

nh = ε+ p = Ts+ µn, (1.8)

in which case, using (1.7), we see that the equation above simplifies to

nuν

c2
∂ν [huµ] + gµν∂νp = 0. (1.9)

6Or that we can describe the energy solely in terms of the density and the entropy.
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We claim that (1.7) and (1.9) gives the equation of motion.

1.5.1. Dynamics along u. Projecting (1.9) parallelly to u gives

0 = h
nuν

c2
uµ∂νu

µ +
nuν

c2
uµuµ∂νh+ uµg

µν∂νp = 0.

The first term vanishes in view of (1.3). We then get

uν [∂νp− n∂νh] = 0 (1.10)

Using (1.8) and (1.6), we see that

∂νp− n∂νh = (h− µ)∂νn− T∂νs =
sT

n
∂νn− T∂νs

and therefore, using once more (1.7),

0 =
sT

n
uν∂νn− Tuν∂νs = −T∂ν [suν ] .

The third law of thermodynamics implies that

T ≥ 0, T = 0⇒ s = 0,

in which case we find that

∂ν [suν ] = 0.

Now, if we define

s =
s

n
,

we finally obtain that

uν∂νs = 0. (1.11)

Therefore, if we assume that at initial time, each particle carries the same entropy, s ≡ s0, then this
remains true for all times, and we have s ≡ s0 uniformly in space and time. Thus, coming back to the
equation of state, se that in this case ε = ε(n) and we say that the fluid is barotropic.

For a barotropic fluid, (1.8) gives that
dh

dn
=

1

n

dp

dn
and we see that the equation (1.9) along u is trivially satisfied. To conclude: if we consider a simple
neutral fluid such that, at initial time s ≡ s0, then this is propagated by the flow, h and p depend only on
n, and the parallel component of (1.9) along u is satisfied.

Definition: A simple fluid is called isentropic if at some initial time s ≡ s0, in which case, this remains
always true.

1.5.2. Dynamical equations for barotropic fluids. For barotropic fluids, the fluid is fully determined by
only n and uν satisfying (1.3). These are 4 unknowns and they satisfy (1.7) and the part of (1.9)
orthogonal to u. These are 4 equations. Projecting (1.9) in the direction orthogonal to u gives

nh

c2
aµ + ηµν∂νp = 0, ηµν =

uµuν

c2
+ gµν ,

where aµ = uν∂νu
µ denotes the acceleration and η the restriction of the metric to the rest frame.

Therefore the equations of motion are

∂ν(nuν) = 0,

aµ = −c2ηµν∂ν [lnh] .
(1.12)
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1.5.3. Vorticity. An important quantity is the relativistic momentum

πα = c−2huα, (1.13)

which allows to define the relativistic vorticity

ωαβ = ∂απβ − ∂βπα i.e. ω = dπ.

We then obtain the Lichnerowicz equation of motion

∂ν(nuν) = 0, uαωαβ = T∂βs.

Which simplifies in the isentropic case to the Synge relation

uαωαβ = 0.

1.5.4. Irrotational flows. Consider an isentropic flow. In this case, we see from (1.9) that

uν∂ν∂α[huβ ] = ∂α[uν∂ν [huβ ]]− (∂αu
ν)∂ν [huβ ]

= ∂α

[
−gθβ

c2

n

dp

dn
∂θn

]
− (∂αu

ν)ωνβ − (∂αu
ν)∂β [huν ]

= −c2∂αβh− (∂αu
ν)ωνβ − (∂αu

ν)h(∂βuν)

and therefore, we see that the vorticity is transported in the sense that

uν∂νωαβ = (∂αu
ν)ωβν − (∂βu

ν)ωαν . (1.14)

Consequently, if an isentropic flow satisfies ω ≡ 0 at initial time, it remains so for all later time.
Reciprocally, it follows from the Lichnerowicz equation and the third law of thermodynamics that a

flow which is irrotational is isentropic.

An isentropic and irrotational flow is a potential flow in the sense that there exists a function φ : M → R
such that

πα = c−2huα = ∂αφ.

The equations of motion then give, after some computations that

�gφ− gµν∂µφ∂ν
{

ln
h

n

}
= 0, ∂µ

{
∂αφ∂

αφ

2
+ c2 lnh

}
= 0,

which seems similar to a relativistic potential flow equation.

1.6. Lorentz Covariance. Consider a Lorentz-transformation L, i.e. a (fixed) 2-tensor L satisfying
LαβL

αγ = δγβ and define7

(X ′)α = LαβXβ , n′(X ′) = n(X), h′(X ′) = h(X), ε′(X ′) = ε′(X), (u′)α(X ′) = Lαβuβ(X)

Then, we see that (n, h, ε, u) satisfy (1.7) and (1.9) if and only if (n′, h′, ε′, u′) does.
For the sake of example, let us do the computations in detail.
We first see that Xγ = L γ

α (X ′)α. Denoting ∂′ the derivative in the new coordinates, we compute

∂′ν [n′(X ′) (u′)ν(X ′)] = Lνµ∂′ν [n(X)uµ(X)]

= Lνµ∂ω[nuµ](X) · ∂′ν(Xω)

= LνµL ω
θ δθν∂ω[nuµ](X) = 0.

7Of course, we keep g unchanged.
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Similarly for the second equation,

n′(u′)ν

c2
∂′ν [h′(u′)µ] + gµν∂′νp

′ = LναLµβ
nuα(X)

c2
∂′ν [huβ(X)] + gµν∂′νp(L

γ
α (X ′)α)

= LναLµβ
nuα(X)

c2
∂θ[huβ ](X) · ∂′ν(L θ

ω (X ′)ω) + gµν∂θp∂
′
ν(L θ

ω (X ′)ω)

= LναL
µβL θ

ω δ
ω
ν

nuα

c2
∂θ[huβ ] + L θ

ω δ
ω
ν g

µν∂θp = 0.

1.7. The Crocco equation.

1.8. Lagrangian. There is also a Lagrangian formulation, but I could not find one that I thought was
completely satisfactory. We give here one Lagrangian from [8] seems to work but we will not dwell on
this.:

S =
1

c

∫
M

d4x
√
−det g

{
− 1

2κ
R− ρ(ε+ c2)− 1

2
µ1

(
uµu

ν + c2
)

+ µ2
dσ

dλ

}
where κ = 8πG, λ is the parameter for the curve xµ, uµ = dxµ

dλ , σ is the entropy density and µ1 and µ2

are Lagrange multipliers.

1.9. Newtonian approximation. In this section, we see how the general relativity comes into play in
the equation for the dynamics of fluids, at first order (i.e. under the weak field approximation that the
metric is a small deviation from the Minkowski metric and the small velocity approximation where the
perfect fluid is close to being stationary). This allows to verify the normalization of our constants. We
refer to [7] for a more rigorous result. In the following, we consider a single barotropic fluid.

We assume that the cosmological constant vanishes, Λ = 0. In this case, upon taking the trace of
(1.1), we obtain that

R = −8πG

c4
T , T = gµνT

µν = −(ε− 3p).

Thus we may rewrite (1.1) as

Ricµν =
8πG

c4

{
Tµν −

1

2
T gµν

}
=

8πG

c4

{
ε+ p

c2
uµuν +

ε− p
2

gµν

}
(1.15)

Now, we assume that gµν is a small variation of the Minkowski metric which (only in this section) we
write as mµν . Thus gµν = mµν + θµν where (in Minkowski-geodesic coordinates), |θ| � 1 and θ → 0 at
spatial infinity (in the Minkowski variables). Then (1.15) and (3.1) give, in g-harmonic coordinates,

1

2
�gθµν =

8πG

c4

{
ε+ p

c2
uµuν +

ε− p
2

mµν +
ε− p

2
θµν

}
+O(∂θ)2.

Now, we expand

1

2
�gθ00 =

8πG

c4

{
ε+ p

c2
c4γ2 − ε− p

2
c2 +

ε− p
2

θ00

}
+O(∂θ)2

1

2

{
1

c2
∂tt −∆

}
θ00 −

ε− p
2c2

8πG

c2
θ00 = 4πG

{
ε+ 3p

2c2
+
ε+ p

2c2
|v|2

c2
+
ε+ p

c2
O(
|v|2

c2
)2
}

+O((∂θ)2 + θ∂2θ00).

Assuming that

uν = γ(1, vj), |v| � c, ‖θ‖C10 � 1,
ε

c2
= nm+O(

1

c2
), p = O(1),

we see that the equation above reduces to

−∆θ00 = 8πGnm+O(
1

c2
+
|v|2

c2
+ ‖θ‖2C2). (1.16)
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For the other coordinates, we find that

1

2
�gθ0j −

ε− p
2c2

8πG

c2
θ0j = −8πG

c2

{
ε+ p

c2
γvj

}
+O(∂θ)2

1

2
�gθjk −

ε− p
2c2

8πG

c2
θjk =

8πG

c4

{
ε+ p

c2
vjvk +

ε− p
2

δjk

}
+O(∂θ)2.

Thus, in all these cases, we see that, at first order, ∆θ0j = ∆θjk = 0 and we can assume that these
vanish.

Now to understand the dynamical implication of this, we must compute the Christofel symbols. We
find that8

Γ0
µν =

1

2

[
m0ω − θ0ω

]
{∂µθων + ∂νθωµ − ∂ωθµν} = − 1

2c2
{∂µθων + ∂νθωµ − ∂ωθµν}+O(|θ0·| · |∂θ|)

Γkµν =
1

2

[
mkω − θkω

]
{∂µθων + ∂νθωµ − ∂ωθµν} =

1

2
{∂µθkν + ∂νθkµ − ∂kθµν}+O(|θ| · |∂θ|),

and given our assumptions on θ, we see that the only nonzero coefficients at first order are

Γk00 = −1

2
∂kθ00. (1.17)

Now, the general relativistic version of the equations of motion (1.7) and (1.9) is

∇ν [nuν ] = 0,
nuν

c2
∇ν [huµ] + gµν∇νp = 0,

which, in our situation, become to first order

∂t [γn] + ∂k
[
nγvk

]
= 0

∂t[
h

c2
γ] + vk∂k

[
h

c2
γ

]
− 1

nγ

[
1

c2
+ θ00

]
∂tp = 0

∂t

[
h

c2
γvj
]

+ Γj00
h

c2
γ + vk∂k

[
h

c2
γvj
]

+
1

nγ
∂jp = 0

and using (1.16) and (1.17) and neglecting all the corrections of order c−2 (in particular the γ’s), we
finally obtain

∂tn+ ∂k
[
nvk

]
= 0

nm
[
∂tv

j + vk∂kv
j
]

+ ∂jp =
nm

2
∂jθ00

−∆θ00 = 8πGnm

and we recognize the Newtonian equations for a perfect gravitating fluid once we set G to be Newton’s
gravitational constant.

2. Charged fluid

We now introduce an electromagnetic field.

2.1. The Maxwell equations.

8From now on, we raise and lower symbols using the Minkowski metric. This is exact at first order since |θ| � |m|.
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2.1.1. Electromagnetic field. An electromagnetic field F = {Fµν}0≤µ,ν≤3 ∈ T 2(M) is a skew-symmetric
2-tensor Fµν = −F νµ. The Maxwell equations express how an electromagnetic field varies:

∂µF
µν =

4π

c
Jν ∂αFβγ + ∂βFγα + ∂γFαβ = 0, (2.1)

where Jν denotes the total relativistic current. This can also be rewritten in a more geometric way as

dF = 0, d ∗ F =
4π

c
∗ J, F = Fµνdx

µ ∧ dxν .

These equations imply the conservation of charge

∂νJ
ν = 0. (2.2)

This field has an energy-momentum tensor:

Eµν = −(4π)−1
[
FµαF βνgαβ +

1

4
FαβFαβg

µν

]
∈ T 2(M).

in particular, one may verify that E is a positive tensor.
The classical analogues are defined for the observer v as

Eν = −ecFµνvµ, Bα =
e

2c
εαβγδvβFγδ.

where e denotes the charge of an electron.

2.1.2. Electromagnetic potential. Since the second equation (2.1) can be rewritten as dF = 0 and M is
simply connected, we see that there exists a 1-form A such that F = dA. In other words,

Fµν = ∂µAν − ∂νAµ. (2.3)

We see from this that A is only determined up to a choice of gauge: if A′ = A + dχ, then A′ also gives
F from the above relation.

For a vector potential A, the first Maxwell equation then gives that

∂µ∂
µAν − ∂ν [∂µA

µ] =
4π

c
Jν . (2.4)

In particular, given a solution A of (2.4), the electromagnetic field defined by (2.3) automatically satisfies
Maxwell’s equations.

If we choose the Lorentz gauge where ∂µA
µ = 0, using (2.2), we see that (2.4) reduces to

�Aν = −4π

c
Jν , ∂µA

µ
|t=0 = 0. (2.5)

2.1.3. Electromagnetic field in vacuum. In vacuum, we have no motion of charge and therefore J ≡ 0. In
this case, we only have to determine the electromagnetic field which satisfies

∂µF
µν = 0 ∂αFβγ + ∂βFγα + ∂γFαβ = 0 (dF = 0, d ∗ F = 0).

In particular, we see from (2.5) that Maxwell’s equation reduce to

�F = 0,

together with some constraints on the initial data.
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2.1.4. Lorentz force. The Lorentz force FL exerted by the electromagnetic field F onto a particle of charge
q moving with 4-velocity u is given by

FµL =
q

c
uαF

µα.

Therefore, naturally, the Lorentz force applied to a fluid with density n, charge-per particle q and 4-
velocity u is given by

FµL =
nq

c
uαF

µα. (2.6)

2.2. One charged fluid in vacuum.

2.2.1. Dynamical equations. We now consider the case of just one charged fluid in vacuum, with density
of charge ρ = qn for some q > 0. In this case, the total electric current is given by

Jν = qnuν . (2.7)

The dynamical equations are then given by the Maxwell equation, the continuity of charge and the
conservation of the total stress-energy (or Bianchi identity): (2.1), (2.7), (1.7) and (1.2). The latter reads

0 = ∂ν [Tµν + Eµν ] =
nuν

c2
∂ν [huµ] + gµν∂νp−

1

c
JαF

µα =
nuν

c2
∂ν [huµ] + gµν∂νp−

qn

c
uαF

µα. (2.8)

Since F is skew-symmetric, when we project in the direction of u, we obtain (1.10) and thus the
discussion in sub subsection 1.5.1 applies equally well. In particular, fluids which are initially isentropic
remain so and are in fact barotropic.

2.2.2. Generalized Vorticity. We define the generalized vorticity as

c2ωαβ = ∂α(huβ)− ∂β(huα) + qcFαβ .

This is again transported by the flow in the sense of (1.14). Indeed, we may simply compute

c2uν∂νωαβ = ∂α(uν∂ν(huβ))− ∂ν(huβ)∂αu
ν − ∂β(uν∂ν(huα)) + ∂ν(huα)∂βu

ν + qcuν∂νFαβ

= −∂α(
c2

n
∂βp− cquθFβγgγθ) + ∂β(

c2

n
∂αp− cquθFαγgγθ)− qcuν(∂αFβν + ∂βFνα)

− (∂αu
ν)c2ωνβ − (∂αu

ν)∂β(huν) + qc(∂αu
ν)Fνβ

+ (∂βu
ν)c2ωνα + (∂βu

ν)∂α(huν)− qc(∂βuν)Fνα

= qc{∂α(uθFβθ)− ∂β(uθFαθ)− uν∂αFβν − uν∂βFνα + (∂αu
ν)Fνβ − (∂βu

ν)Fνα}
− (∂αu

ν)c2ωνβ + (∂βu
ν)c2ωνα − {(∂αuν)∂β(huν)− (∂βu

ν)∂α(huν)}
= −c2(∂αu

ν)ωνβ + c2(∂βu
ν)ωνα,

and hence as long as the solution is smooth, irrotational initial data lead to solutions which remain
irrotational.

2.3. The relativistic Euler-Maxwell equation for electrons. The Euler-Maxwell equation for elec-
trons is the variant of the previous case, where we also assume the presence of a second fluid which
remains at rest and which has charge opposite to the fluid under consideration.

We assume the presence of a background fluid with n ≡ n0, u ≡ ∂t and charge e. Since we assume
that this fluid is not moving, we cannot incorporate its stress-energy tensor in the Bianchi identity (1.2),
which we then have to abandon.

The dynamical equations are then given by the Maxwell equations (2.1), where the total electric current
is now

Jν = e [n0δ
ν
0 − nuν ] ,

the conservation of particle (1.7) (or the conservation of charge (2.2)), but we need to find a replacement
for (1.2). This is similar to the case of loosing a conservation law, in which case, we can always go back
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to Newton’s law. In special relativity, there are two possible replacements for Newton’s law: either a law
prescribing the acceleration as in (1.12), or a law prescribing the variation of momentum π (see (1.13)) as
in (1.9) or (2.8). The correct one seems the balance of momentum: “the variation of momentum equals
the sum of the forces exerted upon the fluid”. In our case, we only have the Lorentz force (2.6) and this
gives

nuν∂νπ
µ + gµν∂νp =

en

c
uαF

µα, πν = c−2huν . (2.9)

Note that since we do not describe a complete system (e.g. we are neglecting the forces that the electron
fluid exerts upon the uniform background), we do not recover the fact that the stress-energy-tensor is
divergence free (1.2). However, we retain a partial equality which is sufficient to give us conservation of
the physical energy:

∂ν
[
T 0ν + E0ν

]
= 0.

2.3.1. Lorentz covariance. Consider a Lorentz-transformation L, i.e. a (fixed) 2-tensor L satisfying
LαβL

αγ = δγβ and define

(X ′)α = LαβXβ , n′(X ′) = n(X), (u′)α(X ′) = Lαβuβ(X), (F ′)αβ(X ′) = LαγLβδFγδ(X),

(J ′)α(X ′) = LαβJβ(X)

Then, we see that (n, u, J, F ) satisfy (2.1)-(1.7)-(1.2) if and only if (n′, u′, J ′, F ′) does.

2.3.2. Perturbations of a constant equilibrium. We remark that the same formal computations as in
Subsection 2.2.2 still hold. Therefore it makes sense to consider irrotational fluids. In addition, the
following “physical” explanation is sometimes given to justify the study of irrotational initial data:

In the absence of a mechanism to create vorticity (such as the presence of boundary) and when
the (generalized) vorticity satisfies a transport law, if one starts with a state which is irrotational, any
“physical” perturbation of the system will not destroy this vanishing of the generalized vorticity; in other
words, one cannot perturb the velocity and the magnetic field independently in a “physical” fashion.

In any event, regardless of the relevance of the previous paragraph, considering an irrotational pertur-
bation greatly simplifies the system and is certainly relevant to applications.

We now consider the perturbation of the following equilibrium:

n ≡ n0, u ≡ ∂t, F ≡ 0.

We assume that the data are isentropic and irrotational. We write the fluid 4-vector as

uν = (γe, v
1, v2, v3), uν = (−c2γe, v1, v2, v3), uµuµ = −c2, γe =

[
1 + c−2|v|2

] 1
2 (2.10)

and we consider the unknowns9

µje = c−2huj = c−2hvj , Ej = ecF j0. (2.11)

All the other unknowns can be recovered from the formula

ec−1F jk = ∂kµ
j
e − ∂jµke ,

the first equation in (2.1)

nγe = n0 −
1

4πe2
∂jE

j ,

and from the fact that the mapping

D : (n, v) 7→ (nγe, µe) = (n
√

1 + c−2|v|2, c−2h(n)v)

9This choice of unknown is motivated from the choice of unknowns in the non relativistic case [5]. Another way of seeing

this is that since uν is a small variation of ∂t and since only the equations of motion orthogonal to uµ will be relevant, it
should suffice to look at the projection of the equations of motion onto ∂⊥t and to recover the full dynamics of u by imposing

(2.10).
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is invertible in an L∞-neighborhood of v ≡ 0 and n ≡ n0, where h ' h0 := h(n0). This latter point is
easily seen from the Jacobian matrix

∇D =

(
γe γ−1e c−2nvT

c−2h′(n)v c−2h(n)I3

)
,

which also in particular implies that

∂jh = −h
′(n0)

4πe2
∂j∂kE

k + h.o.t. (2.12)

The dynamical equations then reduce to the following (from (1.9) and the first equation of (2.1))

∂tµ
j
e + Ej +

1

γe
∂jh+

c2

hγe
∂j
|µe|2

2
= 0

∂tE
j − c2(curl curl(µe))

j − 4πe2c2
n

h
µje = 0,

(2.13)

where

(curl(v))i :=∈ijk ∂jvk.
We can now choose scales appropriately so as to minimize the number of parameters in the linear

system. Define10

h0 = h(n0), p′0 = p′(n0), T =
p′0
h0
≈
(cs
c

)2
, λ =

√
4πe2n0
h0

≈ cωe, β = λc

µe(x, t) = µ̃(λx, βt), E(x, t) = βẼ(λx, βt),

n = n0(1 + ñ(λx, βt)), h0h̃ = h(ñ), γ̃ =

√
1 + (c/h0)2h̃−2|µ̃|2

and introduce

Q = |∇|−1curl, P = −∇(−∆)−1div, P 2 +Q2 = Id, PQ = 0, P 2 = P, Q3 = Q.

We can recast (2.13) as

∂tµ̃+ Ẽ − T∆PẼ = N1,

∂tẼ + ∆Q2µ̃− µ̃ = N2,

where

−N1 =
c

h0
∇|µ̃|

2

2
+

{
T∆PẼ +

h0
γ̃
∇h̃
}

+
c

h0

{
1

h̃γ̃
− 1

}
∇|µ̃|

2

2

−N2 =

{
1− 1 + ñ

h̃

}
µ̃j .

We define

Λ2
e := 1− T∆, Λ2

b := 1−∆

and we introduce the dispersive unknowns

Ue := Pµ̃− iΛePẼ

Ub := Qµ̃− iΛ−1b QẼ
(2.14)

10Here ωe denotes the (nonrelativist) electron plasma frequency and cs denotes the (non relativist) sound velocity.
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which satisfy the system

(∂t + iΛe)Ue = PN1 − iΛePN2

(∂t + iΛb)Ub = QN1 − iΛ−1b QN2.
(2.15)

This system is now amenable to analysis of quasilinear dispersive equations techniques.

2.4. The relativistic 2-fluid Euler-Maxwell equation. We now complete the system described above
and let the ion evolve freely. This section is essentially taken from [5].

We thus consider two fluids with two densities ni and ne, two velocity fields vi and ve (both of which
satisfy (1.3)) and an electromagnetic field F . We assume that each ion carries a charge of +Ze. We are
also given pressure laws pi and pe and enthalpies hi and he satisfying (1.8), with Mi, the rest-mass of an
ion instead of me for pi, hi. Thus, our matter fields are described by

Tµνi = nihi
uµi u

ν
i

c2
+ pig

µν , Tµνe = nehe
uµeu

ν
e

c2
+ peg

µν .

The Maxwell equations (2.1) remain the same, with the relativistic current now defined as

Jν = Zeniu
ν
i − eneuνe (2.16)

Both species are independently conserved so that

∂ν(niu
ν
i ) = 0 = ∂ν(neu

ν
e ) (2.17)

and we have two forms of balance of momentum:

niu
ν
i

c2
∂ν [hiu

µ
i ] + gµν∂νpi = −Z eni

c
(ui)αF

µα

neu
ν
e

c2
∂ν [heu

µ
e ] + gµν∂νpe =

ene
c

(ue)αF
µα.

(2.18)

In particular, we recover the fact that the stress-energy tensor is divergence free (1.2):

∂ν [Tµνi + Tµνe + Eµν ] = 0.

Again, we have two naturally transported (generalized) vorticities:

ωiαβ = ∂α [hi(ui)β ]− ∂β [hi(ui)α]− ZecFαβ ,
ωeαβ = ∂α [he(ue)β ]− ∂β [he(ue)α] + ecFαβ ,

which satisfy that

uνi ∂νω
i
αβ = −(∂αu

ν
i )ωiνβ + (∂βu

ν
i )ωiνα,

uνe∂νω
e
αβ = −(∂αu

ν
e )ωeνβ + (∂βu

ν
e )ωeνα.

(2.19)

We thus see that irrotational flows are well-defined and remain irrotational along the flow.

We can easily see from (1.8) that the component of (2.18) parallel to the fluids under consideration
are automatically satisfied. Thus to verify (2.18), it suffices to verify it when µ = j varies between 1 and
3.

We now define the unknowns

µji = c−2hiu
j
i , µje = c−2heu

j
e, 1 ≤ j ≤ 3,

Ej = ecF j0, 2Bj = −ec−1 ∈jkl Fkl, F jk = −ce−1 ∈jkl Bl.
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Now, we can rewrite our evolution system as

∂t(niγi) + c2div(
ni
hi
µi) = 0,

∂tµi +
1

γi
∂jhi − ZEj +

c2

γihi
∂j
|µi|2

2
= 0,

∂t(neγe) + c2div(
ne
he
µe) = 0,

∂tµ
j
e +

1

γe
∂jhe + Ej +

c2

heγe
∂j
|µe|2

2
= 0,

∂tE − c2curl(B) + 4πe2c2[Z
ni
hi
µi −

ne
he
µe] = 0,

∂tB + curl(E) = 0.

2.4.1. Linearization at an equilibrium. From these equations, we can find the equations satisfied by the
deviation from the equilibrium state

ni ≡ Z−1n0, ne ≡ n0, ue ≡ ui ≡ ∂t, Fµν ≡ 0.

We now set

Hi = hi(n0/Z), n0PiZ = p′i(n0/Z), He = he(n0), n0Pe = p′e(n0),

β :=

√
4πn0Ze2c2

Hi
, λ :=

√
4πe2

Pi
, µ :=

√
n0ZPiHi

c

and

ε =
ZHe

Hi
, T =

Pe
Pi
, Cb =

He

n0Pi
(2.20)

and use the rescaling

γi(x, t) = γ̃i(λx, βt), γe(x, t) = γ̃e(λx, βt),

ni(x, t)γi(x, t) = (n0/Z)[ρ(λx, βt) + 1], ne(x, t)γe(x, t) = n0[n(λx, βt) + 1]

µi(x, t) = µu(λx, βt), µe(x, t) = (εµ/Z)v(λx, βt)

E(x, t) = n0λPiẼ(λx, βt), B(x, t) = (λµ/Z)B̃(λx, βt)

hi(ni(x, t)) = Hih̃i(ρ̃(λx, βt)), h′i(ni) = Z2Piq
′
i(ρ̃), h̃i(0) = 1 = q′i(0)

he(ne(x, t)) = Heh̃e(ñ(λx, βt)), h′e(ne) = Peq
′
e(ñ), h̃e(0) = 1 = q′e(0)



14 BENOIT PAUSADER

to obtain the system

∂tρ+ div[
1 + ρ

γ̃ih̃i
u] = 0,

∂tu
j − Ẽj +

1

γ̃i
∂jqi +

1

γ̃ih̃i
∂j
|u|2

2
= 0,

∂tn+ div[
1 + n

γ̃eh̃e
v] = 0,

ε{∂tv +
1

h̃eγ̃e
∂j
|v|2

2
}+ Ẽj +

T

γ̃e
∂jqe = 0,

∂tẼ
j − Cb

ε
curl(B̃) + [

1 + ρ

γ̃ih̃i
u− 1 + n

γ̃eh̃e
v] = 0

∂tB̃ + curl(Ẽ) = 0

(2.21)

which has a similar structure to the classical Euler-Maxwell system. Indeed, we may Taylor expand to
get

1 + ρ

γ̃ih̃i
= 1 + r1ρ+ g1, qi = ρ+ r2ρ

2 + r′2|u|2 + h2,

1 + n

γ̃eh̃e
= 1 + r3n+ g3, qe = n+ r4n

2 + r′4|v|2 + h4,

where r1, r2, r′2, r3, r4 and r′4 are constants and g1, g3 are smooth functions of (ρ, u, n, v) which vanish
at the origin (0, 0, 0, 0) together with their gradient, and h2, h4 are smooth functions of (ρ, u, n, v) which
vanish at the origin (0, 0, 0, 0) together with their first and second derivatives.

We may thus rewrite (2.21) as

∂tρ+ div[u] + r1div[ρu] = −div[g1],

∂tu
j − Ẽj + ∂jρ+ r2∂j(ρ

2) + (r′2 +
1

2
)∂j |u|2 = T2,

∂tn+ div[v] + r3div[nv] = −div[g3],

∂tv + ε−1Ẽj + ε−1T∂jn+ ε−1Tr4∂j(n
2) + (ε−1Tr′r +

1

2
)∂j |v|2 = T4,

∂tB̃ + curl(Ẽ) = 0,

∂tẼ −
Cb
ε

curl(B̃) + u− v + [r1ρu− r3nv] = −g1u+ g3v,

(2.22)

where

T2 = −{γ̃−1i − 1}∂jqi − γ̃−1i ∂jh2 − ((γ̃ih̃i)
−1 − 1)/2 · ∂j |u|2

T4 = −{ε−1T γ̃−1e − 1}∂jqe − ε−1γ̃−1e ∂jh4 − ((h̃eγ̃e)
−1 − 1)/2 · ∂j |v|2

are simply smooth cubic (or higher order) terms in (ρ, n, u, v) with no particle structure. We can directly
observe that the linearization of (2.22) coincides with the linearization of the classical equation. Therefore
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we consider the same dispersion relations and we define similarly the dispersive unknowns as:

Ui = Ui+ :=
1

2
√

1 +R2

[
ε1/2R|∇|−1Λin+ |∇|−1Λiρ− iε1/2RRjvj − iRjuj

]
,

Ue = Ue+ :=
1

2
√

1 +R2

[
− ε1/2|∇|−1Λen+R|∇|−1Λeρ+ iε1/2Rjv

j − iRRjuj
]
,

2Ub = 2Ub+ := Λb|∇|−1QB̃ − iQ2Ẽ

(2.23)

with inverse transformation given by

n =
−|∇|ε−1/2√

1 +R2Λe
(Ue + Ue) +

|∇|ε−1/2R√
1 +R2Λi

(Ui + Ui),

ρ =
|∇|R√

1 +R2Λe
(Ue + Ue) +

|∇|√
1 +R2Λi

(Ui + Ui),

vj = Rj

{
iε−1/2√
1 +R2

(Ue − Ue) +
−iε−1/2R√

1 +R2
(Ui − Ui)

}
+

2

ε
Λ−1b Re(U jb ),

uj = Rj

{
−iR√
1 +R2

(Ue − Ue) +
−i√

1 +R2
(Ui − Ui)

}
− 2Λ−1b Re(U jb ).

(2.24)

We also define Uσ− = Uσ, σ ∈ {i, e, b}. Above, we have used the operators:

Λi := ε−1/2

√√√√ (1 + ε)− (T + ε)∆−
√

((1− ε)− (T − ε)∆)
2

+ 4ε

2
,

Λe := ε−1/2

√√√√ (1 + ε)− (T + ε)∆ +

√
((1− ε)− (T − ε)∆)

2
+ 4ε

2
,

Λb := ε−1/2
√

1 + ε− Cb∆,

H1 :=
√

1−∆, Hε := ε−1/2
√

1− T∆,

R :=

√
Λ2
e −H2

ε

H2
ε − Λ2

i

, Rα := |∇|−1∂α, Qαβ(ξ) := |∇|−1 ∈αγβ ∂γ .

(2.25)

Using these formulas (and in particular the fact that ∂tn and ∂tρ are exact spatial derivatives so as to
counteract the singular relation at 0 frequency in the definition of Ue and to keep the derivative structure
in the quadratic part of the nonlinearity Ni), one quickly sees that (Ui, Ue, Ub) satisfy

(∂t + iΛi)Ui = Ni, (∂t + iΛe)Ue = Ne, (∂t + iΛb)Ub,α = Nb,α, (2.26)

where the quadratic nonlinear terms are of the form

F(Nσ)(ξ, t) = c
∑

µ,ν∈I0

∫
R3

mσ;µ,ν(ξ, η)Ûµ(ξ − η, t)Ûν(η, t) dη,

σ ∈ {i, e, b}, I0 := {e+, e−, i+, i−, b+ 1, b+ 2, b+ 3, b− 1, b− 2, b− 3},
(2.27)

where the multipliers me;µ,ν(ξ, η) and mb,α;µ,ν(ξ, η), α ∈ {1, 2, 3}, can be written as finite sums of
functions of the form

(1 + |ξ|2)1/2 ·m(ξ, η), m ∈M (2.28)

and the multipliers mi;µ,ν(ξ, η) can be written as finite sums of functions of the form

|ξ| ·m(ξ, η), m ∈M, (2.29)
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whereM denotes the set of functions of the form m(ξ, η) = q1(ξ)q2(ξ−η)q3(η) where qi is a nice symbol.

3. Basic formulas and tools

3.1. Some geometrical formulas. We recall the definition of the relevant geometrical objects, given a
manifold (M, g) with a Levi-Civita connection:

Γγαβ =
1

2
gγθ {∂αgθβ + ∂βgθα − ∂θgαβ}

Rµ
αβγ = ∂βΓµαγ − ∂γΓµαβ + ΓµσβΓσγα − ΓµσγΓσαβ

Ricµν = ∂αΓαµν − ∂νΓαµα + ΓασαΓσµν − ΓασνΓσαµ = Rα
µαν

R = gαβRicαβ .

We claim that, in Lorentz coordinates 11,

2(Ricg)µν = �ggµν +O(∂h)2. (3.1)

Indeed, in Lorentz-coordinates, we have that

2gαβ∂αgθβ = gαβ∂θgαβ = 0⇔ ∂β

{
gθβ
√
|det g|

}
= 0⇔ 2∂σg

σν = gαβg
µν∂µg

αβ . (3.2)

This gives that

2Ricµν = ∂σ
{
gσθ[∂µgθν + ∂νgθµ − ∂θgµν ]

}
− ∂ν

{
gαθ∂µgθα

}
+ ΓασαΓσµν − ΓασνΓσαµ

Keeping only the terms linear in the metric, we get

2(Ricg)µν = −∂θ∂θgµν +
{
∂µ[gσθ∂σgθν ] + ∂ν [gθσ∂σgθµ]− ∂ν [gαθ∂µgθα]

}
+O(∂g)2.

In view of (3.2), the term inside the bracket only produces commutator terms which are O(∂g)2 and we
therefore obtain (3.1).

As an aside that we will not use, we may remark that in Lorentz coordinates, we have that, for any
function φ,

�gφ = gαβ∂αβφ.
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