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Introduction

When thinking about the course “birational geometry for number theo-
rists” I so näıvely agreed to give at the Göttingen summer school, I cannot
avoid imagining the spirit of the late Serge Lang, not so quietly beseech-
ing one to do things right, keeping the theorems functorial with respect to
ideas, and definitions natural. But most important is the fundamental tenet
of diophantine geometry, for which Lang was one of the stongest and loudest
advocates, which was so aptly summarized in the introduction of [16]:

GEOMETRY DETERMINES ARITHMETIC.
To make sense of this, largely conjectural, epithet, it is good to have

some loose background in birational geometry, which I will try to provide.
For the arithmetic motivation I will explain conjectures of Bombieri, Lang
and Vojta, and new and exciting versions of those due to Campana. In fact,
I imagine Lang would insist (strongly, as only he could) that Campana’s
conjectures most urgently need further investigation, and indeed in some
sense they form the centerpiece of these notes.

Unfortunately, birational geometry is too often rightly subject to another
of Lang’s beloved epithets:

21 July 2006 version: won’t get any better before the lectures.
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YOUR NOTATION SUCKS!
which has been a problem in explaining some basic things to number the-
orists. I’ll try to work around this problem, but I can be certain some
problems will remain! One line of work which does not fall under this crit-
icism, and is truly a gem, is Mori’s “bend and break” method. It will be
explained in due course.

These pages are meant to contain a very rough outline of ideas and state-
ments of results which are relevant to the lectures. I do not intend this as
a prerequisite to the course, but I suspect it will be of some help to the
audience. Some exercises which might also be helpful are included.

Important:

• some of the material in the lectures is not (yet) discussed here, and
• only a fraction of the material here will be discussed in the lectures.

Our convention: a variety over k is an absolutely reduced and irreducible
scheme of finite type over k.

Acknowledgements: I thank the organizers for inviting me, I thank
the colleagues and students at Brown for their patience with my ill prepared
preliminary lectures and numerous suggestions, I thank Professor Campana
for a number of inspiring discussions, and Professor Caporaso for the notes
of her MSRI lecture, to which my lecture plans grew increasingly close.
Anything new is partially supported by the NSF.

Lecture 0. Geometry and arithmetic of curves

The arithmetic of algebraic curves is one area where basic relationships
between geometry and arithmetic are known, rather than conjectured.

0.1. Closed curves. Consider a smooth projective algebraic curve C de-
fined over a number field k. We are interested in a qualitative relationship
between its arithmetic and geometric properties.

We have three basic facts:

0.1.1. A curve of genus 0 becomes rational after at most a quadratic ex-
tension k′ of k, in which case its set of rational points C(k′) is infinite (and
therefore dense in the Zariski topology).

0.1.2. A curve of genus 1 has a rational point after an extension k′ of k
(though the degree is not a priori bounded), and has positive Mordell–Weil
rank after a further quadratic extension k′′/k, in which case again its set of
rational points C(k′′) is infinite (and therefore dense in the Zariski topology).

We can immediately introduce the following definition:

Definition 0.1.3. Let X be an algebraic variety defined over k. We say
that rational points on X are potentially dense, if there is a finite extension
k′/k such that the set X(k′) is dense in Xk′ in the Zariski topology.
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Thus rational points on a curve of genus 0 or 1 are potentially dense.
Finally we have

Theorem 0.1.4 (Faltings, 1983). Let C be an algebraic curve of genus > 1
over a number field k. Then C(k) is finite.

In other words, rational points on a curve C of genus g are potentially
dense if and only if g ≤ 1.

0.1.5. So far there isn’t much birational geometry involved, because we
have the old theorem:

Theorem 0.1.6. A smooth algebraic curve is uniquely determined by its
function field.

But this is an opportunity to introduce a tool: on the curve C we have a
canonical divisor class KC , such that OC(KC) = Ω1

C , the sheaf of differen-
tials, also known by the notation ωC - the dualizing sheaf. We have:

(1) deg KC = 2g − 2 = −χ(CC), where χ(CC) is the topological Euler
characteristic of the complex Riemann surface CC.

(2) dim H0(C,OC(KC)) = g.

For future discussion, the first property will be useful. We can now sum-
marize, follwing [16]:

0.1.7.
Degree of KC rational points
2g − 2 ≤ 0 potentially dense
2g − 2 > 0 finite

0.2. Open curves.

0.2.1. Consider a smooth quasi-projective algebraic curve C defined over
a number field k. It has a unique smooth projective completion C ⊂ C,
and the complement is a finite set Σ = C C. Thinking of Σ as a reduced
divisor of some degree n, a natural line bundle to consider is OC(KC + Σ),
the sheaf of differentials with logarithmic poles on Σ, whose degree is again
−χtop(C) = 2g− 2 + n. The sign of 2g− 2 + n again serves as the geometric
invariant to consider.

0.2.2. Consider for example the affine line. Rational points on the affine line
are not much more interesting than those on P1. But we can also consider
the behavior of integral points, where interesting results do arise. However,
what does one mean by integral points on A1? The key is that integral points
are an invariant of an “integral model” of A1 over Z.
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0.2.3. Consider the ring of integers Ok and a finite set S ⊂ SpecOk of finite
primes. One can associate to it the ring Ok,S of S-integers, of elements in
K which are in O℘ for any prime ℘ 6∈ S.

Now consider a model of C over Ok,S , namely a scheme C of finite type
over Ok,S with an isomorphism of the generic fiber Ck ' C. It is often useful
to start with a model C of C, and take C = C Σ.

Now it is clear how to define integral points: an S-integral point on C is
simply an element of C(Ok,S), in other words, a section of C → Spec(Ok,S).
This is related to rational points on a proper curve as follows:

0.2.4. If Σ = ∅, and the model chosen is proper, the notions of integral and
rational points agree, because of the valuative criterion for properness.

Exercise 0.2.5. Prove this!

We have the following facts:

0.2.6. If C is rational and n ≤ 2, then after possibly enlarging k and S, any
integral model of C has an infinite collection of integral points.

Exercise 0.2.7. Prove this!

On the other hand, we have:

Theorem 0.2.8 (Siegel’s Theorem). If n ≥ 3, or if g > 0 and n > 0, then
for any integral model C of C, the set of integral points C(Ok,S) is finite.

A good generalization of Definition 0.1.3 is the following:

Definition 0.2.9. Let X be an algebraic variety defined over k with a model
X over Ok,S . We say that integral points on X are potentially dense, if there
is a finite extension k′/k, and an enlargement S′ of the set of places in k′

over S, such that the set X (Ok′,S′) is dense in Xk′ in the Zariski topology.

We can thus generalize 0.1.7, as in [16], as follows:

0.2.10.

degree of KC + Σ integral points
2g − 2 + n ≤ 0 potentially dense
2g − 2 + n > 0 finite

0.2.11. One lesson we must remember from this discussion is that

For open varieties we use integral points on integral models.
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0.3. Faltings implies Siegel. Siegel’s theorem was proven years before
Faltings’s theorem. Yet it is instructive, especially in the later parts of these
notes, to give the following argument showing that Faltings’s theorem implies
Siegel’s.

Theorem 0.3.1 (Hermite-Minkowski, see [16] page 264). Let k be a number
field, S ⊂ SpecOk,S a finite set of finite places, and d a positive integer.
Then there are only finitely many extensions k′/k of degree ≤ d unramified
outside S.

From which one can deduce

Theorem 0.3.2 (Chevalley-Weil, see [16] page 292). Let π : X → Y be a
finite étale morphism of schemes over Ok,S. Then there is a finite extension
k′/k, with S′ lying over S, such that π−1Y(Ok,S) ⊂ X (Ok′,S′).

On the geometric side we have an old topological result

Theorem 0.3.3. If C is an open curve with 2g−2+n > 0 and n > 0, defined
over k, there is a finite extension k′/k and a finite unramified covering D →
C, such that g(D) > 1.

Exercise 0.3.4. Combine these theorems to obtain a proof of Siegel’s the-
orem assuming Faltings’s theorem.

0.3.5. Our lesson this time is that

Rational and integral points can be controlled in finite étale covers.

0.4. Function field case. There is an old and distinguished tradition of
comparing results over number fields with results over function fields. To
avoid complications I will concentrate on function fields of characteristic 0,
and consider closed curves only.

0.4.1. If K is the function field of a complex variety B, then a variety X/K
is the generic fiber of a scheme X/B, and a K-rational point P ∈ X(K) can
be thought of as a rational section of X → B. If dim B = 1 and X → B is
proper, then again a K-rational point P ∈ X(K) is equivalent to a regular
section B → X .

Exercise 0.4.2. Prove (i.e. make sense of) this!

0.4.3. The notion of integral points is similarly defined using sections. When
dim B > 1 there is an intermediate notion of proper rational points: a K-
rational point p of X is a proper rational point of X/B if the closure B′ of
p in X maps properly to B. Most likely this notion will not play a central
role here.

Consider now C/K a curve. Of course it is possible that C is, or is
birationally equivalent to, C0 ×B, in which case we have plenty of constant
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sections coming from C0(C), corresponding to constant points C(K)const.
But that is almost all there is:

Theorem 0.4.4 (Manin [25], Grauert [14]). Assume g(C) > 1. Then the
set of nonconstant points C(K) C(K)const is finite.

Exercise 0.4.5. What does this mean for constant curves C0 ×B?

Working inductively on transcendence degree, and using Faltings’s Theo-
rem, we obtain:

Theorem 0.4.6. Let C be a curve of genus > 1 over a field k finitely
generated over Q. Then the set of k-rational points C(k) is finite.

Exercise 0.4.7. Prove this, using previous results as given!

See [30] for an appropriate statement in positive characteristics.

Lecture 1. Kodaira dimension

1.1. Iitaka dimension. Consider now a smooth, projective variety X of
dimension d over a field k of characteristic 0. We seek an analogue of the sign
on 2g− 2 in this case. The approach is by counting sections of the canonical
line bundle OX(KX) = ∧dΩ1

X . Iitaka’s book [17] is a good reference.

Theorem 1.1.1. If L is a line bundle on X. Assume h0(X, Ln) does not
vanish for all positive integers n. Then there is a unique integer κ = κ(X, L)
with 0 ≤ κ ≤ d such that

lim sup
n→∞

h0(X, Ln)
nκ

exists and is nonzero.

Definition 1.1.2. (1) The integer κ(X, L) in the theorem is called the
Iitaka dimension of (X, L).

(2) In the special case L = OX(KK) we write κ(X) := κ(X, L) and call
κ(X) the Kodaira dimension of X.

(3) It is customary to set κ(X, L) = to be either −1 or −∞ if h0(X, Ln)
vanishes for all positive integers n. It is safest to say in this that the
Iitaka dimension is negative.

We will see an algebraic justification for the −1 convention soon, and a
geometric justification for −∞ in a bit.

An algebraically meaningful presentation of the Iitaka dimension is the
following:

Proposition 1.1.3. Consider the algebra of sections

R(X, L) :=
⊕
n≥0

H0(X, Ln).
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Then, with the −1 convention,

tr.degR(X, L) = κ(X, L) + 1.

Definition 1.1.4. We say that a property holds for a sufficiently high and
divisible n, if there exists n0 > 0 such that the property holds for every
positive multiple of n0.

A geometric meaning of κ(X, L) is given by the following:

Proposition 1.1.5. Assume κ(X, L) ≥ 0. then for sufficiently high and
divisible n, the dimension of the image of the rational map φLn : X 99K
PH0(X, Ln) is precisely κ(X, L).

Even more precise is:

Proposition 1.1.6. There is n0 > 0 such that the image φLn(X) is bira-
tional to φLn0 (X) for all n0|n.

Definition 1.1.7. (1) The birational equivalence class of φLn0 (X) is
denoted I(X, L).

(2) The rational map X → I(X, L) is called the Iitaka fibration of (X, L).
(3) In case L is the canonical bundle, this is called the Iitaka fibration

of X, written X → I(X)

The following notion is important:

Definition 1.1.8. The variety X is said to be of general type of κ(X) =
dim X.

Remark 1.1.9. The name definitely leaves something to be desired. It
comes from the observation that surfaces not of general type can be nicely
classified, whereas there is a whole zoo of surfaces of general type.

Exercise 1.1.10. Prove Proposition 1.1.6:

(1) Show that if n, d > 0 and H0(X, Ln) 6= 0 then there is a dominant
φLnd(X) 99K φLn(X) such that the following diagram is commuta-
tive:

X
φ

Lnd
//___

φLn
##G

G
G

G
G φLnd(X)

��
�
�
�

φLn(X).

(2) Conclude that dim φLn(X) is a constant κ for large and divisible n.
(3) Suppose n > 0 satisfies κ := dim φLn(X). Show that for any d > 0,

the function field of φLnd(X) is algebraic over the function field
φLn(X).

(4) Recall that for any variety X, and subfield L of K(X) containing k
is finitely generated. Apply this to the algebraic closure of φLn(X)
to complete the proof of the proposition.
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Exercise 1.1.11. Use proposition 1.1.6 to prove Theorem 1.1.1.

1.2. Properties and examples of the Kodaira dimension.

Exercise 1.2.1. Show that κ(Pn) = −∞ and κ(A) = 0 for an abelian
variety A.

1.2.2. Curves:

Exercise. Let C be a smooth projective curve and L a line bundle. Prove
that

κ(C,L) =


1 if degC L > 0,

0 if L is torsion, and
< 0 otherwise.

In particular,

κ(C) =


1 if g > 1,
0 if g = 1, and
< 0 if g = 0.

1.2.3. Birational invariance:

Exercise. Let X ′ 99K X be a birational map of smooth projective vari-
eties. Show that the spaces H0(X,OX(mKX)) and H0(X ′,OX′(mKX′))
are canonically isomorphic.

Deduce that κ(X) = κ(X ′).

1.2.4. Generically finite maps.

Exercise. Let f : X ′ → X be a generically finite map of smooth projective
varieties.

Show that κ(X ′) ≥ κ(X).

1.2.5. Finite étale maps.

Exercise 1.2.6. Let f : X ′ → X be a finite étale map of smooth projective
varieties.

Show that κ(X ′) = κ(X).

1.2.7. Field extensions:

Exercise. Let k′/k be a field extension, X a variety over k with line bundle
L, and Xk′ , Lk′ the result of base change.

Show that κ(X, L) = κ(Xk′ , Lk′). In particular κ(X) = κ(Xk′).

1.2.8. Products.

Exercise. Show that, with the −∞ convention,

κ(X1 ×X2, L1 � L2) = κ(X1, L1) + κ(X2, L2).

Deduce that κ(X1 ×X2) = κ(X1) + κ(X2).
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This “easy additivity” is the main reason for the −∞ convention. We’ll
see more about fibrations below.

1.2.9. Fibrations. The following is subtle and difficult:

Theorem (Siu’s theorem on deformation invariance of plurigenera). Let
X → B be a smooth projective morphism with connected geometric fibers.
Then h0(Xb,O(KXb

)) is independent of b ∈ B. In particular κ(Xb) is inde-
pendent of b ∈ B.

Exercise 1.2.10. Let X → B be a morphism of smooth projective varieties
with connected fibers. Let b ∈ B be such that X → B is smooth over b, and
let ηB ∈ B be the generic point.

Use “cohomology and base change” and Siu’s theorem to deduce that

κ(Xb) = κ(XηB
).

Definition 1.2.11. The Kodaira defect of X is δ(X) = dim(X)− κ(X).

Exercise 1.2.12. Let X → B be a morphism of smooth projective varieties
with connected fibers. Show that δ(X) ≥ δ(XηB

). Equivalently κ(X) ≤
dim(B) + κ(XηB

).

Exercise 1.2.13. Let Y → B be a morphism of smooth projective varieties
with connected fibers, and Y → X a generically finite map. Show that
δ(X) ≥ δ(YηB

).

This “easy subadditivity” has many useful consequences.

Definition 1.2.14. We say that X is uniruled if there is a variety B of
dimension dim X − 1 and a dominant rational map B × P1 99K X.

Exercise 1.2.15. If X is uniruled, show that κ(X) = −∞.

The converse is an important conjecture, sometimes known as the −∞-
Conjecture. It is a consequence of the “good minimal model” conjecture:

Conjecture 1.2.16. Assume X is not uniruled. Then κ(X) ≥ 0.

Exercise 1.2.17. If X is covered by a family of elliptic curves, show that
κ(X) ≤ dim X − 1.

1.2.18. Surfaces. Surfaces of Kodaira dimension < 2 are “completely classi-
fied”. Some of these you can place in the table using what you have learned
so far. In the following description we give a representative of the birational
class of each type:
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κ description
−∞ P2 or P1 × C
0 a. abelian surfaces

b. bielliptic surfaces
k. K3 surfaces
e. Enriques surfaces

1 many elliptic surfaces

1.2.19. Iitaka’s program. Here is a central conjecture of birational geometry:

Conjecture (Iitaka). Let X → B be a surjective morphism of smooth pro-
jective varieties. Then

κ(X) ≥ κ(B) + κ(XηB
).

1.2.20. Major progress on this conjecture was made through the years by
several geometers, including Fujita, Kawamata, Viehweg and Kollár. The
key, which makes this conjecture plausible, is the semipositivity properties
of the relative dualizing sheaf ωX/B , which originate from work of Arakelov
and rely on deep Hodge theoretic arguments.

Two results will be important for these lectures.

Theorem 1.2.21 (Kawamata). Iitaka’s conjecture follows from the Minimal
Model Program: if XηB

has a good minimal model then κ(X) ≥ κ(B) +
κ(XηB

).

Theorem 1.2.22 (Viehweg). Iitaka’s conjecture holds in case B is of general
type, namely:

Let X → B be a surjective morphism of smooth projective varieties, and
assume κ(B) = dimB. Then κ(X) = dim(B) + κ(XηB

).

Note that equality here is forced by the easy subadditivity inequality:
κ(X) ≤ dim(B) + κ(XηB

) always holds.

Exercise 1.2.23. Let X, B1, B2 be smooth projective varieties. Suppose
X → B1 × B2 is generically finite to its image, and assume both X → Bi

surjective.

(1) Assume B1, B2 are of general type. Use Viehweg’s theorem and the
Kodaira defect inequality to conclude that X is of general type.

(2) Assume κ(B1), κ(B2) ≥ 0. Show that if Iitaka’s conjecture holds
true, then κ(X) ≥ 0.

Exercise 1.2.24. Let X be a smooth projective variety. Show that there is
a dominant rational map

LX : X 99K L(X)

such that

(1) L(X) is of general type, and
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(2) the map is universal: if g : X 99K Z is a dominant rational map with
Z of general type, there is a unique rational map L(g) : L(X) 99K Z
such that the following diagram commutes:

X
LX //___

g
""D

D
D

D
D L(X)

L(g)

��
�
�
�

Z.

The map LX is called the Lang map of X, and L(X) the Lang variety of
X.

1.3. Uniruled varieties and rationally connected fibrations.

1.3.1. Uniruled varieties. For simplicity let us assume here that k is alge-
braically closed.

As indicated above, a variety X is said to be uniruled if there is a d− 1-
dimensional variety B and a dominant rational map B × P1 99K X. Instead
of B × P1 one can take any variety Y → B whose generic fiber has genus 0.
As discussed above, if X is uniruled then κ(X) = −∞. The converse is the
important −∞-Conjecture 1.2.16

A natural question is, can one “take all these rational curves out of the
picture?” The answer is yes, in the best possible sense.

Definition 1.3.2. A smooth projective variety P is said to be rationally
connected if through any two points x, y ∈ P there is a morphism from a
rational curve C → P having x and y in its image.

There are various equivalent ways to characterize rationally connected
varieties.

Theorem 1.3.3 (Campana, Kollár-Miyaoka-Mori). Let P be a smooth pro-
jective variety. The following are equivalent:

(1) P is rationally connected.
(2) Any two points are connected by a chain of rational curves.
(3) For any finite set of points S ⊂ P , there is a morphism from a

rational curve C → P having S in its image.
(4) There is a “very free” rational curve on P - if dim P > 2 this means

there is a rational curve C ⊂ P such that the normal bundle NC⊂P

is ample.

Key properties:

Theorem 1.3.4. Let X and X ′ be smooth projective varieties, with X ra-
tionally connected.

(1) If X 99K X ′ is a dominant rational map (in particular when X and
X ′ are birationally equivalent) then X ′ is rationally connected.
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(2) If X ′ is deformation-equivalent to X then X ′ is rationally connected.
(3) If X ′ = Xk′ where k′/k is an algebraically closed field extension,

then X ′ is rationally connected if and only if X is.

Exercise 1.3.5. A variety is unirational if it is a dominant image of Pn.
Show that every unirational variety is rationally connected.

More generally: a smooth projective variety X is Fano if its anti-canonical
divisor is ample.

Theorem 1.3.6 (Kollár-Miyaoka-Mori, Campana). A Fano variety is ra-
tionally connected.

On the other hand:

Conjecture 1.3.7 (Kollár). There is a rationally connected threefold which
is not unirational. There should also exist some hypersurface of degree n in
Pn, n ≥ 4 which is not unirational.

Conjecture 1.3.8 (Kollár-Miyaoka-Mori, Campana). (1) A variety X
is rationally connected if and only if

H0(X, (Ω1
X)⊗n) = 0

for every positive integer n.
(2) A variety X is rationally connected if and only if every positive di-

mensional dominant image X 99K Z has κ(Z) = −∞.

This follows from the minimal model program.
Now we can break any X up:

Theorem 1.3.9 (Campana, Kollár-Miyaoka-Mori, Graber-Harris-Starr). Let
X be a smooth projective variety. There is a birational morphism X ′ → X, a
variety Z(X), and a dominant morphism X ′ → Z(X) with connected fibers,
such that

(1) The general fiber of X ′ → Z(X) is rationally connected, and
(2) Z(X) is not uniruled.

Moreover, X ′ → X is an isomorphism in a neighborhood of the general fiber
of X ′ → Z(X).

1.3.10. The rational map rX : X 99K Z(X) is called the maximally ratio-
nally connected fibration of X (or MRC fibration of X) and Z(X), which is
well defined up to birational equivalence, is called the MRC quotient of X.

1.3.11. The MRC fibration has the universal property of being “final” for
dominant rational maps X → B with rationally connected fibers.

One can construct similar fibrations with similar universal property for
maps with fibers having H0(Xb, (Ω1

Xb
)⊗n) = 0, or for fibers having no dom-

inant morphism to positive dimensional varieties of nonnegative Kodaira
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dimension. Conjecturally these agree with rX . Also conjecturally, assuming
Iitaka’s conjecture, there exists X 99K Z ′ which is initial for maps to vari-
eties of non-negative Kodaira dimension. This conjecturally will also agree
with rX . All these conjecture would follow from the “good minimal model”
conjecture.

1.3.12. Arithmetic, finally. The set of rational points on a rational curve is
Zariski dense. The following is a natural extension:

Conjecture 1.3.13 (Campana). Let P be a rationally connected variety
over a number field k. Then rational points on P are potentially dense.

This conjecture and its sister below 1.4.2 was implicit in works of many,
including Bogomolov, Colliot-Thélène, Harris, Hassett, Tschinkel.

1.4. Geometry and arithmetic of the Iitaka fibration. We now want
to understand the geometry and arithetic of varieties such as Z(X), i.e.
non-uniruled varieties. Conj:k¡0-uniruled

So let X satisfy κ(X) ≥ 0, and consider the Iitaka fibration X 99K I(X).

Proposition 1.4.1. Let F be a general fiber of X → I(X). Then κ(F ) = 0

Conjecture 1.4.2 (Campana). Let F be a variety over a number field k
satisfying κ(F ) = 0. Then rational points on F are potentially dense.

Exercise 1.4.3. Recall the Lang map in 1.2.24. Assuming Conjecture
1.2.16, show that L(X) is the result of applying MRC fibrations and Iitaka
fibrations untill the result stabilizes.

1.5. Lang’s conjecture. A highly inspiring conjecture in diophantine ge-
ometry is the following:

Conjecture (Lang’s conjecture, weak form). Let X be a smooth projective
variety of general type over a number field, or any finitely generated field, k.
Then X(k) is not Zariski-dense in X.

In fact, motivated by analogy with conjectures on the Kobayashi pseudo-
metric of a variety of general type, Lang even proposed the following:

Conjecture (Lang’s geometric conjecture). Let X be a smooth projective
variety of general type. There is a Zariski closed proper subset S(X) ⊂ X,
whose irreducible components are not of general type, and such that every
subset T ⊂ X not of general type is contained in S(X).

The two combine to give:

Conjecture (Lang’s conjecture, srtong form). Let X be a smooth projective
variety of general type over a number field, or any finitely generated field, k.
Then for any finite extension k′/k, the set (X S(X))(k′) is finite.

Here is a simple consequence:
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Proposition 1.5.1. Assume Lang’s conjecture holds true. Let X be a
smooth projective variety over a number field k. Assume there is a dom-
inant rational map X → Z, such that Z is a positive dimensional variety of
general type (i.e., dim L(X) > 0). Then X(k) is not Zariski-dense in X.

1.6. Uniformity of rational points. Lang’s conjecture can be investi-
gated whenever one has a variety of general type around. By considering
certain subvarieties of the moduli space Mg,n of curves of genus g with n
distinct points on them, rather surprizing and inspiring implications on the
arithmetic of curves arise. This is the subject of the work [9] of L. Caporaso,
J. Harris and B. Mazur. Here are their key results:

Theorem 1.6.1. Assume that the weak Lang’s conjecture holds true. Let k
be a number field, or any finitely generated field, and let g > 1 be an integer.
Then there exists an integer N(k, g) such that for every algebraic curve C
over k we have

#C(k) ≤ N(k, g).

Theorem 1.6.2. Assume that the strong Lang’s conjecture holds true. Let
g > 1 be an integer. Then there exists an integer N(g) such that for every
finitely generated field k there are, up to isomorphisms, only finitely many
algebraic curves C over k with #C(k) > N(g).

Further results along these lines, involving higher dimensional varieties
and involving more stronger results on curves can be found in [15], [1], [28],
[4], [2]. For instance, P. Pacelli’s result in [28] says that the number N(k, g)
can be replaced for number field by N(d, g), where d = [k : Q].

The reader may decide whether this shows the great power of the conjec-
tures or their unlikelihood. I prefer to be agnostic and rely on the conjectures
for inspiration.

1.7. The search for an arithmetic dichotomy. As demonstrated in ta-
ble 0.1.7, potential density of rational points on curves is dictated by geom-
etry. Lang’s conjecture carves out a class of higher dimensional varieties for
which rational points are, conjecturally, not potentially dense. Can this be
extended to a dichotomy as we have for curves?

One can naturally wonder - is the Kodaira dimension itself enough for
determining potential density of points? Or else, maybe just the inexistence
of a map to a positive dimensional variety of general type?

1.7.1. Rational points on surfaces. The following table, which I copied from
a lecture of L. Caporaso, describes what is known about surfaces.

Caporaso’s table: rational points on surfaces
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Kodaira dimension X(k) potentially dense X(k) never dense
κ = −∞ P2 P1 × C (g(C) ≥ 2)

κ = 0 E × E, many others none known
κ = 1 many examples E × C (g(C) ≥ 2)

κ = 2 none known many examples

The bottom row is the subject of Lang’s conjecture, and the κ = 0 row is
the subject of Conjecture 1.4.2.

1.7.2. Failure of the dichotomy using κ(X). The first clear thing we learn
from this is, as Caporaso aptly put it in her lecture, that diophantine geom-
etry is not governed by the Kodaira dimension. On the top row we see that
clearly: on a ruled surface over a curve of genus ≥ 2, rational points can
never be dense by Faltings’s theorem. So it behaves very differently from a
rational surface.

Even if one insists on working with varieties of non-negative Kodaira
dimension, the κ = 1 row gives us trouble.

Exercise. Take a Lefschetz pencil of cubic curves in P2, parametrized by t,
and assume that it has two sections s1, s2 whose difference is not torsion on
the generic fiber. We use s1 as the origin.

(1) Show that the dualizing sheaf of the total space S is OS(−2[F ]),
where F is a fiber.

(2) Show that the relative dualizing sheaf is OS([F ]). Take the base
change t = s3. We still have two sections, still denoted s1, s2, such
that the difference is not torsion. We view s1 as origin.

Show that the relative dualizing sheaf of the new surface X is
OX(3[F ]) and its dualizing sheaf is OX([F ]). Conclude that the
resulting surface X has Kodaira dimension 1.

(3) For any rational point p on P1 such where the section s2 of X → P1

is not torsion, the fiber and dense set of rational points.
(4) Conclude that X has a dense set of rational points.

1.7.3. Failure of the dichotomy using the Lang map. The examples given
above still allow for a possible dichotomy based on the existence of a non-
trivial map to a variety of general type. But the following examples, which
fits on the right column on row κ = 1, shows this doesn’t work either. The
example is due to Colliot-Thélène, Skorobogatov and Swinnerton-Dyer [10].

Example. Let C be a curve with an involution φ : C → C, such that the
quotient is rational. Consider an elliptic curve E with a 2-torsion point a,
and consider the fixed-point free action of Z/2Z on Y = E × C given by:

(x, y) 7→ (x + a, φ(y)).
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Let the quotient of Y by the involution be X. Then L(X) is trivial,
though rational points on X are not potentially dense by Chevalley-Weil
and Faltings.

In the next lecture we address a conjectural approach to a dichotomy -
due to F. Campana - which has a chance to work .

1.8. Logarithmic Kodaira dimension and the Lang-Vojta conjec-
tures. We now briefly turn our attention to open varieties, following the
lesson in section 0.2.11.

Let X be a smooth projective variety, D a reduced normal crossings di-
visor. We can consider the quasiprojective variety X = X D.

The logarithmic Kodaira dimension of X is defined to be the Iitaka di-
mension κ(X) := κ(X,KX + D). We say that X is of logarithmic general
type if κ(X) = dimX.

It can be easily shown that κ(X) is independent of the completion X ⊂ X,
as long as X is smooth and D is a normal crossings divisor. More invariance
propertiers can be discussed, but will take us too far afield.

Now to arithmetic: suppose X is a model of X over Ok,S . We can consider
integral points X (OL,SL

) for any finite extension L/k and enlargement SL

of the set of places over S.
The Lang-Vojta conjecture is the following:

Conjecture 1.8.1. If X is of logarithmic general type, then integral points
are not potentially dense on X, i.e. X (OL,SL

) is not Zariski dense for any
L, SL.

1.8.2. In case X = X is already projective, the Lang-Vojta conejcture
reduces to Lang’s conjecture: X is simply a variety of general type, integral
points on X are the same as rational points, and Lang’s conjecture asserts
that X(k) is not Zariski-dense in X.

1.8.3. The Lang-Vojta conjecture turns out to be a praticular case of a
more precise and more refined conjecture of Vojta, which will be discussed
in a later lecture.

Lecture 2. Campana’s program

For this section one important road sign is

THIS SITE IS UNDER CONSTRUCTION
DANGER! HEAVY EQUIPMENT CROSSING

A quick search on the web shows close to the top a number of web sites
deriding the idea of “site under construction”. Evidently these people have
never engaged in research!
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2.0.4. Campana’s program is a new method of breaking algebraic varieties
into “pieces” which builds upon Iitaka’s program, but, by using a particular
structure on varieties which I will call “Campana constellations” enables
one to get closer to a classification which is compatible with arithmetic
properties. There is in fact an underlying more refined structure which I
call “firmament” for the Campana constellation, which might be the more
fundamental structure to study. It truly does say something about rational
points.

I am not entirely satisfied with my definition of firmaments, as the defini-
tion is quite technical and the geometry behind the structure is not easy to
describe. I will speculate about a stack theoretic approach, following ideas
due to martin Olsson, at the end of this lecture.

2.0.5. The term “constellation” is inspired by Aluffi’s celestial [5], which is
in turn inspired by Hironaka.

Campana used the term “orbifold”, in analogy to orbifolds used in geome-
try, but the analogy breaks very early on. A suggested replacement “orbifold
pair” still does not make me too happy. Also, “Campana pair” is a term
which Campana himself is not comfortable using, nor could he shorten it to
just “pair”, which is insufficient. I was told by Campana that he would be
happy to use “constellations” if the term catches.

2.1. One dimensional Campana constellations.

2.1.1. The two key examples: elliptic surfaces. Let us inspect again Capo-
raso’s table of surfaces, and concentrate on κ = 1. We have in 1.7.2 and
1.7.3 two examples, say S1 → P1 and S2 → P1 of elliptic surfaces of Kodaira
dimension 1 fibered over P1. But their arithmetic behavior is very different.

Campana asked the question: is there an underlying structure on the base
P1 from which we can deduce this difference of behavior?

The key point is that the example in 1.7.3 has 2g + 2 double fibers lying
over a divisor D ⊂ P1. This means that the elliptic surface S2 → P1 can be
lifted to S2 → P, where P is the orbifold structure

√
(P1, D) on P1 obtained

by taking the square root of D. Following the ideas of Darmon and Granville
in [12], one should consider the canonical divisor class KP of P, viewed as a
divisor with rational coefficients on P1, namely KP1 +(1−1/2)D. In general,
when one has an m-fold fiber over a divisor D, one wants to take D with
coefficient (1− 1/m).

Darmon and Granville prove, using Chevalley-Weil and Faltings, that
such an orbifold P has potentially dense set of integral points if and only if
the Kodaira dimension κ(P) = κ(P,KP) < 1. And the image of a rational
point on S2 is an integral point on P. This fully explains our example: since
integral points on P =

√
(P1, D) are not Zariski dense, and since rational
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points on S2 map to integral points on P, rational points on S2 are not
dense.

2.1.2. The multiplicity divisor. What should we declare the structure to be
when we have a fiber that looks like x2y3 = 0, i.e. has two components of
multiplicities 2 and 3? Here Campana departs from the classical orbifold
picture: the highest classical orbifold to which the fibration lifts has no new
structure under such a fiber, because gcd(2, 3) = 1. Campana makes the
key observation that a rich and interesting classification theory arises if one
instead considers min(2, 3) = 2 as the basis of the structure.

Definition 2.1.3 (Campana). Consider a dominant morphism f : X → Y
with X, Y smooth and dim Y = 1. Define a divisor with rational coefficients
∆f =

∑
δpp on Y as follows: assume the divisor f∗p on X decomposes as

f∗p =
∑

miCi, where Ci are the distinct irreducible components of the fiber
taken with reduced structure. Then set

δp = 1− 1
mp

, where mp = min
i

mi.

Definition 2.1.4 (Campana). A Campana constellation curve (Y/∆) is a
pair consisting of a curve Y along with a divisor ∆ =

∑
δpp with rational

coefficients, where each δp is of the form δp = 1− 1/mp for some integer mp.
The Campana constellation base of f : X → Y is the structure pair

consisting of Y with the divisor ∆f defined above, denoted (Y/∆f ).

The word used by Campana is orbifold, but as I have argued, the analogy
with orbifolds is shattered in this very definition. At the end of the lecture I
speculate about a stack-theoretic approach, but that involves Artin stacks,
which again take a departure from orbifolds.

The new terminology “constellation” will become better justified and
much more laden with meaning when we consider Y of higher dimension.

Campana’s definition deliberately does not distinguish between the struc-
ture coming from a fiber of type x2 = 0 and one of type x2y3 = 0. We will
see later a way to resurrect the difference to some extent using the notion of
firmament, by which Campana’s constellations hang.

Definition 2.1.5 (Campana). The Kodaira dimension of a Campana con-
stellation curve (Y/∆) is defined as the following Iitaka dimension:

κ ( (Y/∆) ) = κ(Y, KY + ∆).

We say that (Y/∆) is of general type if it has Kodaira dimension 1. We say
that it is special if it is not of general type.

Exercise 2.1.6. Classify special Campana constellation curves over C. See
[8]
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2.1.7. Models and integral points. Now to arithmetic. As we learned in Les-
son 0.2.11, when dealing with a variety with a structure given by a divisor,
we need to speak about integral points on an integral model of the structure.
Thus let Y be an integral model of Y , proper over Ok,S , and denote by ∆̃
the closure of ∆. It turns out that there is more than one natural notion
to consider - soft and firm. The firm notion will be introduced when higher
dimensions are considered.

Definition. A k rational point x on Y , considered as an integral point x̃ of
Y, is said to be a soft S-integral points on (Y/∆̃) if for any nonzero prime
℘ ⊂ Ok,S where x̄ reduces to some z̄℘ ∈ ∆̃℘, we have

mult℘(x̄ ∩ p̄) ≥ mp.

A key property of this definition is:

Proposition 2.1.8. Assume f : X → Y extends to a good model f̃ : X →
Y. Then The image of a rational point on X is a soft S-integral point on
(Y/∆̃f ).

So rational points on X can be investigated using integral points on Y .
This makes the following very much relevant:

Conjecture 2.1.9 (Campana). If the Campana constellation curve (Y/∆)
is of general type then the set of soft S-integral point on any model Y is not
Zariski dense.

This conjecture does not seem to follow readily from Faltings’s theorem.
As we’ll see it does follow from the abc conjecture, in particular we have the
following theorem.

Theorem 2.1.10 (Campana). If (Y/∆) is a Campana constellation curve
of general type defined over over the function field K of a curve B then for
any finite set S ⊂ B, the set of non-constant soft S-integral point on any
model Y → B is not Zariski dense.

2.2. Higher dimensional Campana constellations. We turn now to the
analogous situation of f : X → Y with higher dimensional Y . Unfortunately,
points on Y are no longer divisors. And divisors on Y are not quite sufficient
to describe codimension > 1 behavior. Campana resolves this by considering
all birational models of Y separately. I prefer to put all this data together
using the notion of a b-divisor, inrtoduced by Shokurov [29], based on ideas
by Zariski [33]. See also [5].

Definition 2.2.1. A rank 1 discrete valuation on the function field K =
K(Y ) is a surjective group homomorphism ν : K× → Z satisfying

ν(x + y) ≥ min(ν(x), ν(y))

with equality unless ν(x) = ν(y). We define ν(0) = ∞.
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The valuation ring of ν is defined as

Rν =
{
x ∈ K

∣∣ ν(x) ≥ 0
}

.

Denote by Yν = Spec Rν , and its unique close point sν .
A rank 1 discrete valuation ν is divisorial if there is a birational model Y ′

of Y and an irreducible divisor D′ ⊂ Y ′ such that for all x ∈ K(X) = K(X ′)
we have

ν(x) = multD′ x.

In this case we say ν has divisorial center D′ in Y ′.

Definition 2.2.2. A b-divisor ∆ on Y is an expression of the form

∆ =
∑

ν

cν · ν,

a possibly infinite sum over divisorial valuations of K(Y ) with rational coef-
ficients, which satisfies the following finiteness condition:

• for each birational model Y ′ there are only finitely many ν with
divisorial center on Y ′ having cν 6= 0.

A b-divisor is of orbifold type if for each ν there is a positive integer mν

such that cν = 1− 1/mν .

Definition 2.2.3. Let Y be a variety, X a reduced scheme, and let f :
X → Y be a morphism, surjective on each irreducible component of X. For
each divisorial valuation ν on K(Y ) consider f ′ : X ′

ν → Yν , where X ′ is a
desingularization of the (main component of the) pullback X ×Y Yν . Write
f∗sν =

∑
miCi. Define

δν = 1− 1
mν

with mν = min
i

mi.

The Campana b-divisor on Y associated to a dominant map f : X → Y
is defined to be the b-divisor

∆f =
∑

δνν.

Exercise 2.2.4. The definition is independent of the choice of desingular-
ization X ′

ν .

This makes the b-divisor ∆f a proper birational invariant of f . In par-
ticular we can apply it to a dominant rational map f .

Definition 2.2.5. A Campana constellation (Y/∆) consists of a variety Y
with a b-divisor ∆ such that, locally in the étale topology on Y , there is
f : X → Y with ∆ = ∆f .

The trivial constellation on Y is given by the zero b-divisor.
For each birational model Y ′, define the Y ′-divisorial part of ∆:

∆Y ′ =
∑

ν with divisorial support on Y ′

δνν.
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This feels rather unsatisfactory because it relies, at least locally, on the
choice of f . But using the notion of firmament below we will make this
structure more combinatorial and less dependent on f .

2.2.6. Here’s why I like the word “constellation”: think of a valuation ν as
a sort of “generalized point” on Y . Putting δν > 0 suggests viewing a “star”
at that point. Replacing Y by higher and higher models Y ′ is analogous to
using stronger and stronger telescopes to view farther stars deeper into space.
The picture I have in my mind is somewhat reminiscent of the astrological
meaning of “constellation”, not as just one group of stars, but rather as the
arrangement of the entire heavens at the time the “baby” X → Y is born.
But hopefully it is better grounded in reality.

We now consider morphisms. For constellations we consider only domi-
nant morphisms.

Definition 2.2.7. (1) Let (X/∆X) be a Campana constellation, and
f : X → Y a dominant morphism. The constellation base (Y,∆f,∆X

)
is defined as follows: for each divisorial valuation ν of Y and each
divisorial valuation µ of X with center D dominating the center E
of ν, let

mµ/ν = mµ ·multD(f∗E).
Define

mν = min
µ/ν

mµ/ν and δν = 1− 1
mν

.

Then set as before

∆f,∆X
=

∑
ν

δνν.

(2) Let (X/∆X) and (Y/∆Y ) be Campana constellations and f : X →
Y a dominant morphism. Then f is said to be a constellation mor-
phism if ∆Y ≤ ∆f,∆X

, in other words, if for every divisorial valua-
tion ν on Y and any µ/ν we have mν ≤ mµ/ν .

Definition 2.2.8. A rational m-canonical differential ω on Y is said to
be regular on (Y/∆) if for every divisorial valuation ν on K(Y ), the polar
multiplicity satisfies

(ω)∞,ν ≤ mδν .

In other words, it is a section of OY ′(m(KY ′ + ∆Y ′)) on every birational
model Y ′.

The Kodaira dimension κ( (Y/∆) ) is defined using regular m-canonical
differentials on (Y/∆).

Exercise 2.2.9. This is a birational invariant.

Theorem 2.2.10 (Campana). There is a birational model Y ′ such that

κ( (Y/∆) ) = κ(Y ′,K ′
Y + ∆Y ′).
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This is proven using Bogomolov sheaves, an important notion which is a
bit far afield for the present discussion.

Definition 2.2.11. A Campana constellation (Y/∆) is said to be of general
type if κ( (Y/∆) ) = dim Y .

A Campana constellation (X/∆) is said to be special if there is no domi-
nant morphism (X/∆) → (Y/∆′) where (Y/∆′) is of general type.

Definition 2.2.12. (1) A morphism f : (X/∆X) → (Y/∆Y ) of Cam-
pana constellation is special, if its generic fiber is special.

(2) Given a Campana constellation (X/∆X), a morphism f : X → Y is
said to have general type base if (Y/∆f,∆X

) is of general type.
(2’) In particular, considering X with trivial constellation, a morphism

f : X → Y is said to have general type base if (Y/∆f ) is of general
type.

Here is the main classification theorem of Campana:

Theorem 2.2.13 (Campana). Let (X/∆X) be a Campana constellation.There
exists a dominant rational map c : X 99K C(X), unique up to birational
equivalence, such that

(1) it has special general fibers, and
(2) it has Campana constellation base of general type.

This map is final for (1) and initial for (2).

This is the Campana core map of (X/∆X), the constellation (C(X)/∆c,∆X
)

being the core of (X/∆X). The key case is when X has the trivial constel-
lation, and then c : X 99K (C(X)/∆c) is the Campana core map of X and
(C(X)/∆c) the core of X.

2.2.14. Examples of constellation bases.

Exercise 2.2.15. Describe the constellation:

(1) f : A2 → A1 given by t = x2

(2) f : A2 → A1 given by t = x2y
(3) f : A2 → A1 given by t = x2y2

(4) f : A2 → A1 given by t = x2y3

(5) f : A2 → A1 given by t = x3y4

(6) f : A2 → A2 given by s = x2; t = y
(7) f : A2 → A2 given by s = x2; t = y2

(8) f : A2 t A2 → A2 given by s = x2
1; t = y1 and s = x2; t = y2

2

(9) f : X → A2 given by Spec C[s, t,
√

st].
(10) f : A3 → A2 given by s = x2y3; t = z

(more details)
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2.2.16. Rational points and the question of integral points. Campana made
the following bold conjecture:

Conjecture 2.2.17 (Campana). Let X/k be a variety over a number field.
Then rational points are potentially dense on X if and only if X is special,
i.e. if and only if the core of X is a point.

It is natural seek a good definition of integral points on a Campana con-
stellation and translate the non-special case of the conjecture above to a
conjecture on integral points on Campana constellations of general type.
This may be possible, but I believe a more natural framework is that of
firmaments, where the definition of integral points is natural.

2.3. Firmaments supporting constellations and integral points. It
seems that Campana constellations are wonderfully suited for purposes of
birational classification. Still they seem to lack some subtle information
necessary for good definitions of structures such as non-dominant morphisms
and integral points - at least I have not been successful in doing this directly
on constellations. For these purposes I propose the notion of firmaments. It
is very much possible that at the end a simpler formalism will be discovered,
and the whole notion of firmaments will be redundant.

The right foundation to use for my proposed firmaments is that of loga-
rithmic structures. However the book [6] on logarithmic structure has not
been written. Therefore I will use toroidal embeddings instead. The exam-
ples above, which are all toric, show that the toric cases are easy to figure
out, and the idea is to reduce all cases to toric situations. The speculations in
the end of the lecture involve Olsson’s toric stacks, so toric geometry seems
to be a useful formalism.

Definition 2.3.1 ([19], [18], [3]). (1) A toroidal embedding U ⊂ X is
the data of a variety X and a dense open set U with complement a
Weil divisor D = X U , such that locally in the étale, or analytic,
topology, or formally, near every point, U ⊂ X admits an isomor-
phism with (a neighborhood of a point in) T ⊂ V , with T a torus
and V a toric variety. (It is sometimes convenient to refer to the
toroidal structure using the divisor: (X, D).)

(2) Let UX ⊂ X and UY ⊂ Y be toroidal embeddings, then a dominant
morphism f : X → Y is said to be toroidal if étale locally near every
point of X there is a toric chart for X near x and for Y near f(x)
which is a torus-equivariant morphism of toric varieties.

2.3.2. The cone complex. Recall that, to a toroidal embedding U ⊂ X we
can attach an integral polyhedral cone complex ΣX , consisting of strictly
convex cones, attached to each other along faces, and in each cone σ a
finitely generated, unit free integral saturated monoid Nσ ⊂ σ generating σ
as a real cone. In [19], [18] the monoid Mσ dual to Nσ is used. While the
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use of Mσ is natural from the point of view of logarithmic structures, all the
action with firmaments happens on Nσ, so I use it instead.

2.3.3. Valuation rings and the cone complex. The complex ΣX can be pieced
together using the toric charts, where the picture is well known: for a toric
variety V , cones correspont to toric affine opens Vσ, and the lattice Nσ is
the monoid of one-parameter subgroups having a limit point in Vσ; it is dual
to the lattice of effective toric Cartier divisors Mσ, which is the quotient of
the lattice of regular monomials M̃σ by the unit monomials.

For our purposes it is convenient to recall the characterization of toric
cones using valuations given in [19]: let R be a discrete valuation ring with
valuation ν, special point sR and generic point ηR; let φ : Spec R → X be a
morphism such that φ(ηR) ⊂ U and φ(sR) lying in a stratum having chart
V = Spec k[M̃σ]. One associates to φ the point nφ in Nσ given by the rule:

n(m) = ν(φ∗m) ∀m ∈ M.

In case R = Rν is a valuation ring of Y , I’ll call this point nν . One can
indeed give a coherent picture including the case φ(ηR) 6⊂ U , but I won’t
discuss this here. (It is however important for a complete picture of the
category and of the arithmetic structure.).

2.3.4. Functoriality. Given toridal embeddings UX ⊂ X and UY ⊂ Y and a
morphism f : X → Y carrying UX into UY (but not necessarily toroidal) the
description above functorially associates a polyhedral morphism fΣ : ΣX →
ΣY which is integral, that is, fΣ(Nσ) ⊂ Nτ whenever fΣ(σ) ⊂ τ .

2.3.5. Toroidalizing a morphism. While most morphisms are not toroidal,
we have the following:

Theorem (Abramovich-Karu). Let f : X → Y be a dominant morphism
of varieties. Then there exist modifications X ′ → X and Y ′ → Y and
toroidal structures UX′ ⊂ X ′, UY ′ ⊂ Y ′ such that the resulting rational map
f ′ : X ′ → Y ′ is a toroidal morphism:

UX′

��

� � // X ′ //

f ′

��

X

f

��

UY ′
� � // Y ′ // Y

Furthermore, f ′ can be chosen flat.

We now define firmaments:

Definition 2.3.6. A toroidal firmament on a toroidal embedding U ⊂ X
with complex Σ is a finite collection Γ = {Γi

σ ⊂ Nσ}, where

• each Γi
σ ⊂ Nσ is a finitely generate submonoid, not-necessarily sat-

urated.
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• each Γi
σ generates the corresponding σ as a cone,

• the collection is closed under restrictions to faces τ ≺ σ, i.e. Γi
σ∩τ =

Γj
τ for some j, and

• it is irredundant, in the sense that Γi
σ 6⊂ Γj

σ for different i, j.

A morphism from a toridal firmament ΓX on a toroidal embedding UX ⊂
X to ΓY on UY ⊂ Y is a morphism f : X → Y with f(UX) ⊂ UY such that
for each σ and i, we have fΣ(Γi

σ) ⊂ Γj
τ for some j.

We say that the firmament ΓX is induced by f : X → Y from ΓY if for
each σ ∈ ΣX such that fΣ(σ) ⊂ τ , we have Γi

σ = f−1
Σ Γi

τ ∩Nσ.
Given a proper birational equivalence φ : X1 99K X2, then two toroidal

firmaments ΓX1 and ΓX2 are said to be equivalent if there is a toroidal X3,
and a commutative diagram

X3

f1

}}||
||

||
|| f2

!!CC
CC

CC
CC

X1
φ

//_______ X2,

where fi are modifications, such that the two firmaments on X3 induced by
fi from ΓXi

are identical.
A firmament on an arbitrary X is an equivalence class represented by a

modification X ′ → X with a toroidal embedding U ′ ⊂ X ′ and a toroidal
firmament Γ on ΣX′ .

The trivial firmament is defined by Γσ = Nσ for all σ in Σ.

For the discussion below one can in fact replace Γ by the union of the Γi
σ,

but I am not convinced that makes things better.

Definition 2.3.7. (1) Let f : X → Y be a flat toroidal morphism of
toroidal embeddings. The base firmament Γf associated to X → Y
is defined by the images Γτ

σ = fΣ(Nτ ) for each cone τ ∈ ΣX over
σ ∈ ΣY .

(2) Let f : X → Y be a dominant morphism of varieties. The base
firmament of f is represented by any Γf ′ , where f ′ : X ′ → Y ′ is a
flat toroidal birational model of f .

(3) If X is reducible, decomposed as X = ∪Xi, but f : Xi → Y is
dominant for all i, we define the base firmament by the (maximal
elements of) the union of all the firmaments associated to Xi → Y .

Definition 2.3.8. Let Γ be a firmament on Y . Define the Campana con-
stellation (Y/∆) hanging from Γ (or supported by Γ) as follows: say Γ is
a toroidal firmament on some birational model Y ′. Let ν be a divisorial
valuation. We have associated to it a point nν ∈ σ for the cone σ associated
to the stratum in which sν lies. Define

mν = min{k | k · nν ∈ Γi
σ for some i }.
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2.3.9. Note that, according to the definition above, every firmament sup-
ports a unique constellation, though a constellation can be supported by
more than one firmament. Depending on one’s background, this might agree
or disagree with the primitive cosmology of one’s culture. Think of it this
way: as we said before, the word “constellation” refers to the entire “heav-
ens”, visible through stronger and stronger telescopes Y ′. The word “firma-
ment” refers to an overarching solid structure supporting the heavens, but
solid as it may be, it is entirely imaginary and certainly not unique.

An absolutely important result is:

Proposition 2.3.10. The formation of constellation hangign by Γ is in-
dependent of the choice of representative in the equivalence class Γ, and is
a constellation, i.e. always induced, locally in the étale topology, from a
morphism X → Y .

Also, the Campana constellation supported by the base firmament of a
dominant morphism X → Y is the same as the base constellation associated
to X → Y .

2.3.11. Examples.

(1) f : A2 → A1 given by t = x2: τ = R≥0;Nτ = N;Γ = {2N}.
Supported constellation: ∆ = D0/2

(2) f : A2 → A1 given by t = x2y: Γ = {N}, the trivial structure.
Supported constellation: ∆ = 0

(3) f : A2 → A1 given by t = x2y2: Γ = {2N}. Supported constellation:
∆ = D0/2

(4) f : A2 → A1 given by t = x2y3: Γ = {2N + 3N}. Supported constel-
lation: ∆ = D0/2. Note: same constellation hanging by different
firmaments.

(5) f : A2 → A1 given by t = x3y4: Γ = {3N+4N}. Note: not saturated
in its associated group. Supported constellation: ∆ = 2D0/3.

(6) f : A2 → A2 given by s = x2; t = y: Γ = {2N×N}. For constellation:
coefficient of y axis in ∆Y is 1/2. In the blowup of Y at origin, the
coefficient of exceptional is again 1/2, but blowing up the intersection
one gets a coefficient of 0 on the second exceptional.

(7) f : A2 → A2 given by s = x2; t = y2: Γ = {2N× 2N}. For constella-
tion: ∆Y = 1/2(Dx + Dy), the coefficient of exceptional on blowup
is again 1/2.

(8) f : A2 t A2 → A2 given by s = x2
1; t = y1 and s = x2; t = y2

2 :
Γ = {2N × N, N × 2N}. Note: more than one semigroup. ∆Y = 0,
but on blowup the exceptional gets 1/2.

(9) f : X → A2 given by Spec C[s, t,
√

st]: Γ = {〈(2, 0), (1, 1), (0, 2)〉}.
Now ∆Y = 1/2(Dx + Dy), but the exceptional on the blowup gets
0.

(10) f : A3 → A2 given by s = x2y3; t = z: Γ = {(2N + 3N) × N}. The
constellation is pretty interesting!
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2.3.12. Arithmetic. We have learned our lesson - for arithmetic we need to
talk about integral points on integral models. I’ll restrict to the toroidal
case, since that’s what I understand.

Definition. An S-integral model of a toroidal firmament Γ on Y consists
of an integral toroidal model Y ′ of Y ′.

Definition 2.3.13. Consider a toroidal firmament Γ on Y/k, and a rational
point y such that the firmament is trivial in a neighborhood of y. Let Y be
a toroidal S-integral model.

Then y is a firm integral point of Y with respect to Γ if the section
SpecOk,S → Y is a morphism of firmaments, when SpecOk,S is endowed
with the trivial firmament.

Explicitly, at each prime ℘ ∈ SpecOk,S where y reduces to a stratum with
cone σ, consider the associated point ny℘ ∈ Nσ. Then y is firmly S-integral
if for every ℘ we have ny℘

∈ Γi
σ for some i.

Theorem 2.3.14. Let f : X → Y be a proper dominant morphism of
varieties over k. There exists a toroidal birational model X ′ → Y ′ and
an integral model Y ′ such that image of a rational point on X ′ is a firm
S-integral point on Y ′ with respect to Γf .

In fact, at least after throwing a few small primes into the trash-bin S, a
point is S integral on Y ′ with respect to Γf if and only if locally in the étale
topology on Y ′ it lifts to a rational point on X. This is the motivation of
the definition.

Conjecture 2.3.15 (Campana). Let (Y/∆) be a smooth projective Cam-
pana constellation supported by firmament Γ. Then points on Y integral
with respect to Γ are potentially dense if and only if (Y/∆) is special.

Corollary 2.3.16 (Campana). Assume the conjecture holds true. Let X
be a smooth projective variety. Then rational points are potentially dense if
and only if X is special.

2.4. Speculations about a toric stack approach. Recall that a constel-
lation, and a firmament supporting it, is a structure on a variety Y induced
at least locally from a dominant morphism X → Y . On the level of firma-
ments, the structure is such that maps to (Y,Γ) are maps to Y which étale
locally admit a lifting to such X. In case X → Y has toroidal structure,
there is essentially such a structure defined by Olsson [27], at least under
some assumption. Say for simplicity X and Y are toric, with tori TX and
TY . The map induces a homomorphism TX → TY , with kernel Tf . Consider
the Artin stack [X/Tf ]. It admits a morphism to Y , which restricts to an
isomorphism over TY , but along the boundary we get a non-separated Artin
stack, which gives an exotic structure over Y TY .

There is no question about the meaning of maps and points and such on
[X/Tf ]. The subtle business is to glue such things together when X → Y
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is only toroidal, and to set up the correct framework under which things go
through. Further, there is a question of when two such things should be
considered equivalent for our purposes, which is yet to be understood.

Lecture 3. The minimal model program

For the “quick and easy” introduction see [13]. For a more detailed treat-
ment starting from surfaces see [26]. For a full treatment up to 1999 see
[21]

3.1. Cone of curves.

3.1.1. Groups of divisors and curves modulo numerical equivalence. Let X
be a smooth complex projective variety.

We denote by N1(X) the image of Pic(X) → H2(X, Z)/torsion ⊂ H2(X, Q).
This is the group of Cartier divisors modulo numerical equivalence.

We denote by N1(X) the subgroup of H2(X, Q) generated by the fun-
demental classes of curves. This is the group of algebraic 1-cycles modulo
numerical equivalence.

The intersection pairing restricts to N1(X)×N1(X) → Z, which over Q
is a perfect pairing.

3.1.2. Cones of divisors and of curves. Denote by Amp(X) ⊂ N1(X)Q the
cone generated by classes of ample divisors. We denote by NEF (X) the
closure of Amp(X) ⊂ N1(X)R, called the nef cone of X.

Denote by NE(X) ⊂ N1(X)Q the cone generated by classes of curves.
We denote its closure by NE(X).

Theorem 3.1.3 (Kleiman). The class [D] of a Cartier divisor is in the
closure NEF (X) if and only if [D]·[C] ≥ 0 for every algebraic curve C ⊂ X.

In other words, the cones NE(X) and NEF (X) are dual to each other.

3.2. Bend and break. For any divisor D on X which is not numerically
equivalent to 0, the subset

(D ≤ 0) := {v ∈ NE(X)|v ·D ≤ 0}

is a half-space. The minimal model program starts with the observation
that this set is especially important when D = KX . In fact, in the case of
surfaces, (KX ≤ 0) ∩NE(X) is a subcone generated by (−1)-curves, which
suggests that it must say something in higher dimensions. Indeed, as it
turns out, it is in general a nice cone generated by so called “extremal rays”,
represented by rational curves [C] which can be contracted in something like
a (−1) contraction.

Suppose again X is a smooth, projective variety with KX not nef. Our
first goal is to show that there is some rational curve C with KX · C < 0.
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The idea is to take an arbitrary curve on X, and to show, using deforma-
tion theory, that it has to “move around alot” - it has so many deformations
that eventually it has to break, unless it is already the rational curve we
were looking for.

3.2.1. Breaking curves. The key to showing that a curve breaks is the fol-
lowing:

Lemma 3.2.2. Suppose C is a projective curve of genus> 0 with a point
p ∈ C, suppose B is a one dimensional affine curve, f : C × B → X a
nonconstant morphism such that {p} × B → X is constant. Then, in the
closure of f(C ×B) ⊂ X, there is a rational curve passing through f(p).

In genus 0 a little more will be needed:

Lemma 3.2.3. Suppose C is a projective curve of genus 0 with points
p1, p2 ∈ C, suppose B is a one dimensional affine curve, f : C × B → X
a morphism such that {pi} × B → X is constant, i = 1, 2, and the image
is two-dimensional. Then [f(C)] is “reducible”: there are effective curves
C1, C2 passing through p1, p2 respectively, such that [C1] + [C2] = [C].

3.2.4. Some deformation theory. We need to understand deformations of a
map f : C → X fixing a point or two. The key is that the tangent space of
the moduli space of such maps - the deformation space - can be computed
cohomologically, and the number of equations of the deformation space is
also bounded cohomologically.

Lemma 3.2.5. The tangent space of the deformation space of f : C → X
fixing points p1, . . . , pn is

H0
(
C, f∗TX(−

∑
pi)

)
.

The obstructions lie in the next cohomology group:

H1
(
C, f∗TX(−

∑
pi)

)
.

The dimension of the deformation space is bounded below:

dim Def(f : C → X, p1, . . . , pn) ≥ χ
(
C, f∗TX(−

∑
pi)

)
= −(KX · C) + (1− g(C)− n) dim X

3.2.6. Rational curves. Let us consider the case where C is rational. Suppose
we have such a rational curve inside X with −(KX ·C) ≥ dim X +2, and we
consider deformations fixing n = 2 of its points. Then −(KX · C) + (1 −
g(C)−2) dim X = −(KX ·C)−dim X ≥ 2. Since C is inside X, the only ways
f : C → X can deform is either by the 1-parameter group of automorphisms,
or, beyond one-parameter, go outside the image of C, and we get an image
of dimension at least 2. So the rational curve must break, and one of the
resulting components C1 is a curve with −(KX · C1) ≤ −(KX · C).
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Suppose for a moment −KX is ample. In this case the process can only
stop once we have a curve C∞ with

−(KX · C∞) ≤ dim X + 1.

Note that this is optimal - the canonical line bundle on Pr has degree r + 1
on any line.

3.2.7. Higher genus. If X is any projective variety with KX not nef, then
there is some curve C with KX · C < 0. To be able to break C we need
−(KX · C)− g(C) dim X ≥ 1.

There is apparently a problem: the genus term may offset the positivity
of −(KX · C). One might think of replacing C by a curve covering C, but
there is a problem: the genus increses in coverings roughly by a factor of the
degree of the cover, and this offsets the increase in −(KX ·C). There is one
case when this does not happen, that is in characteristic p we can take the
iterated Frobenius morphism C [m] → C, and the genus of C [m] is g(C). We
can apply our bound and deduce that there is a rational curve C ′ on X. If
KX is ample we also have 0 < −(KX · C) ≤ dim X + 1.

But our variety X was a complex projective variety. What do we do now?
We can find a smooth model X of X over some ring R finitely generated
over Z, and for each maximal ideal ℘ ⊂ R the fiber X℘ has a rational curve
on it.

How do we deduce that there is a rational curve on the original X? if−KX

is ample, the same is true for −KX , and we deduce that there is a rational
curve C℘ on each X℘ such that 0 < −(KX℘

·C℘) ≤ dim X + 1. These are
parametrized by a Hilbert scheme of finite type over R, and therefore this
Hilbert scheme has a point over C, namely there is a rational curve C on X
with 0 < −(KX · C) ≤ dim X + 1.

In case −KX is not ample, a more delicate argument is necessary. One
fixes an ample line bundle H on X , and given a curve C on X with −KX ·C <
0 one shows that there is a rational curve C ′ on each X℘ with

H · C ′ ≤ 2 dim X
H · C

−KX · C
.

Then one continues with a similar Hilbert scheme argument.

3.3. Cone theorem. Using some additional delicate arguments one proves:

Theorem 3.3.1 (Cone theorem). Let X be a smooth projective variety.
There is a countable collection Ci of rational curves on X with

0 < −KX · Ci ≤ dim X + 1,

whose classes [Ci] are discrete in the half space N1(X)KX<0, such that

NE(X) = NE(X)KX≥0 +
∑

i

R≥0 · [Ci].
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The rays R≥0 · [Ci] are called extremal rays (or, more precisely, extremal
KX -negative rays) of X.

These extremal rays have a crucial property:

Theorem 3.3.2 (Contraction theorem). Let X be a smooth complex pro-
jective variety and let R = R≥0 · [C] be an extremal KX-negative ray. Then
there is a normal projective variety Z and a surjective morphism cR : X → Z
with connected fibers, unique up to unique isomorphism, such that for an ir-
reducible curve D ⊂ X we have cR(D) is a point if and only if [D] ∈ R.

This map cR is defined using a base-point-free linear system on X made
out of a combination of an ample sheaf H and KX .

3.4. The minimal model program. If X has an extremal ray which gives
a contraction to a lower dimensional variety Z, then the fibers of cR are ratio-
nally connected and we did learn something important about the structure
of X: it is uniruled.

Otherwise cR : X → Z is birational, but at least we have gotten rid of
one extremal ray - one piece of obstruction for KX to be nef.

One is tempted to apply the contraction theorem repeatedly, replacing
X by Z, until we get to a variety with KX nef. There is a problem: the
variety Z is often singular, and the theorems apply to smooth varieties. All
we can say about Z is that it has somewhat mild singularities: in general
it has rational singularites; if the exceptional locus has codimension 1 -
the case of a so called divisorial contraction - the variety Z has so called
terminal singularites. For surfaces, terminal singularities are in fact smooth,
and in fact contractions of extremal rays are just (−1)-contraction, and we
eventually are led to a minimal model. But in higher dimensions singularities
do occur.

The good news is that the theorems can be extended, in roughly the
same form, to varieties with terminal singularities. (The methods are very
different from what we have seen and I would rather not go into them.) So
as long as we only ned to deal with divisorial contractions, we can continue
as in the surface case.

for non-divisorial contractions - so called small contractions - we have the
following:

Conjecture 3.4.1 (Flip Conjecture).

(1) (Existence) Supposed cR : X → Z is a small extremal contraction
on a variety X with terminal singularities. Then there exists an-
other small contraction c+

R : X+ → Z such that X+ has terminal
singularities and KX+ · C > 0 for any curve C contracted by c+

R.
The transformation X 99K X+ is known as a flip.

(2) (termination) Any sequence of flips is finite.

This implies the following:
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Conjecture 3.4.2 (Minimal model conjecture). Let X be a smooth projec-
tive variety. Then either X is uniruled, or there is a birational modification
X 99K X ′ such that X ′ has only terminal singularities and KX′ is nef

Often one combines this with the following:

Conjecture 3.4.3 (Abundance). Let X be a projective variety with ter-
minal singularities and KX nef. Then for some integer m > 0, we have
H0(X,OX(mKX)) is base-point-free.

The two together are sometines named “the good minimal model conjec-
ture”.

Lecture 4. Vojta, Campana and abc

In [31], Paul Vojta started a speculative investigation in diophantine ge-
ometry motivated by analogy with value distribution theory. His conjectures
go in the same direction as Lang’s - they are concerned with bounding the
set of points on a variety rather than constructing many of them. Many
of the actual proofs in the subject, such as an alternative proof of Falt-
ings’s theorem, use razor-sharp tools such as Arakelov geometry. But to
describe the relevant conjectures it will suffice to discuss heights from the
classical “näıve” point of view. The reader is encouraged to consult Hindry–
Silverman [16] for a user–friendly, Arakelov–Free treatment of the theory of
heights (including a proof of Faltings’s theorem, following Bombieri).

A crucial feature of Vojta’s conjectures is that they are not concerned with
rational points, but with algebraic points of bounded degree. To account for
varying fields of definition, Vojta’s conjecture always has the discriminant
of the field of definition of a point P accounted for.

Vojta’s conjectures are thus much farther-reaching than Lang’s. You
might say, much more outrageous. On the other hand, working with all
extensions of a bounded degree allows for enormous flexibility in using geo-
metric constructions in the investigation of algebraic points. So, even if one
is worried about the validity of the conjectures, they serve as a wonderful
testing ground for our arithmetic intuition.

4.1. Heights and related invariants. Consider a point in projective space
P = (x0 : . . . : xr) ∈ Pr, defined over some number field k, with set of places
Mk. Define the näıve height of P to be

H(P ) =
∏

v∈Mk

max(‖x0‖v, . . . , ‖xr‖v).

Here ‖x‖v = |x| for a real v, ‖x‖v = |x|2 for a complex v, and ‖x‖v is
normalized so that ‖p‖ = p−[kv :Qp] otherwise. (If the coordinates can be
chosen relatively prime algebraic integers, then the product is of course a
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finite product over the archimedean places where everything is as easy as
can be expected.)

This height is independent of the homogeneous coordinates chosen, by
the product formula.

To keep things independent of a chosen field of definition, and to replace
products by sums, one defines the normalized logarithmic height

h(P ) =
1

k : Q
log H(P ).

Now if X is a variety over k with a very ample line bundle L, one can
consider the embedding of X in a suitable Pr via the complete linear system
of H0(X, L). We define the height hL(P ) to be the height of the image point
in Pr.

This definition of hL(P ) is not valid for embeddings by incomplete linear
systems, and is not additive in L. But it does satisfy these desired properties
“almost”: hL(P ) = h(P )+O(1) if we embed by an incomplete linear system,
and hL⊗L′(P ) = hL(P ) + hL′(P ) for very ample L,L′. This allows us to
define

hL(P ) = hA(P )− hB(P )

with A and B are very ample and L⊗B = A. The function hL(P ) is now
only well defined as a function on X(k̄) up to O(1).

Consider a finite set of places S containing all archimedean places.
Let now X be a scheme proper over Ok,S , and D a Cartier divisor.
The counting function of X , D reative to k, S is a function on points of

X(k̄) not lying on D. Suppose P ∈ X(E), which we view again as an S-
integral point of X . Consider a place w of E not lying over S, with residue
field κ(w). Then the restriction of D to P ' SpecOE,S is a fractional
ideal with some multiplicity nw at w. We define the counting function as
follows:

Nk,S(D,P ) =
1

[E : k]

∑
w∈ME

w-S

nw log |κ(w)|.

A variant of this is the truncated counting function

N
(1)
k,S(D,P ) =

1
[E : k]

∑
w∈ME

w-S

min(1, nw) log |κ(w)|.

Counting functions and truncated counting functions depend on the choice
of S and a model X , but only up to O(1). We’ll thus suppress the subscript
S.

One defines the relative logarithmic discriminant of E/k as follows:
suppose the discriminant of a number field k is denoted Dk. Then define
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dk(E) =
1

[E : k]
log |DE | − log |Dk|.

4.2. Vojta’s conjectures.

Conjecture 4.2.1. Let X be a smooth proper variety over a number field
k, D a normal crossings divisor on X, and A an ample line bundle on X.
Let r be a positive integer and ε > 0. Then there is a proper Zariski-closed
subset Z ⊂ X containing D such that

Nk(D,P ) + dk(k(P )) ≥ hKX(D)(P )− εhA(P )−O(1)

for all P ∈ X(k̄) Z with [k(P ) : k] ≤ r.

In the original conjectuer in [31], the discriminant term came with a factor
dim X. By the time of [32] Vojta came to the conclusion that the factor was
not well justified. A seemingly stronger version is

Conjecture 4.2.2. Let X be a smooth proper variety over a number field
k, D a normal crossings divisor on X, and A an ample line bundle on X.
Let r be a positive integer and ε > 0. Then there is a proper Zariski-closed
subset Z ⊂ X containing D such that

N
(1)
k (D,P ) + dk(k(P )) ≥ hKX(D)(P )− εhA(P )−O(1).

but in [32], Vojta shows that the two conjectures are equivalent.

4.3. Vojta and abc. The following discussion is taken from [32], section 2.
The Masser-Oesterlé abc conjecture is the following:

Conjecture 4.3.1. For any ε > 0 there is C > 0 such that for all a, b, c ∈ Z,
with a + b + c = 0 and gcd(a, b, c) = 1 we have

max(|a|, |b|, |c|) ≤ C ·
∏

p|abc

p1+ε.

Consider the point P = (a : b : c) ∈ P2. Its height is log max(|a|, |b|, |c|).
Of course the point lies on the line X defined by x + y + z = 0. If we denote
by D the divisor of xyz = 0, that is the intersection of X with the coordinate
axes, and if we set S = {∞}, then

N
(1)
Q,S(D,P ) =

∑
p|abc

log p.

So the abc conjecture says

h(P ) ≤ (1 + ε)N (1)
Q,S(D,P ) + O(1),

which, writing 1− ε′ = (1 + ε)−1, is the same as

(1− ε′)h(P ) ≤ N
(1)
Q,S(D,P ) + O(1).
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This is applied only to rational points on X, so dQ(Q) = 0. We have
KX(D) = OX(1), and setting A = OX(1) as well we get that abc is equiva-
lent to

N
(1)
Q,S(D,P ) ≥ hKX(D)(P )− ε′hA(P )−O(1),

which is exactly what Vojta’s conjecture predicts in this case.
Note that the same argument gives the abc conjecture over any fixed

number field.

4.4. abc and Campana. Material in this section follows Campana’s [?].
Let us go back to Campana constellation curves. Recall Conjecture , in

particular a campana constellation curve of general type over a number field
is conjectured to have a finite number of soft S-integral points.

Simple inequalities, along with Faltings’s theorem, allow Campana to re-
duce to a finite number of cases, all on P1. The multiplicities mi that occur
in these “minimal” divisors ∆ on P1 are:

(2, 3, 7), (2, 4, 5), (3, 3, 4), (2, 2, 2, 3) and (2, 2, 2, 2, 2).

Now one claims that Campana conjecture in these cases follows from the abc
conjecture for the number field k. This follows from a simple application
of Elkies’s [?]. It is easiest to verify in case k = Q when ∆ is supported
precisely at 3 points, with more points one needs to use Belyi maps (in the
function field case one uses a proven generalization of abc instead).

We may assume ∆ is supported at 0, 1 and ∞. An integral point on
(P1/∆) in this case is a rational point a/c such that a, c are integers, satis-
fying the following:

• whenever p|a, in fact pn0 |a;
• whenever p|b, in fact pn1 |b; and
• whenever p|c, in fact pn∞ |c,

where b = c− a.
Now if M = max(|a|, |b|, |c|) then

M1/n0+1/n1+1/n∞ ≥ |a|1/n0 |b|1/n1 |c|1/n∞ ,

and by assumption a1/n0 ≥
∏

p|a p, and similarly for b, c. In other words

M1/n0+1/n1+1/n∞ ≥
∏

p|abc

p.

Since, by assumption, 1/n0 + 1/n1 + 1/n∞ < 1 we can take any 0 < ε <
1−1/n0+1/n1+1/n∞, for which the abc conjecture gives M1−ε < C

∏
p|abc p,

for some C. So M1−1/n0+1/n1+1/n∞−epsilon < C and M is bounded, so there
are only finitely many such points.
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4.5. Vojta and Campana. I speculate: Vojta’s higher dimensional conjec-
ture implies the non-special part of Campana’s conjecture. Hopefully this
will be proven before the lectures.

The problem is precisely in understanding what happens when a point
reduces to the singular locus of D.
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