
Math 161 0 - Probability, Fall Semester 2012-2013
Dan Abramovich

Class meeting: Mondays, Wednesdays and Fridays at
11:00 am.

Dates: no class September 17, September 26.

Final exam December 21, 2012.

Midterm: October 24 in class.

I will hold class Sunday October 28 in the afternoon -
details to come.

Classroom: Barus and Holley 163

Office hours: Mondays and Fridays at 10:00, Wednes-
days at 2:00 pm.

Office: Kassar 118, 151 Thayer Street, at the intersection
with George Street.

Phones - office: 401 863-7968; department: 401 863-2708

Electronic mail: abrmovic@math.brown.edu

Instructor’s web page:
http://www.math.brown.edu/~abrmovic/

Text: Grinstead and Snell, Introduction to Probability.

This text is available free for download on
http://www.dartmouth.edu/~chance/teaching_aids/books_

articles/probability_book/book.html.

It is also available for purchase at the bookstore and on
the American Mathematical Society web store:
http://www.ams.org/bookstore-getitem/item=IPROB

(last I checked it was on sale for $36).

Course outline: We’ll cover most of the book.

Grading: there will be one midterm, one final, and
weekly homework with possible projects.

Your final grade will be weighted as follows: Homework
30% Midterm 30% Final 40%.

Your lowest homework grade will be dropped.
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Probability theory studies math-
ematical constructs called probabil-
ity spaces. Typically these model re-
sults of experiments applied to natu-
ral or “real world” processes. You as-
sume you know the underlying pro-
cesses, and you try to predict the be-
havior of future experimental mea-
surements: you have a coin, which
you assume is fair, and you want to
know the chances that in 50 throws it
will fall on heads 45 times precisely.
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The related discipline of statistics
starts with measurements and aims
to infer the underlying processes. You
flipped a coin 100 times, it fell on
heads 45 times precisely, and you want
to know if it is more likely to be a
fair coin or a biased coin with only
40% chances to fall on heads, and
how confident you should feel about
such likelihood.
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Evidently, you must know your prob-
ability theory to be able to do statis-
tics.

In real world applications, you must
also know how to model the applica-
tion as a probability space and model
the measurment as a random vari-
able.
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Discrete probability spaces

Finite probability spaces

Example 1: you flip one fair coin
once. The measurement is just Heads
or Tails.

Probability space: (Ω,m)

Ω = {H,T} - the sample space

m : Ω→ [0, 1],
m(H) = m(T ) = 1/2 - the proba-
bility distribution function or mea-
sure (Sometimes denoted P ).

In this case the random variable X
is just the value H or T , so no need
to worry about it as yet.

(You could take it to be the identity
function X : Ω → Ω, which is what
the book does.)
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Example 2: you flip two fair coins.
The measurement is the number of
heads.

Probability space (Ω,m):

Sample space:
Ω = {HH,HT, TH, TT}
= {H,T} × {H,T}
Probabilities: m : Ω→ [0, 1],
m(HH) = m(HT ) = m(TH) =
m(TT ) = 1/4

Random variable:
X : Ω→ {0, 1, 2}:
X(HH) = 2;
X(HT ) = X(TH) = 1;
X(TT ) = 0.
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We are interested in chances, or prob-
abilities of events.

For instance: what’s the probabil-
ity that in example 2 the first coin
falls as H?

E1 = {HH,HT};
P (E1) = m(HH) + m(HT )

= 1/4 + 1/4 = 1/2.

What’s the probability that the num-
ber of heads is 2?

E2 = {ω ∈ Ω : X(ω) = 2}
= {HH};
P (E2) = m(HH) = 1/4
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Definition: a finite probability
space is a pair (Ω,m) where Ω is
a finite set - called sample space,
m : Ω → [0, 1] is a function, called
probability measure, or distribution
function, such that∑

ω∈Ω

m(ω) = 1.

An event is a subset E ⊂ Ω. The
probaility of E is

P (E) =
∑
ω∈E

m(ω).

A random variable is a function
X : Ω→ S to some other set S.
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Two cases are often considered: in
the book, X : Ω → Ω the identity
function is featured first. In most
later applications one consideres S =
R, the real numbers, and X : Ω →
R is a real valued random variable.

Example 2, revised: The book’s
description is not outlandish. You
could take instead (Ω′,m′) with
Ω′ = {0, 1, 2} ⊂ R
and
m′(0) = 1/4,m′(1) = 1/2,m′(2) =
1/4.

Then X is again the identity func-
tion. But we will not worry about
this duality of meaning till much later.
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Example 3 you throw 2 fair dice.
What’s the probability that the sum
of the numbers is 3?

model:

Ω = {(i, j) : i, j = 1, . . . , 6}.
m(i, j) = 1/36

uniform distribution.

X : Ω→ R;X ((i, j)) = i + j

E = {X = 3} = {(1, 2), (2, 1)}.
P (E) = 2/36.
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Countable probability spaces

We can do the same with a count-
ably infinite space. No way we can
have it uniform!

Definitions are the same, with the
assumption that the sum

∑
ωm(ω)

converges and equals 1.

Example We throw a fair coin un-
til heads appears, and record the num-
ber of throws. (If heads never ap-
pears record∞.) What’s the proba-
bility that we stop after an odd num-
ber of times?

Ω = {1, 2, 3. . . .} ∪ {∞}.
m(n) = 2−n, since you need tails to

appear n− 1 times, and then heads
to appear (probability 1/2 each).
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Still need
∑

ω∈Ω m(ω) = 1. So
m(∞) = 1−

∑∞
n=1 m(n). But∑

m(n) =

∞∑
n=1

2−n =
1/2

1− 1/2
= 1,

so m(∞) = 0.

(We could remove∞ for all practi-
cal purposes.)

E = {n is odd}

p(E) =
∑
n odd

2−n =
1/2

1− 1/4
= 2/3.

Challenge: play the same with a
die, till 1 appears. Describe the prob-
ability space. What’s the probability
that you stop no earlier than 5 steps?
after an odd number of steps?
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Theoem.

(1) 0 ≤ P (E) ≤ 1.
(2) P ({ω}) = m(ω).
(3) P (Ω) = 1
(4) E ⊂ F ⊂ Ω⇒ P (E) ≤ P (F ).
(5) A ∩ B = ∅ ⇒ P (A ∪ B) =

P (A) + P (B).
(6) P (Ω− E) = 1− P (E).

(1-3) follow from the definition, and
(4) and (6) follow from (5).

Proof of (5):

P (A ∪B) =
∑

ω∈A∪Bm(ω)
=
∑

ω∈Am(ω) +
∑

ω∈Bm(ω)
= P (A) + P (B),

since A ∩B = ∅.
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(5) generalizes to arbitrarily many
(or infinitely many) disjoint events.

Corollary.

If Ω = tAi then P (E) =
∑

P (E∩
Ai)

Proof: Ei = E ∪ Ai are disjoint
with union E.

If there is an intersection we can
still break things down:

Theorem.

P (A ∪B)
= P (A) + P (B)− P (A ∩B).

Challenge: generalize to many events!
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Remark about odds:

When you say there are r : s =
15 : 100 odds that Bucky will win
the horse race, what does it mean in
terms of probabilities?

We imagine a total of 15+100 races
out of which Bucky wins 15.

So p = P (E) = P (Bucky wins) =
15

15+100.

In general: p = r
r+s.

to reverse, just solve:

p =
r/s

(r/s)+1

so r/s = p/(1− p).


