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Dan Abramovich

Generating functions

Given Ω, X : Ω→ R.

Definition:

Moment generating function: MX(t) =
E(etX).

Characteristic function: ϕX(t) =
E(eitX).

Here i =
√
−1 ∈ C.

Evidently ϕX(t) = MX(it)

Advantage of MX(t): real valued.

Advantage of ϕX(t): always exists
for real variables.
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Interpretation:

Definition: µk = E(Xk) is the
k-th moment of X .

For instance µ1 = E(X), µ2 = V (X)+
µ2

ThenMX(t) = E(etX) = E(
∑ Xktk

k! )

MX(t) =
∑ µkt

k

k! .

Similarly ϕX(t) =
∑ µk(it)k

k! .

Note: µk = ∂k

(∂x)k
(ϕX(t))

Ideas:

0. MX(t) is computable

1. MX(t) holds enough informa-
tion to recover the distribution of X .

2. MX(t) behaves well under nat-
ural operations: rescaling, sums.
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Laundry list:

Bernoulli: MBern(p)(t) = q + p ·
et

Discrete Uniform U : {1, . . . n}:
MU (t) = (1/n)

∑n
k=1 e

kt = 1
n
e(n+1)t−et
et−1

Binomial:

MBinom(n,p)(t) =
∑n
k=0 e

kt
(n
k

)
pkqn−k =∑n

k=0

(n
k

)
(p·et)kqn−k = (q+p·et)n

Geometric:

MG(p)(t) =
∑∞
k=1(et)jqj−1p = pet

1−qet
Poisson:

MP (λ)(t) = e−λ
∑∞
k=0(et)kλk/k! =

eλ(et−1).
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Uniform [a, b]:

Mu(a,b)(t) =

∫ b
a e

txdx
b−a = etb−eta

t(b−a)
Exponential

MExp(λ)(t) =
∫∞

0 etxλe−λxdx =

λ
∫∞

0 e(t−λ)xdx = λ
t−λ

Standard Normal:

MN(0,1)(t) = 1√
2π

∫∞
−∞ e−x

2/2+txdx =

1√
2π

∫∞
−∞ e−(x−t)2/2+t2/2dx = et

2/2.

The book derives the moments
on the way - read!
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Moment problem: Given some
moments µk(X), or given MX(t),
can you recover X?

Finite discrete on {x1, . . . xn}:
MX(t) =

∑
et·xkpk

Claim: MX(m),m = 0, . . . , n−1
suffices to determine!

Write Am,k = exk·m; P for the
column vector of pk; M for the col-
umn vector of MX(m). Then M =
AP . But A is a Vandermonde ma-
trix with determinant

∏
k<l(e

l−ek).
♣
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Continuous case: ϕX(t) deter-
mines fX(t).

ϕX(t) =
∫∞
−∞ eitxf (x)dx

then by Fourier analysis

f (t) = 1
2π

∫∞
−∞ e−itxϕX(x)dx

Try your hand at our examples!
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Properties:

1. MX+b(t) = etbMX(t). (just
pull out the term)

2. MaX(t) = MX(at). (replace t
by at)

3. MX∗(t) = e(−µ/σ)tMX(t/σ)

4. X, Y independent then

MX+Y (t) = MX(t)MY (t).

Proof: etX and etY are indenpen-
dent!
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MBinom(n,p)(t) = MBern(p)(t)
n

MNegBin(k,p)(t) = MGeom(p)(t)
k =(

pet

1−qet
)k
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Now you have Xi independent with
finite µ and finite σ > 0. We can
replace Xi by (Xi−µ)/σ so that the
new µ = 0 and σ = 1. If we prove
this case of course the general case
follows, since S∗n remains the same.

Then MS∗n(t) = (MX(t/
√
n))n.

We claim that limn→∞MS∗n(t) =

MN(0,1)(t) = et
2/2.

Now MX(t) = 1+ t2/2+R3(t). So
MS∗n(t) = (1+

(
t2/2 + R(t/

√
n)
)
/n)n

where limn→∞ = 0. So indeed

limn→∞MS∗n(t) = et
2/2.
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Branching processes.

You want to know how long your
lineage will last. Historically, kings
and aristocrats cared about their male
lineage. Today you might be inter-
ested in knowing how long your DNA
(or Y chomosomes for males, or mi-
tochondrial DNA for females) will last.

A very rough approximation is this:
you assume that generations appear
in sync. In each generation you have
a certain distribution on the num-
ber X of offspring, a positive integer,
given by pk where

∑∞
k=0 pk = 1.

You assume that this is identically
distributed and independent among
individuals - certainly not the case in
reality! Also p0 > 0.
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Say dm is the probability of dying
out by generation m. Then d1 = p0.
What is d2? If we had k offspring in
generation 1, then each has d1 prob-
ability of not having offspring, and
they are independent.

What about dying out in m gener-
ations? same argument works:

dm = p0 + p1dm−1 + p2(dm−1)2 +
. . . =

∑∞
k=0 pk(dm−1)k

We use a tool which is a variant
of MX simply called the generating
function h(z) := E(zX). Clearly
h(et) = MX(t).

Then h(z) =
∑∞
k=0 pkz

k.

This means precisely that we have
the recursive relation

(1) dm = h(dm−1).
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Note: 0 = d0 ≤ d1 ≤ d2 . . . ≤ 1.
So this sequence converges to some
d, the probability of dying out at
some point.

Since h is a poltynomial it is contin-
uous. The equation (1) has a limit

d = h(d).

The solution d = 1 is always there,
and h(0) = p0 > 0. Note that h′ >
0 and h′′ > 0, so there are at most
two solutions, and the other one could
be 0 < d < 1 or 1 < d.

This is precisely determined by whether
or not h′(1) < 1 or h′(1) > 1.

What is it?
h′(1) = p1 + 2p2 + 3p3 + . . .
= m := E(X).
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Now if di < d then also di+1 < d
(looking at the graph).

Conclusion:

Theorem. if E(X) < 1 your lin-
eage will die with probability d < 1,
otherwise will die with probability 1.
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How about the distribution of off-
spring?

Zn = number of offspring in n-th
generation. Not really calculable, but
limiting behavior is.

Write hn(z) = E(zZn).

then hn+1(z) =
∑
k pk·E

(
zZn+1 | X = k

)
ButE

(
zZn+1 | X = k

)
= E

(
z
∑k
r=1Zn

)
because Zn+1 is the sum of num-
ber of offspring in n generations of
each one of the k first generation off-
spring.

So E
(
zZn+1 | X = k

)
= hn(z)k.

So hn+1(z) =
∑
k pkhn(z)k = h(hn(z)).

So hn(z) = h(h(· · ·h(z) · · · )).
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Take the derivative to get h′n+1(z) =

h′(hn(z)) · h′n(z).

Plug in z = 1 to get the expected
value of Zm. Get

E(Zn+1) = h′(1)·E(Zn), somn+1 =
m ·mn.

So mn = mn!

Makes sense?


