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Dan Abramovich

Generating functions
Given €2, X : Q) — R.

Definition:

Moment generating function: Mx (t) =
BE(e!),

Characteristic function: @x () =
E(etX),

Here i = v/—1 € C.

Evidently ¢ x(t) = M x (it)

Advantage of M x(t): real valued.

Advantage of ¢ x(t): always exists
for real variables.



Interpretation:

Definition: ;. = E(X") is the
k-th moment of X.

gor instance p; = E(X), uo = V(X)+
u

Then My (t) = E(eX) = B(YX X5
ok
My(t) = ¥ 4L
-k
Similarly o x(t) = > A ""]izp
k
Note: M = (aa) (@X(t»
Ideas:
0. Mx(t) is computable

1. Mx(t) holds enough informa-
tion to recover the distribution of X.

2. Mx(t) behaves well under nat-
ural operations: rescaling, sums.



Laundry list:

Bernoulli: MBem<p> (t)=q+p-

et

Discrete Uniform U : {1,...n}:
1 (n+1)t

My (t) = (1/n) Y f_y e = 2e——

Binomial:

MBmom n,
> ieo (& )( e)q"F = (g+p-e)"
(Geometric: o

M) (8) = Y02 () g/~ lp = 25 Ze
Poisson:

Mpy)(t) = e 02 (el PN [k =

e)x(et—l).

o) =0 e (Mphqn T =



Uniform |a, b|:

B ffetxdgj B th_ _ta

Exponential
MEzpn)(t) = I e \e M dy =
A fooo ell= Nz = ﬁ
Standard Normal:
1 o0
MN(O 1) ~ Vi )"
(x—1)2 /2412 /2 ot /2
\/% f dr = .
The book derives the moments
on the way - read!

—x2/2—|—txdx _



Moment problem: Given some
moments (X)), or given Mx(t),
can you recover X7

Finite discrete on {z{,...x,}:

My (t) =37 e"kpy

Claim: Mx(m),m=0,...,n—1
suffices to determine!

Write A, . = %" P for the
column vector of pi; M tor the col-

umn vector of Mx(m). Then M =

AP. But A is a Vandermonde ma-

trix with determinant [],._;(e!—e¥).

L



Continuous case: @y (t) deter-
mines fx(f).

px(t) = [Z5 " fa)dw

then by Fourier analysis

f(t) =9 [Coc e ox(x)ds

Try your hand at our examples!



Properties:

1. My p(t) = e®My(t). (just
pull out the term)

2. M,x(t) = Mx(at). (replace t
by at)

3. Mys(t) = el =Ht N (/o)

4. X.Y independent then

Mxy(t) = Mx(t)My(1).

tX tYy

Proof: e** and e"* are indenpen-

dent!



MBinOm(n,p) () = MBern(p) ()"

MNegB'm(k,p) (t> — MGeom(p)(t)k —

(i57)
1—qet




Now you have X, independent with
finite © and finite o > 0. We can
replace X; by (X; —pu) /o so that the
new 1 = 0 and o = 1. If we prove
this case of course the general case
follows, since S, remains the same.

Then My (t) = (Mx(t/y/n)"

We claim that limy,—soo M S;(t) —
My(o.1)(t) = ¢ /2.

Now Mx () = 14+t%/2+ R3(t). So
Mg (t) = (1+(t*/2+ R(t//n)) /n)"
where limy,—yoc = 0. So indeed
limy—so0 Mgx(t) = el /2



Branching processes.

You want to know how long your
lineage will last. Historically, kings
and aristocrats cared about their male
lineage. Today you might be inter-
ested in knowing how long your DNA
(or Y chomosomes for males, or mi-
tochondrial DNA for females) will last.

A very rough approximation is this:
you assume that generations appear
in sync. In each generation you have
a certain distribution on the num-
ber X of offspring, a positive integer.,
given by pg where > 72 gpr = 1.
You assume that this is identically
distributed and independent among
individuals - certainly not the case in
reality! Also pg > 0.



Say dy, 1s the probability of dying
out by generation m. Then d; = py.
What is do? If we had k offspring in
generation 1, then each has dy prob-
ability of not having offspring, and
they are independent.

What about dying out in m gener-
ations? same argument works:

dm = po+ p1dm—1+ pa(dm—1)* +
= T o peld )

We use a tool which is a variant
of My simply called the generating
function h(z) = E(z*). Clearly
h(et) — MX(t).

Then h(z) = 32022, pr2”.

This means precisely that we have
the recursive relation

(1) dm = h(dpm—1).



Note: 0 =dy < dy < dp... < 1.
S0 this sequence converges to some
d, the probability of dying out at
some point.

Since h is a poltynomial it is contin-
uous. The equation (1) has a limit

d = h(d).
The solution d = 1 is always there,
and h(0) = py > 0. Note that A’ >
0 and A" > 0, so there are at most
two solutions, and the other one could
be)<d<lorl <d.

This is precisely determined by whether
or not h'(1) < 1or A'(1) > 1.

What is it?

h'(1) =p1 +2py +3p3 + ...
=m = F(X).



13

Now it d; < d then also d;1 1 < d
(looking at the graph).
Conclusion:

Theorem. if F(X) < 1 your lin-
eage will die with probability d < 1,
otherwise will die with probability 1.
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How about the distribution of off-
spring”’

Zy = number of offspring in n-th
generation. Not really calculable, but
limiting behavior is.

Write hy,(z) = E(2%n).

then hy,41(2) = > pi- B (zZnH | X = k)

But & (zZnH | X = k) = (ZZ§_1 Zn)

because Z,.11 is the sum of num-
ber of offspring in n generations of
each one of the k first generation off-
spring.

So E (zZn+1 X = k) — i (2)F

S0 hyr1(2) = D g b (2)" = h(hn(2)).
So hn(z) = h(h(- - h(z)--- )
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Take the derivative to get ) 1 (2) =
W (hn(2)) - hi(2).

Plug in z = 1 to get the expected
value ot Z,,. Get

E(Zp11) = W'(1)-E(Zn), s0mp 41 =
m - My,

So mqy, = m"!

Makes sense?



