
Math 161 0 - Probability, Fall Semester 2012-2013
Dan Abramovich

Permutations

How many pernutations of 1, . . . , n?

n! = n · (n− 1) · · · 2 · 1.
k-permutations: selections of an or-

dered k tuple of distinct elements of
1, . . . , n. How many?

(n)k =
= n · (n− 1) · · · (n− k + 1)

= n!
(n−k)!

.

Same with {1, . . . , n} replaced by
any set of size n.
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How large is n! ?

Very large! Stirling’s formula:

n! ∼
(n
e

)n√
2πn.

Challenge: Show at least that

n!

/((n
e

)n√
n
)

and its reciprocal remain bounded.

(Ask for hints after you struggle a
bit!)

Later on we’ll be able to study ques-
tions like:

What’s the statistics of the number
of fixed points of a permutation?

What’s the statistics of the number
of records in a finite sequence of re-
sults?



3

Combinations

How many ways to choose a subset
of {1, . . . , n} of size k?(

n

k

)
=

(n)k
k!

=
n!

k!(n− k)!
.

Name: n choose k,
binomial coefficient.

Four of a kind beats full house:

# Four of a kind = 13× 48 = 624.

# full houses
= (13×

(4
3

)
)× (12×

(4
2

)
) = 3744

= 624× 6
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Relationships:(
n

k

)
=

(
n

n− k

)
.(

n

k

)
=

(
n− 1

k

)
+

(
n− 1

k − 1

)
.

n∑
k=0

(
n

k

)
= 2n.

∑
k even

(
n

k

)
= 2n−1.

(a + b)n =

n∑
k=0

(
n

k

)
akbn−k.
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Bernoulli trials.

This is one of the most common
probability spaces.

You perform n identical experiments,
without one result affecting the other.
Each experiment has two outcomes:
either success, with probability p, or
failure, with probability 1− p.

Ω =

{
ordered sequences of ”S”
and ”F” of length n

}
Say ω ∈ Ω has k “S”

and n− k “F”.

m(ω) = pk(1− p)n−k.
Examples: coins (possibly biased)

modeling a survey

gambling with a small bias for fail-
ure

modeling medical trials
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Binomial probabilities

This is one of the most common
measurements on bernoulli trials.

Say X(ω) = # of “S”.

What is the probability that X =
k?

b(n, p, k) := P (X = k)

b(n, p, k) =

(
n

k

)
pk(1− p)n−k.
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This is a probability distribution on
{0, . . . , n}, the binomial distribu-
tion.

It has a familiar bell-shaped “curve”.

(Breaking it down:

Say Xi(ω) =

{
1 ωi = S
0 ωi = F

Then X =
∑
Xi. We’ll use this

later.)
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Inclusion-Exclusion

Theorem.

P (A1 ∪ · · · ∪ An)

=
∑
i

P (Ai)

−
∑
i<j

P (Ai ∩ Aj)

+
∑
i<j<k

P (Ai ∩ Aj ∩ Ak)

− · · · .
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Proof. On the left you get a sum of
m(ω), where ω counts if it is in at
least one of the Ai.

How many times is it counted on
the right? if ω is in precisely k > 0
of the Ai, we count m(ω) precisely(k

1

)
−
(k

2

)
+ · · · ±

(k
k

)
times. But

1− (
(k

1

)
−
(k

2

)
+ · · · ±

(k
k

)
) = (1−

1)k = 0, so it is counted once! ♣
Remark Later on we’ll discuss char-

acteristic functions, which make this
a bit more comfortable.

Challenge: Think about other meth-
ods of proof!
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Fixed points of a permuta-
tion: the checkroom attendant re-
turns n people’s distinct hats at ran-
dom. What’s the probability nobody
gets his/her own hat?

Surprisingly, it is more convenient
to look at the probability of at least
one matched hat! (We’ll see later
that even easier it is to calculate the
expected number of matches.)
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Ai = event that i-th hat goes to the
i-th person

We are looking for P (A1∪· · ·∪An).

Need:

P (Ai1∩· · ·∩Aik) for i1 < · · · < ik.

Now by the uniformity assumption,

P (Ai1∩· · ·∩Aik) =
(n− k)!

n!
=

1

(n)k
.

So the k-th term is∑
P (Ai1 ∩ · · · ∩ Aik)

=

(
n

k

)/
(n)k =

1

k!
.

So

P (A1∪· · ·∪An) =
1

1!
− 1

2!
+· · ·+(−1)n−1 1

n!
,

and

P (no fixed point) = 1− 1

1!
+

1

2!
−· · ·+(−1)n

1

n!
.

This approaches e−1 very fast!


