MATH 251 PROBLEMS

- (1) Prove that the number of p-Sylow subgroups of $GL_2(\mathbb{F}_p)$ is p+1.
- (2) Find a composition series for A_4 .
- (3) Describe the conjugacy classes in the dihedral group D_{2n} and write the class formula explicitly.
- (4) (a) Find a composition series for $GL_2(\mathbb{Z}/5\mathbb{Z})$ (b) Find a composition series for $GL_2(\mathbb{Z}/25\mathbb{Z})$

(to what extent is 5 important here?)

(5) Let \mathcal{A} be a category, $X, Y \in Ob(\mathcal{A})$ and $\phi \in Hom(X, Y)$. For any $S \in Ob(\mathcal{A})$ consider the map of sets

$$\begin{array}{ccc} Hom(S,X) & \xrightarrow{\phi^S_*} & Hom(S,Y) \\ f & \mapsto & \phi \circ f \end{array}$$

- (a) Show that if ϕ is an isomorphism then ϕ_*^S is bijective. (b) Suppose that ϕ_*^Y is bijective. Show that there is a map $g \in Hom(Y,X)$ such that $\phi \circ g = id_Y$. Conclude that $\phi = \phi \circ g \circ \phi.$
- (c) Suppose now both ϕ_*^X and ϕ_*^Y are bijective, and let g be as above. Show that $g \circ \phi = id_X$. Conclude that ϕ is an isomorphism if and only if ϕ_*^S for all S.
- (6) prove that for an object $A \in Ob(C)$ the identity $id_A \in Hom(A, A)$ is unique.
- (7) Show that for objects S, T in a category, if Isom(S, T) is nonempty then it is a principal homogeneous space for the group Aut(T)(i.e. the group acts simply transitively).
- (8) Complete the proof that for a fixed object Y, we have that $X \mapsto$ Hom(X,Y) is a contravariant functor and $X \mapsto Hom(Y,X)$ a covariant functor.
- (9) Recall that a functor $F: A \to B$ is an equivalence of categories if it has a quasi inverse $G: B \to A$ such that the compositions are isomorphic to the identity functors. Prove that any two quasi inverses G, G' of a functor F are isomorphic.