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Galois Cohomology

1 Motivation and Definitions

In this presentation, we will take the motivational viewpoint that group
cohomology in general, and Galois cohomology in particular, is a functor
designed to tell us information about a group G via the behavior of fixed-
points of its action on G-modules. To the extent that we attempt to derive
information from G via the way its acts on other objects, this framework
fits into the larger picture of representation theory.

Our story begins with a group G and a G-module A on which it acts.
The simplest question we can ask about fixed points is the following. What
elements a ∈ A are fixed by the action a→ ga? Well, 0A is such an element,
and the collection of these fixed points is closed under addition and taking
inverses, so we get a group denoted AG. In this special case when A is a
G-module, we write AG = H0(G,A), the 0th cohomology group of G with
coefficients in A.

To motivate the next cohomology group, we concern ourselves with the
problem of lifting fixed points. Let G act on a G-module B, and let A be
a submodule. We can form a new G-module B/A, and consider the fixed
points of the action of G on B/A. To what extent can we lift such fixed
points to fixed points of the action of G on B? Well, take b̄ in B/A and a
representative b of this coset. For g ∈ G, form the element gb−b. The image
of gb− b is 0 ∈ B/A, since gb̄ = b̄. Thus gb− b ∈ A, and is zero precisely if
b was a fixed point. In that sense, we might say that the map

G→ A

fb : g → gb− b

measures the obstruction of lifting b̄ to a fixed point. Note that

fb(gg
′) = gfb(g

′) + fb(g)
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This observation motivates the following definition. If A is a G-module,
a 1-cocyle of G with vaues in A is a map

f : G→ A

f(gg′) = gf(g′) + f(g)

This type of map is called a crossed homomorphism because it is similar
to a homomorphism except that in one of the terms we pull out the other
group element to the front. One way to obtain 1-cocycles is by starting with
a fixed point b̄ ∈ B/A and considering fb associated to some lift of b̄. Let
us go ahead and also define a 1-coboundary as a map f : G→ A for which
there exists a ∈ A such that

f(g) = ga− a

Note that any 1-coboundary is a 1-cocycle.

The set of 1-cocycles is denoted Z1(G,A), and the subset of 1-coboundaries
is denoted B1(G,A). It is not hard to see that these are groups, where the
latter is a subgroup of the former. Since everything in sight is abelian, there
is nothing stopping us from defining

H1(G,A) = Z1(G,A)/B1(G,A)

The group H1(G,A) is called the first cohomology group of G with coef-
ficients in A. Recalling our earlier discussion of modules, we may start with
a fixed point b̄ ∈ B/A and obtain a 1-cocycle fb : G→ A. This cocycle is a
coboundary if and only if we can find some a for which

gb− b = fb(g) = ga− a

That is, b − a is a fixed point in G lying over b̄. We can thus see that
H1(G,A) is intimately related to our ability to lift fixed points of B/A to
B, so that the vanishing of this group is tantamount to our ability to lift
fixed points.

It is possible to go on and define higher cohomology groups, and a
good introductory discussion of the second group cohomology can be found
here[1]. However, for our purposes, we will suffice with the zeroeth and first
cohomology groups.
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2 The Case of Finite Cyclic Groups

Before we move on to the case of Galois cohomology, let us specialize to
the situation of the cohomology of cyclic groups. Let G be finite cyclic
with generator γ of exponent n. We know that a 1-cocycle f : G → A is
determined by where it sends γ, since

f(γ2) = γf(γ) + f(γ)

and so on for higher powers, inductively. However, not every element in
A is suitable to be f(γ). We will provide a simple necessary and sufficient
condition on the value of f(γ).

Consider the homomorphism

TrG : A→ A

TrG(a) =
∑
σ∈G

σ(a)

We claim that f(γ) is in the kernel of this homomorphism.

TrG(f(γ)) =
∑
k

γk(f(γ))

If we write
f(γk+1) = f(γkγ) = γkf(γ) + f(γk)

then ∑
k

γkf(γ) =
∑
k

f(γk+1)− f(γk) = 0

At the same time, if a is in the kernel of the trace map, we can define

f(γ) = a

and we want to show that

f(γkγm) = f(γk) + γkf(γm)

We know that
f(γ2) = γa+ a

f(γ3) = f(γ2γ) = γa+ a+ γ2a = γ2a+ γa+ a
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and so forth, with
f(γn) = TrG(a) = 0

which lets us justify setting k +m less than n, in which case the necessary
equality is easy to verify. This shows that the group of 1-cocycles can be
identified with the kernel of the trace map.

Next we want to identify the 1-coboundaries. These can be identified
with the subgroup (1 − γ)A < ker TrG, since if f(γk) = γka − a, then
f(γ) = a(γ − 1), and conversely if f(γ) = a(γ − 1), then

f(γ2) = f(γ) + γf(γ) = γa− a+ γ2a− γa = γ2a− a

and so forth, by induction. Thus we have an isomorphism

H1(G/A) ∼= kerTrG/(1− γ)A

3 An Explicit Calculation of H1

The field C comes endowed with a special field automoprhism, complex con-
jugation. We then have a group G of order 2 acting on C, with the fixed
points of the non-trivial group element (conjugation) being the real line. Let
us compute H1(G,C) and H1(G,C×).

If f : G → C is a 1-cocyle, then f(1) = f(12) = 1f(1) + f(1) = 2f(1),
so f(1) = 0. Thus f is determined by f(σ) = z0. We have 0 = f(1) =
f(σ2) = σf(σ) + f(σ), so z̄0 = −z0. Hence z0 is purely imaginary, so
z0 = z0/2 − (z̄0)/2 = σ(z̄0/2) − z̄0/2. Hence f is a 1-coboundary, and
H1(G,C) = 0!

Let f : G → C× be a 1-cocyle. Then f(1) = f(12) = 1f(1)f(1), so
f(1) = 1. Thus f is determined by f(σ) = w0. We have 1 = f(1) = f(σ2) =
σf(σ)f(σ), hence 1 = w̄0w0, so w0 has norm 1, say w0 = eiθ for some real
θ. We can thus write w0 = eiθ/2/e−iθ/2 = v0/v̄0 for v0 = e−iθ/2, so that f is
a 1-coboundary, hence H1(G,C×) = 0.

Exercise: Let Z2 act on Z by 0 · a = a and 1 · a = −a. Check that
H1(Z2,Z) = Z2. Thus group cohomology is not always trivial.
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4 Galois Cohomology

This first two examples above might seem like a tremendous miracle, but we
will see that this is just a special case of a more general phenomenon: that
is, Galois Cohomology. Recall Hilbert’s Theorem 90. In its additive form,
it says that an element in a cyclic extension K/k of degree n has vanishing
trace iff it is of the form α−σα for α ∈ K and σ generating the Galois group.
If we write G = Gal(K/k) and view K as a G-module, then in light of our
earlier observation regarding the trace, this is tantamount to asserting that
H1(G,K) = 0.

Moving now to the multiplicative version of Theorem 90, we are in the
same situation of a cyclic extension K/k, and we say that an element has
norm 1 iff it is of the form α/σ(α) for α ∈ K and σ generating G. As be-
fore, write G = Gal(K/k) and consider K× as a G-module. The norm here
amounts to the trace map as define on K×, and again Hilbert’s Theorem 90
is telling us that an 1-cocyle is always a 1-coboundary, so H1(G,K) = 1.

These examples explain our earlier calculation. In fact, Emmy Noether
later showed that H1(G,K×) is trivial for any Galois extension, but we will
delve into that here.

5 Rational Points on the Circle and Pythaogrean
Triples

As a pleasant demonstration of the power of our results, let us parametrize
rational points on the circle.

Consider the cyclic Galois extension Q(i)/Q. An element of norm 1 is
one for which z̄z = |z|2 = 1. By Galois Cohomology, we know there is some
w ∈ Q(i) for which

z =
w

w̄
=
a+ bi

a− bi
where we can take a, b here to be integral. Then

z =
a2 − b2

a2 + b2
+

2ab

a2 + b2
i
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If one writes X = a2 − b2, Y = 2ab and Z = a2 + b2 then the point

X

Z
+
Y

Z
i

has the property that X2 + Y 2 = Z2, so (X,Y, Z) is a Pythaogrean triple.
Conversely, Pythagorean triples certainly correspond to rational points on
the unit circle. Thus, we now have a way of parametrization pythagorean
triples.

6 Connections to Non-Abelian Kummer Theory

We end with a result of Sah that has important applications to non-abelian
Kummer theory.

Theorem. Let G be a group and E a G-module. Let τ be in the center of G.
Then H1(G,E) is annihilated by the map x → τx − x on E. In particular,
if this map is an automorphism of E, then H1(G,E) = 0.

Proof. Let f be a 1-cocyle of G in E. Then τστ−1 = σ, so

f(σ) = f(τστ−1) = f(τ) + τf(στ−1) = f(τ) + τf(σ) + τσf(τ−1)

Therefore
τf(σ)− f(σ) = −στf(τ−1)− f(τ)

Now, f(1) = f(1) + f(1) imlpies f(1) = 0, hence

0 = f(1) = f(ττ−1) = f(τ) + τf(τ−1)

This proves that

(τ − 1)f(σ) = (σ − 1)f(τ)

Hence (τ − 1)f is a coboundary.
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