
KRONECKER-WEBER THEOREM

1. Introduction

These are some notes on the Kronecker-Weber theorem in algebraic number theory for Math 2530 at
Brown university. The proof given here follows the notes found here:
http://www.math.uchicago.edu/ may/VIGRE/VIGRE2007/REUPapers/FINALFULL/Culler.pdf
.

Let K/Q be a finite Galois extension. We call K/Q abelian if Gal(K/Q) is an abelian group.
The Kronecker-Weber theorem characterizes abelian extensions of Q. It is a vast generalization of
the fact we proved in a previous lecture: if K/Q is degree 2 then K is contained in a cyclotomic
extension Q(ζn) where ζn is an nth root of unity for some n.

Theorem 1.1. (Kronecker-Weber) Every abelian extension of Q is contained in a cyclotomic ex-
tension Q(ζn) for some n.

The proof involves an analysis of the ramification of K/Q through the use of higher ramification
groups which will be introduced in the first section. These are generalizations of the inertia group.
It also makes use of the following theorem proved earlier in the class using the geometry of num-
bers:

Theorem 1.2. (Minkowski) Every nontrivial extension of Q is ramified.

1.1. Notation. We will fix standard notation so that if L/K is an extension of number fields or
local fields, B = OL and A = OK will denote the corresponding ring of integers. We will denote by
P/p/p primes of L, K, and Q respectively. LP/Kp/Qp will denote the respective completions.

2. Ramification Groups

Let L/K be any Galois extension of number fields or local fields. The higher ramification groups
are natural generalizations of the inertia group.

Definition 2.1. The nth ramification group Gn(P|p) is defined as

Gn(P|p) = {σ ∈ Gal(L/K) : σ(x) = x mod Pn+1 for all x ∈ B}.

We will drop P/p when it is clear. When n = −1 we get the whole Galois group G and for n = 0,
G0 is the inertia group. Recall that the ramification index e(P|p) = |G0|. In particular, P is
unramified if and only if G0 = 0.

By definition, Gn ⊃ Gn+1 and G0 is a subgroup of D = D(P|p) where D is the decomposition
group. The latter follows from the fact that σ(x) = 0 mod P for σ ∈ G0 and x ∈ P so σ(P) ⊂ P.
Finally, Gn is normal in D. Indeed if σ ∈ Gn and τ ∈ D,

στx− τx ∈ Pn+1
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since σ ∈ G0 but then applying τ−1, we still land in pn+1 since τ−1 ∈ D so

τ−1στx− x ∈ Pn+1 =⇒ τ−1στx = x mod Pn+1.

Proposition 2.2. The ramification groups Gn for n ≥ 0 depend only on the local field extension
LP/Kp.

Proof. The ramification groups are contained in D for all n. There is a natural map D →
Gal(LP/Kp) because an automorphism in D lifts to the completion since it fixes P. This is clearly
injective. On the other hand, there is an inverse map by restriction so in fact D ∼= Gal(LP/Kp).
Then this isomorphism sends Gn to the corresponding ramification group of LP/Kp.

�

Reducing to the local field simplifies proofs as in the following.

Recall for a local field extension L/K we had defined the unit groups Un where U0 = B× and
Un = 1 + Pn for n ≥ 1. Let $ be a generator of P in the completion. Then any σ ∈ Gal(LP/Kp)
sends $ to another generator of P, i.e.,

σ($) = u$

for u ∈ U0. If σ ∈ Gn for n ≥ 0.

u$ = $ mod Pn+1 =⇒ u$ = $ + η$n+1 =⇒ u = 1 + η$n ∈ Un.

Thus if σ ∈ Gn for n ≥ 0, σ($)/$ ∈ Un.

Proposition 2.3. The correspondance above sending σ ∈ En to σ($)/$ ∈ Un defines an injective
homomorphism

ϕn : Gn/Gn+1 → Un/Un+1.

that is independent of the choice of $.

Proof. Suppose v$ is another generator for P. Then v is a unit and σ(v) = v mod Pn+1 so
σ(v)/v = 1 mod Pn+1 so σ(v)/v ∈ Un+1 and

σ(v$)

v$
=
σ(v)σ($)

v$
=
σ($)

$

in Un/Un+1. Thus the map ϕn : Gn → Un/Un+1, σ 7→ σ($)/$ is independent of choice of $. To
see it is a homomorphism, let σ, τ ∈ Gn.

ϕn(στ) =
στ($)

$
=
σ(α$)

$
=
σ(α)σ($)

$
=
ασ($)

$
=
τ($)

$

σ($)

$

in Un/Un+1 since α = τ($)/$ by definition.

Next suppose σ ∈ Gn+1. Then σ($)/$ ∈ Un+1 so ϕn(σ) = 1 in Un/Un+1 and the map factors as
Gn/Gn+1 → Un/Un+1.
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Finally, suppose ϕn(σ) = α = 1 mod Pn+1. Then since any x = u$k for some unit u and k ∈ Z,
we have

σ(x) = σ(u)σ($k) = σ(u)αk$k = u$k mod Pn+1

so σ ∈ Gn+1 and ϕn : Gn/Gn+1 → Un/Un+1 is injective.

�

Corollary 2.4. P is tamely ramified over p if and only if Gn = 1 for all n ≥ 1.

Proof. Suppose P is tamely ramified. Then p is coprime to |G0| so since Gn ⊂ G0 for all n, then
p is coprime to Gn/Gn+1. ϕn : Gn/Gn+1 → Un/Un+1 is an injection and we proved in a previous
lecture that for n ≥ 1

Un/Un+1
∼= B/P

which has order a power of p. Thus Gn/Gn+1 = 1 for all n ≥ 1 and so Gn = 1 for all n ≥ 1.

Conversely, suppose Gn = 1 for all n ≥ 1. Then G0/G1 = G0 is a subgroup of U0/U1 = (B/P)×

whose order is prime to p so |G0| = e(P|p) is prime to p.

�

Remark 2.5. This also lets us prove that the decomposition group D is solvable. Indeed we already
know that D/G0 is the Galois group of the residue field extension which is abelian. Then Gn/Gn+1

is abelian for n ≥ 0 since it injects into the abelian group Un/Un+1. In particular, when L/K is an
extension of local fields, D = Gal(L/K) so the Galois group of local fields is solvable.

Recall that we have the residue field extensionA/p ⊂ B/P. Then (A/p)× ⊂ (B/P)× = U0/U1.

Proposition 2.6. If D/G1 is abelian, then the image G0/G1 in (B/P)× is contained in (A/p)×.

Proof. G0/G1 ⊂ D/G1 so for any τ ∈ D and σ ∈ G0, τστ
−1 = σ in G0/G1 by the abelian

assumption.

On the other hand, if ϕ0(σ) = α, then στ−1($) = ατ−1($) mod P2 since τ−1($) is also a generator
and we showed that σ($)/$ is independent of generator modulo U1. So

α$ = σ($) = τστ−1$ = τ(α)$ mod P2

so α = τ(α) mod P for any τ ∈ D. Since D surjects onto the resiude field, then α is fixed by any
element of the Galois group of the residue field and so α ∈ A/p, the base residue field.

�

3. The Proof

3.1. Tamely ramified extensions. Now we will prove that it suffices to show Kronecker-Weber
in the case where K/Q only has wild ramification.

Theorem 3.1. Suppose K/Q is an abelian extension so that p/p is tamely ramified. Then there
exists a root of unity ζ and field extensions K ′/Q and L ⊂ Q(ζ) such that the following hold:
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(a) if q is unramified in K then it is unramified in K ′,

(b) p is unramified in K ′,

(c) and LK = LK ′.

First let us see why this reduces to the case of only wildly ramified abelian extensions. Since
there are only finitely many ramified primes, we can apply this theorem several times to get a field
extension K ′ so that K ′ has no tamely ramified primes and has exactly the same wildly ramified
primes as K and that LK = LK ′. Furthermore, LK = LK ′ is abelian since L and K each are so
K ′ is also abelian. If we can show that K ′ is contained in a cyclotomic field, then LK ′ is as well so
K ⊂ LK ′ is and we are done.

Proof. G1 = 0 by the tame ramification assumption so since the Galois group is abelian, we can
apply the previous proposition to see that the inertia G0/G1 = G0 is a subgroup of (Fp)

×. Thus
e|p− 1 and so there exists a unique extension L ⊂ Q(ζp) with degree e over Q.

We proved earlier that p is totally ramified in Q(ζp) and so p is totally and tamely ramified in L
since e is prime to p. In particular there is a unique prime q/p in L. Then take Q a prime of KL/L
lying over q. So Q lies over p ∈ Z. Let G′0 = G0(Q|p) and K ′ = (LK)G

′
0 the fixed field.

L is ramified only at p so if q is unramified in K, then q 6= p so it is also unramified in L and thus
unramified in KL. Therefore if q is unramified in K, it is unramified in K ′ ⊂ LK. Furthermore, p
is unramified in K ′ since K ′ is the inertial field of Q/p.

Now we show that LK ′ = LK by comparing degrees. First, p is unramified in K ′ and p is totally
ramified in L with ramification e = [L : Q] so p ramified in LK ′ with ramification e. In particular,
[LK ′ : K ′] ≥ e by comparing ramification indices in the diagram

LK ′

e

K ′ L

e

Q

On the other hand, [LK : K ′] = |G′0| by assumption. Q is tamely ramified since p is tamely
ramified in both L and K. G′0 injects into the multiplicative group of the residue field (Z/p)×
by the two previous propositions and so G′0 is a cyclic group. Similarly Gal(LK/Q) injects into
Gal(K/Q)×Gal(L/Q) and so G′0 does as well. Let p′ = Q ∩K. Then by definition, G′0 restricted
to K gives an element in the inertia group G0(p

′|p) but p′ is conjugate to p so the order of G0(p
′|p)

is |G0| = e.

Thus G′0 lives in the subgroup G0(p
′|p)×Gal(L/Q), both of which are groups of order e so G′0 has

exponent e. Since it is cyclic and of exponent e, |G′0| ≤ e.

Putting it together, we have

e ≥ |G′0| = [LK : K ′] ≥ [LK ′ : K ′] ≥ e

so in fact we have equalities everywhere and LK = LK ′.
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�

Since any abelian group is a product of cyclic groups of prime power, then we can decompose any
abelian extension into the composite of cyclic subextensions of prime power degree. If we can show
any such subextension is contained in a cyclotomic field, then we are done since compositums of
cyclotomic fields are cyclotomic.

In the case when [K : Q] = pn, then every prime q 6= p must be unramified or tamely ramified.
Therefore by the proposition above, we can suppose without loss of generality that every prime
other than p is unramified, and in this case p must be wildly ramified by Minkowski’s theorem
(otherwise K = Q and we’re done).

3.2. Cyclic p-power extensions. By the discussion above, we have reduced to the case where
[K : Q] = pn is a prime power cyclic extension with p the only ramified prime. Because of the
second condition, the discriminant d(K/Q) is a power of p. So to finish the proof, we need only
prove the following:

Theorem 3.2. If K/Q is as above with p odd, then K is a subfield of Q(ζ) where ζ is a pn+1 root
of unity. If p = 2, then K is a subfield of Q(ζ) with ζ and 2m+2 root of unity for some m.

Proof. If p is odd, [Q(ζ) : Q] is pn(p − 1) with cyclic Galois group. Let L be the unique (cyclic)
subextension of order pn and let σ be a generator for the Galois group.

The compositum KL is also an abelian extension of p-power order and with p-power discriminant.
Let τ be a lift of σ to KL and suppose F is the fixed field of 〈τ〉. Since σ generates Gal(L/Q), its
fixed field is Q. Thus L ∩ F = Q since τ |L = σ.

Consider the embedding

Gal(LK/Q)→ Gal(L/Q)×Gal(K/Q).

The latter groups both have order pn so any element of Gal(LK/Q) has order at most pn. In
particular τ has order at most pn. However, σ has order pn by construction so τ has order exactly
pn and [KL : F ] = pn.

Lemma 3.3. If p is an odd prime, then there is a unique extension of K/Q of order p with
discriminant a power of p.

With the lemma in hand, suppose that F 6= Q. Then L and F are both cyclic extensions of
order p-power and p-power discriminant. Therefore they both contain the unique extension above,
contradicting that L ∩ F = Q. Therefore F = Q so [L : Q] = pn = [KL : F ] = [KL : Q] and
K ⊂ KL = L ⊂ Q(ζ).

For the case p = 2 we need the following lemma.

Lemma 3.4. Suppose E/Q is a quadratic extension with 2-power discriminant. Then E = Q(
√
l)

with l = −1,±2.

Now suppose that E/Q is a 2-power extension with 2-power discriminant and that E is contained
in the real numbers. Then the Galois group Gal(E/Q) is a 2-group. Note that a two group is cyclic
if and only if there is a unique quotient of order 2. By Galois theory this is equivalent to saying
that E/Q is cyclic if and only if there is a unique subextension of order 2. By the lemma above,
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since E/Q is unramified away from 2 and 2-power, the only options for subextensions of order 2

are Q(
√
l) for l = −1,±2. Since E is real then l = 2 so is the unique subextension of order 2 and

thus E/Q is cyclic.

Now recall what we wanted to show is that if K is a 2-power extension with 2-power discriminant,
then K embeds into a cyclotomic field.

Consider K(i) where i is a root of x2 + 1. This is the compositum of K and Q(i), both of which
are unramified away from 2, and so K(i) is unramified away from 2. Let K ′ be the subextension
of K(i) that is the fixed field of complex conjugation. Then K ′ is totally real 2-power degree with
2-power discriminant and so is cyclic by the above argument. Say the degree of K ′/Q is 2m.

Take L = Q(ζ) ∩ R where ζ is a 2m+2 root of unity as in the statement of the theorem. Then L
is the fixed field of Q(ζ) by complex conjugation and so is a totally real field of degree 2m with
2-power discriminant (since its a subfield of a 2-power cyclotomic) and thus is also cyclic. Then the
compositum LK ′ is also totally real 2-power degree with 2-power discriminant and is cyclic as well.

But Gal(LK ′/L ∩ K ′) = Gal(L/L ∩ K ′) × Gal(K ′/L ∩ K ′) where each of these groups are cyclic
2-groups. The only way this could happen is if one of the groups on the right is trivial since a
product of nontrivial 2-groups is not cyclic. Therefore either L = L ∩K ′ or K ′ = L ∩K ′ but the
degrees of L and K ′ over Q are equal so either way we get that L = K ′. Therefore K ′ = L ⊂ Q(ζ)
but K ′(i) = K(i) since K ′ = K(i) ∩ R and so

K ⊂ K(i) = K ′(i) ⊂ Q(ζ, i)

and the latter is the compositum of cyclotomic extensions so it is cyclotomic and we are done.

�

3.3. Proofs of Lemmas.

Proof. (Lemma 3.3) This one is kind of involved so I’m not going to do the computations here.
However I’ll very roughly sketch the idea. See the link above for the full details.

Start with K the unique subfield of the p2 cyclotomic field of order p. This satisfies the conditions
of the lemma. Take K ′ another p order extension with p-power discriminant. Then look at K ′L
where L = Q(ζ) is a p-cyclotomic field. It can be shown that K ′L = L( p

√
(α)) for some α. It can

also be shown after some heavy computations with the Galois group using the abelian property
that

α ≡ 1 mod λp

where λ := 1− ζ.

Then the idea from here is to use this to construct an algebraic integer, namely

ξ =
1− p
√
α

λ

in KK ′L and compute its discriminant by finding the minimal polynomial. If K 6= K ′, this leads
to a nontrivial extension KL[ξ]/KL. The discriminant ends up being coprime to p and by taking
inertial fields, we get a nontrivial extension that is unramified at p but is also unramified at q 6= p
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since KL is unramified away from p. This contradicts Minkowski’s theorem that there are no
nontrivial unramified extensions of Q.

�

Proof. (Lemma 3.4) We have computed the number ring of a quadratic extension Q(
√
l) with l

squarefree as Z[β] where β =
√
l if l ≡ 2, 3 mod 4 and β = (1 +

√
l)/2 if l ≡ 1 mod 4.

In the first case the minimal polynomial of β is f(x) = x2 − l so the discriminant d = N(f ′(l)) =

N(2
√
l) = 4l. The only way this is a power of 2 for l ≡ 2, 3 mod 4 is if l = −1,±2.

In the second case the minimal polynomial of β is

f(x) = x2 + x+
1− l

2

so we compute d = N(f ′(β)) = N(2β + 1) = N(
√
l) = l. Since l ≡ 1 mod 4, there are no l with d

a power of 2 and so the above are the only options for l.

�


