- (1) Let n be an integer and s the sum of its digits when written in base p. Show that $v_p(n!) = (n-s)/(p-1)$.
- (2) Let $u \in U_1 = 1 + p\mathbb{Z}_p$ and $\alpha \in \mathbb{Z}_p$. Show that

$$u^{\alpha} = \lim_{a \to \alpha, \ a \in \mathbb{Z}} u^{\alpha}$$

exists in U_1 .

- (3) What are the absolute values of $\mathbb{Q}(i)$ extending the standard ones of \mathbb{Q} ?
- (4) The maximal unramified extension of \mathbb{Q}_p is obtained by adjoining all roots of 1 of order prime to p.
- (5) The maximal tamely ramified *abelian* extension of \mathbb{Q}_p is finite over the maximal unramified extension of \mathbb{Q}_p .
- (6) Show that the maximal unramified extension of $\mathbb{F}_p((t))$ is $\bigcup_n \mathbb{F}_{p^n}((t))$. Show that the maximal tamely ramified extension is $\bigcup_{n,p \nmid m} \mathbb{F}_{p^n}((t^{1/m}))$.
- (7) Samuel IV.3B. Part (c) refers to the fact that $X^3 + 10X + 1$ is irreducible since it has no integer roots, and that the ring of integers is generated by a root x since |D(x)| is a prime.
- (8) Group exercise: Samuel V.7B.
- (9) Group exercise: Samuel review exercises I.
- (10) Group exercise: Samuel review exercises III.