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A Outline

To show the simplicity of PSLn(F ) (for n > 3), we will consider a class of
linear maps called transvections, or shear mappings - linear maps that fix some
hyperplane, and move points in some fixed direction parallel to that hyperplane
an amount proportional to their distance from it. Transvections turn out to
both generate SLn(F ) and be transitive under conjugation. We will then be
able to show that any normal subgroup not contained in the center of SLn(F )
must contain some non-trivial transvection, and hence all of SLn(F ). It follows
from that that SLn(F )/Z(SLn(F )) is a simple group. We will take advantage
of the fact that in sufficient dimensions a hyperplane has at least two linearly
independent vectors, and this is why we require n > 2.

It might also be possible to see these facts in terms of matrix representa-
tions of these mappings, but the proof repeatedly considers transvections over
varying bases, so it is much more convenient to consider these transvections
geometrically.

B Transvections

i Definition

A linear transformation T ∈ GLn(F ) is a transvection if it is of the form
Tx = x + λ(x)u for some non-zero functional λ and some vector u ∈ Ker(λ).
Recall that a non-zero functional, as a map from an n-dimensional vector space
to a 1-dimensional vector space, has as its kernel an (n−1)-dimensional subspace
of Fn, some hyperplane: define Hλ = Ker(λ). If you like that sort of thing,
these maps have a geometric interpretation: they are linear maps that fix a
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hyperplane, and map all other vectors in a fixed direction parallel to it, an
amount proportional to their distance from the hyperplane.

Let Tλ,u, for u ∈ Ker(λ) be the the transvection where Tλ,ux 7→ x+λ(x)+u.
Then, if u, v ∈ Hλ, Tλ,u ◦ Tλ,v(x) = x + λ(x)v + λ(x + λ(x)v)u = x + λ(x)v +
λ(x)u = x + λ(x)(u + v) = Tλ,u+v(x), since u, v ∈ Ker(λ). Also, this implies
that T−1λ,ux = x− λ(x)u = Tλ,−ux.

C Proposition 1: Transvections Generate SLn(F )

First, we will sketch a proof for the fact from linear algebra that elemen-
tary matrices generate SLn(F ): the elementary matrix Eij(c) with i 6= j is the
matrix consisting of 1s on the diagonal, a c in the ijth position, and 0s every-
where else. Note that multiplication by Eij is equivalent to the row operation
of adding c times the jth row to the ith row.

Now, suppose S ∈ SLn(F ). Then, some row has non-zero first entry. Adding
a suitable multiple to the first row, we can make the first entry of the first row
equal to 1. If the first row is the only non-zero row, it can be added to the second
row, and after a suitable multiple of the second row (which now has non-zero
first entry), subtracted from the first row. Subtracting suitable multiples of the
first row from all the other rows, we can then make all the other rows’ first
entry 0. Similarly, some row now has non-zero second entry. Adding a suitable
multiple, we can make the second entry in the second row 1. Given this, we can
make the second entry of all the other rows 0, by subtracting suitable multiples
of the second. Note that this keeps the first entries fixed. As long as there
is some lower row, it is possible to make the appropriate entry 1, even if the
matrix is diagonal.

Continuing this process, we can attain a diagonal matrix. Since det(S) = 1,
the final entry must also be 1, and this matrix must be the identity. Thus, S can
be constructed from the identity by a series of row operations, and equivalently,
can be written as a product of elementary matrices.

Now, we just have to notice that any elementary matrix represents a transvec-
tion: given the elementary matrix Eij(c), let λ be the functional mapping all
basis vectors other than ej to 0, and ej to c. Then, Eij(x) = x+ λ(x)ei = Tλ,ei

2



D Proposition 2: For n ≥ 3, the non-identity
transvections form a single conjugacy class
of SLn(F )

Let Tλ,u be an arbitrary transvection and A an arbitrary element of SLn(F ).
Then, ATA−1(x) = AT (A−1x) = A(A−1x + λ(A−1x)u) = x + λ(A−1x)Au =
Tλ′,u′ where λ′ = λ ◦A−1 and u′ = Au. Since A is an automorphism, λ ◦A−1 is
a linear functional, and Au 6= 0. Thus, the non-identity transvections are closed
under conjugation.

Now, let T = Tλ,u and T ′ = Tλ′,u′ be any two distinct non-trivial transvec-
tions. Then there are some z, z′ ∈ Fn with Tz = T ′z′ = 1. Now, we
can extend u to a basis for Hλ and u′ to a basis for Hλ′ . With z and z′

respectively, these yield two different bases for fn. Since n ≥ 3, Hλ con-
tains some vector v independent from u and H ′λ v′ from u′. Then, there
is some change of basis matrix A between these two bases, with Au = u′,
AHλ = AH ′λ and Az = z′. Scaling appropriately, we can have Av = cv so that
det(A) = 1. Then, ATA−1x = x+ λ(A−1x)Au. Since Au = u′, A fixes H, and
Az = z′ ⇒ λ(A−1x) = λ′(x), then ATA−1x = x + λ′(x)u′ = T ′x. Thus, the
non-trivial transvections are transitive.

E Corollary 1: For n ≥ 3, if ∀A ∈ SLn(F ), AGA−1 ⊆
G and G contains a transvection, then SLn(F ) ⊆
G

By proposition 2, conjugates of the given transvection yield all transvec-
tions, and by proposition 1 the transvections generate SLn(F ), hence G contains
SLn(F ).

F Lemma 3: Z(SLn(F )) consists of the subgroup
of scalar multiplications

Note that for M ∈ SLn(F ) to be contained in the center Z(SLn(F )), it
must commute with all matrices of the form 1ij , i.e. matrices with a 1 in the
ith row and jth column and 0s everywhere else. Hence, M must have a zero
on all non-diagonal entries, and the same value along the the diagonal - it must
represent multiplication by some scalar. Scalar multiplication commutes with
any element of GLn(F ), hence Z(SLn(F )) consists of scalar multiplications.
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G Lemma 4: For n ≥ 3, , if ∀A ∈ SLn(F ), AGA−1 ⊆
G and G 6⊆ Z(SLn(F )), then G contains a non-
identity transvection

We just want to show G contains a transvection. Since G is not contained
in the center, there is some A ∈ G where A moves a line, i.e. ∃u ∈ Fn where
Au = v and v is not a scalar multiple of u. Recall that ATλ,uA

−1x = x +
λ(A−1x)Au = x + λ(A−1x)v 6= Tλ,u since v and u are linearly independent.
Thus, B = ATλ,uA

−1T−1 6= I.

Bx = ATA−1T−1x = ATA−1(x − λ(x)u) = x − λ(x)u + λ′(x − λ(x)u)v =
x − λ(x)u + λ′(x). Thus, Bx − x is contained in the plane (u, v). Then, let
H be some hyperplane containing u and v - then BH ⊂ H so BH = H and
Bx − x ∈ H. Since A−1 ∈ G, Tλ,uA

−1T−1λ,u, as a conjugate of an SLn(F )

invariant subgroup, is in G, so B = A(Tλ,uA
−1T−1λ,u) ∈ G.

i Case 1: All transvections on H commute with B.

Consider any w ∈ H. BTwx = Bx+ λ(x)Bw and TwBx = Bx+ λ(Bx)w =
Bx + λ(x)w. Then, since BTw = TwB, Bw = w. Thus, B fixes H. Since
Bx− x ∈ H, B is then a transvection.

ii Case 2: Some transvection Tw does not commute with
B

Let C = BTwB
−1T−1w . Then, since B and Tw do not commute, C 6= I. Now,

since BH = H = B−1H, we have that BTwB
−1 and T−1w both are transvections

with hyperplane H, so their product, C, is also a transvection. Finally, C is the
product of B and a conjugate of B−1, which by SLn(F ) invariance is in G, so
C ∈ G.

H Corollary 2: For n ≥ 3, , if ∀A ∈ SLn(F ), AGA−1 ⊆
G and G 6⊆ Z(SLn(F )), then SLn(F ) ⊆ G

Immediate from Lemma 4 and Lemma 3.
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I Proposition 3: For n ≥ 3, PSLn(F ) is simple

LetGCPSln(F ) be some non-trivial normal subgroup. Then, if φ : SLn(F )→
SLn(F )/Z(SLn(F )) ∼= PSLn(F ) is the quotient map, φ−1(G) = G is a normal
subgroup of SLn(F ). Since G is non-trivial, G 6⊂ Z(SLn(F )). Then, by Lemma
5, SLn(F ) ⊆ G, so G = PSLn(F ).
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