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Let G = SL2(F ) where F is a field of at least 4 elements. Define the following subgroups:

B =

{(
a b
0 a−1

)
∈ G

}
BT =

{(
a 0
b a−1

)
∈ G

}
U =

{(
1 b
0 1

)
∈ G

}
UT =

{(
1 0
b 1

)
∈ G

}

and define the matrix w =

(
0 1
−1 0

)
. We will begin by relating the structure of G to these subgroups.

Theorem 1 G is generated by U and UT .

Proof: First, by direct calculation, we see that for any a 6= 0(
1 a− 1
0 1

)(
1 0
1 1

)(
1 a−1 − 1
0 1

)(
1 0
−a 1

)
=

(
a 0
0 a−1

)
and also that (

1 −a
0 1

)(
1 0

a−1 1

)(
1 −a
0 1

)(
1 0
0 1

)
=

(
0 −a

a−1 0

)
so therefore any nonzero diagonal matrix is in 〈U,UT 〉.

Now, let

(
a b
c d

)
be an arbitrary element of G with a 6= 0. Note that because the determinant is 1 we have

d = (bc + 1)/a. Then, (
1 a−1c
0 1

)(
1 0
ab 1

)(
a 0
0 a−1

)
=

(
a b
c bc+1

a

)
.

Therefore, this matrix is in 〈U,UT 〉. Now, suppose a = 0 and the matrix is of the form

(
0 −b

b−1 d

)
. Then,

(
0 −b

b−1 0

)
.

(
1 bd
0 1

)
=

(
0 −b

b−1 d

)
.

Therefore, matrices of this form are also in 〈U,UT 〉. But all matrices in G have one of these two forms because
either a = 0 or a 6= 0. Therefore, G = 〈U,UT 〉.

�

Next, we will decompose G into a disjoint union of subsets.

Theorem 2 G is equal to the disjoint union B tBwB.

Proof: Let a, c 6= 0. A general element of BwB has the form(
a b
0 a−1

)(
0 1
−1 0

)(
c d
0 c−1

)
=

(
−bc ac−1 − bd
−ca−1 −da−1

)
and so necessarily the value in the bottom left of the matrix is nonzero. This component is zero for matrices in
B and so the sets are necessarily disjoint.

Let r, p 6= 0. Consider an arbitrary matrix

(
p q
r s

)
. Then,

(
pr−1 1

0 rp−1

)(
0 1
−1 0

)(
−p −psr−1
0 −p−1

)
=

(
p q
r s

)
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This shows that any element of G with first column nonzero is in BwB. Now, suppose p = 0 (and therefore we
have q = −r−1). Then, (

1 0
0 1

)(
0 1
−1 0

)(
−r −s
0 −r−1

)
=

(
0 −r−1
r s

)
This shows that any element of G with first column having a zero and then a nonzero element is in BwB. But
this means that any element of G with the bottom left element nonzero is in BwB.

Finally, any element of G with the element in the first column, second row zero is necessarily of the form(
a b
0 a−1

)
which is in B. Therefore, the proof is complete.

�

Theorem 3 B is a maximal subgroup of S. Equivalently, any subgroup containing B is either B or G.

Proof: Using theorem 2, this is equivalent to the statement (for any c 6= 0)

〈B,

(
a b
c d

)
〉 = G.

First, without loss of generality, d 6= 0. Otherwise, the product bc is necessarily nonzero (for the matrix to

have determinant 1) so we can replace

(
a b
c 0

)
with

((
1 1
0 1

)(
a b
c 0

))2

=

(
(a + c)2 + bc b(a + c)

c(a + c) bc

)
. For

simplicity, let H = 〈B,

(
a b
c d

)
〉.

I will first show that if

(
a b
c d

)
∈ H then

(
1 0

d−1c 1

)
∈ H. This follows because

(
d 0
0 d−1

)(
1 −bd−1
0 1

)(
a b
c d

)
=

(
1 0

d−1c 1

)
.

Now, let p solve the equation (d−1cp + 1)−1d−1c = x (for arbitrary x.) We have p = (cx−1d−1 − 1)dc−1. Then,(
1 0

d−1c 1

)(
1 p
0 1

)
=

(
1 p
c
d cpd−1 + 1

)
=⇒

(
1 0

(d−1cp + 1)−1d−1c 1

)
=

(
1 0
x 1

)
∈ H.

But, because all matrices of the form U ⊂ B and UT are in H we must have H = G by theorem 1. �

Here we will use the fact that the field has four or more elements.

Lemma 1 A field F with four or more elements contains a nonzero element that does not square to one.

Proof: In any field, the only elements that can square to 1 are ±1. If F has four or more elements, only three
of them can be 0 or ±1. This means that at least one element is nonzero and does not square to one. �

Now, let ′ denote commutator subgroup.

Theorem 4
G = G′.

Proof: Choose an a such that a 6= 0 and a2 6= 1. Such an a exists by the lemma. Then,(
a 0
0 a−1

)(
1 b
0 1

)(
a−1 0
0 a

)(
1 −b
0 1

)
=

(
1 b(a2 − 1)
0 1

)
∈ U.
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Because a2 6= 1 and b is a free parameter, all elements of U can be expressed in this form. But also notice
that these elements are in B′ so U ⊂ B′ and necessarily U ⊂ G′. Because conjugator subgroups are normal,
wUw−1 ⊂ G′ but, the general form of a matrix in wUw−1 is(

0 1
−1 0

)(
1 b
0 1

)(
0 1
−1 0

)−1
=

(
0 1
−1 0

)(
1 b
0 1

)(
0 −1
1 0

)
=

(
1 0
−b 1

)
.

Therefore, we can see that wUw−1 = UT so this implies U,UT ⊂ G′ or G′ = G. �

Theorem 5 ⋂
g∈G

gBg−1 = Z(G) = ±
(

1 0
0 1

)
.

Proof: A matrix of the form wBw−1 has the form(
0 1
−1 0

)(
a b
0 1

a

)(
0 −1
1 0

)
=

(
a−1 0
−b a

)
.

This means that wBw−1 = BT and that B ∩ (wBw−1) is all matrices of the form

(
a 0
0 a−1

)
. Now, let(

a b
c d

)
∈ G be an element where all entries are nonzero. Then we have

gBg−1 =

(
a b
c d

)(
x y
0 x−1

)(
a b
c d

)−1
=

(
−ayc− bc

x + adx ya2 − bxa + ba
x

−yc2 + dxc− dc
x

ad
x − bcx + acy

)
.

In order for the top right element to be zero, we require that y = bx/a − b/(xa). After substituting this in,

the matrix is equal to

(
x 0

c(x2−1)
ax

1
x

)
so in order for the element on the bottom left to be zero we require

that x2 = 1. Here, we can either choose x = ±1 and these choices correspond to the matrices ±
(

1 0
0 1

)
. This

proves that to be in the center the matrix must have the form ±
(

1 0
0 1

)
. �

Theorem 6 If H CG then H ⊂ Z(G) or H = G.

Proof: First, note that B ⊂ HB so either HB = B or HB = G by theorem 3. In the first case, H ⊂ B and,
by normality, H ⊂

⋂
g∈G gBg−1 or H ⊂ Z(G) by theorem 5.

If HB = G write w = hb where h ∈ H and b ∈ B. Then note that

wUw−1 = UT = hbUb−1h−1 = hUh−1 ⊂ HU.

This means that U,UT ⊂ HU so HU = G by theorem 1. Finally,

G/H = HU/H ∼= U/(U ∩H)

and U is abelian so G/H is abelian which implies G′ ⊂ H. By theorem 4, G = G′ so G ⊂ H. But also H ⊂ G
so we have G = H.

�

Finally, we have all of the theorems we need to make the desired conclusion.

Theorem 7 PSL2(F) = G/Z(G) is a simple group.

Proof: Let K C G/Z(G). Then we can pull K back to a normal subgroup of G. By theorem 6, this normal
subgroup is either a subgroup of the center or equal to G. Therefore, we can conclude that K = {e} or
K = G/Z(G) so G/Z(G) is simple. �
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