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Let G = SLy(F) where F is a field of at least 4 elements. Define the following subgroups:
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and define the matrix w = (_ 10

>. We will begin by relating the structure of G to these subgroups.

Theorem 1 G is generated by U and U™ .

Proof: First, by direct calculation, we see that for any a # 0
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so therefore any nonzero diagonal matrix is in (U, UT).

and also that

Now, let 2
d = (bc+1)/a. Then,

be an arbitrary element of G with a # 0. Note that because the determinant is 1 we have
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Therefore, this matrix is in (U, UT). Now, suppose a = 0 and the matrix is of the form ( 9 b

b=t d
0 -b 1 bd\ (0 =b
bt 0 )\o 1 )\t d)
Therefore, matrices of this form are also in (U,U7). But all matrices in G have one of these two forms because
either a = 0 or a # 0. Therefore, G = (U,UT).

> . Then,
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Next, we will decompose G into a disjoint union of subsets.

Theorem 2 G is equal to the disjoint union B U BwB.

Proof: Let a,c# 0. A general element of BwB has the form

a b 0 1 c d _ —bc  ac™t—bd
0 a! -1 0 0 ¢t )\ —ca! —da?

and so necessarily the value in the bottom left of the matrix is nonzero. This component is zero for matrices in
B and so the sets are necessarily disjoint.

Let r,p # 0. Consider an arbitrary matrix <f Z) Then,

pr—t 1 0 1 —p —psr—! (P q
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This shows that any element of G with first column nonzero is in BwB. Now, suppose p = 0 (and therefore we

have ¢ = —r~!). Then,
10 0 1 -r =S (0 —rt
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This shows that any element of G with first column having a zero and then a nonzero element is in BwB. But
this means that any element of G with the bottom left element nonzero is in BwB.

Finally, any element of G with the element in the first column, second row zero is necessarily of the form

(8 abl) which is in B. Therefore, the proof is complete.

Theorem 3 B is a mazimal subgroup of S. Equivalently, any subgroup containing B is either B or G.

Proof: Using theorem 2, this is equivalent to the statement (for any ¢ # 0)

a b
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First, without loss of generality, d # 0. Otherwise, the product bc is necessarily nonzero (for the matrix to
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have determinant 1) so we can replace (c 0) with ((0 1) (c 0)) = ( c(a+ ) be . For
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simplicity, let H = (B, (‘C‘ )

I will first show that if (Z Z) € H then (dllc (1)> € H. This follows because

o) ) (8= (e )

Now, let p solve the equation (d~'cp+1)~*d~tc = x (for arbitrary x.) We have p = (cx=1d~! — 1)dc™!. Then,
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But, because all matrices of the form U C B and U are in H we must have H = G by theorem 1. O
Here we will use the fact that the field has four or more elements.

Lemma 1 A field F' with four or more elements contains a nonzero element that does not square to one.

Proof: In any field, the only elements that can square to 1 are +1. If F' has four or more elements, only three
of them can be 0 or +1. This means that at least one element is nonzero and does not square to one. O

Now, let ’ denote commutator subgroup.

Theorem 4
G=d4q.

Proof: Choose an a such that a # 0 and a? # 1. Such an a exists by the lemma. Then,
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Because a? # 1 and b is a free parameter, all elements of U can be expressed in this form. But also notice
that these elements are in B’ so U C B’ and necessarily U C G’. Because conjugator subgroups are normal,
wUw™! C G’ but, the general form of a matrix in wUw ™! is

a6 = )b De -G

Therefore, we can see that wUw ™" = U7 so this implies U,UT Cc G’ or G’ = G. a
Theorem 5
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Proof: A matrix of the form wBw™! has the form

0 1 a b 0 -1\ a”t 0

-1 0 0 1 1 0 )\ -b a)
This means that wBw™' = BT and that B N (wBw™1!) is all matrices of the form (8 aol). Now, let
(Z b) € GG be an element where all entries are nonzero. Then we have

d
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In order for the top right element to be zero, we require that y = bx/a — b/(xza). After substituting this in,

T 0
the matrix is equal to ( o(a?-1) ) so in order for the element on the bottom left to be zero we require
axr 5

. . . 1 .
that 22 = 1. Here, we can either choose = 1 and these choices correspond to the matrices + (O (1)) This

. . 1
proves that to be in the center the matrix must have the form + (0 (1)) O

Theorem 6 If H <G then H C Z(G) or H=G.

Proof: First, note that B C HB so either HB = B or HB = G by theorem 3. In the first case, H C B and,
by normality, H C (\,cq 9Bg~" or H C Z(G) by theorem 5.

If HB = G write w = hb where h € H and b € B. Then note that
wUw™ ' =U" =hUb~"'h™" = UL C HU.
This means that U,UT ¢ HU so HU = G by theorem 1. Finally,
G/H=HU/H=U/(UNH)

and U is abelian so G/H is abelian which implies G’ C H. By theorem 4, G = G’ so G C H. But also H C G
so we have G = H.
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Finally, we have all of the theorems we need to make the desired conclusion.

Theorem 7 PSLy(F) = G/Z(QG) is a simple group.

Proof: Let K < G/Z(G). Then we can pull K back to a normal subgroup of G. By theorem 6, this normal
subgroup is either a subgroup of the center or equal to G. Therefore, we can conclude that K = {e} or
K =G/Z(G) so G/Z(G) is simple. O



