MA 252 notes: Commutative algebra (Distilled from [Atiyah-MacDonald])

Dan Abramovich

Brown University

January 27, 2016

Conventions

- All rings will be commutative and unitary.
- All ring homomorphisms preserve 1.
- There is one ring with 1 = 0 (up to unique isomorphism), namely the one ring $\{0\} = \{1\}$.
- Ideals are submodules.
- There are various isomorphism theorems, e.g. $\{\mathfrak{a} \subset \mathfrak{b} \subset A\} \leftrightarrow \{\overline{\mathfrak{b}} \subset A/\mathfrak{a}\}.$
- Prime ideal $\mathfrak{p} \subset A \Leftrightarrow$ quotient is an integral domain.
- Maximal ideal $\mathfrak{m} \subset A \Leftrightarrow$ quotient is a field.
- Zorn \Rightarrow : if A is not the one ring, it has a maximal ideal.
- Corollary: there is a maximal ideal containing a given non-unit $a \in A$.
- Corollary: there is a maximal ideal containing a given non-unit ideal a ⊂ A.

Examples and notes

- $k[x_1, \ldots, x_n] \ni f$ and f irreducible then (f) prime since UFD.
- Prime ideals in \mathbb{Z} are 0 and (p), with p prime.
- generally in a PID every nonzero prime is maximal: if (x) ≠ 0 prime and (y) ⊋ (x) then x = yt ⇒ t ∈ (x) ⇒ t = xz ⇒ x = yzx ⇒ yz = 1 ⇒ (y) = A.
- The inverse image of prime is prime.
- One forms ideal sums, products, powers, intersections.
- Note: $\mathfrak{ab} = \mathsf{ideal}$ generated by $\{a, b : a \in \mathfrak{a}, b \in \mathfrak{b}\}$
- $\mathfrak{a}^n = \mathfrak{a}\mathfrak{a}\cdots\mathfrak{a} = \text{ideal generated by } \{\prod_{i=1}^n a_i : a_i \in \mathfrak{a}\}.$

Local rings

Recall:

- $a \in A$ nilpotent if there is n > 0 such that $a^n = 0$.
- $a \in A$ unit if there is $b \in A$ with ab = 1, equivalently (a) = A.

Definition

A is a local ring if it has a unique maximal ideal.

Proposition

Given $\mathfrak{m} \neq A$ an ideal.

- (*) $A \setminus \mathfrak{m} \subset A^{\times}$ if and only if (**) (A, \mathfrak{m}) local.
- If \mathfrak{m} maximal and $1 + \mathfrak{m} \subset A^{\times}$ then (A, \mathfrak{m}) local

 $\mathfrak{a} \neq A \Rightarrow \mathfrak{a} \cap A^{\times} = \emptyset \Rightarrow \mathfrak{a} \subset \mathfrak{m}. \ x \notin \mathfrak{m} \Rightarrow (x, \mathfrak{m}) = a \Rightarrow xy + t = 1 \Rightarrow xy = 1 - t \Rightarrow xy \in A^{\times} \Rightarrow x \in A^{\times}$

Nilradicals

Proposition

 $\mathfrak{N}(A) := \{x \in A \text{ nilpotent}\}$ is an ideal, and $\mathfrak{N}(A/\mathfrak{N}(A)) = 0$.

(use binomial theorem).

Proposition

Let
$$\mathfrak{N}' = \cap_{P \text{ prime}} P$$
. Then $\mathfrak{N}(A) = \mathfrak{N}'$.

Given P, $f^n = 0 \Rightarrow f^n \in P \Rightarrow f \in P$. So f nilpotent $\Rightarrow f \in \cap P = \mathfrak{N}'$. So $\mathfrak{N}(A) \subset \mathfrak{N}'$. If f is not nilpotent, let $\Sigma = \{\mathfrak{a} \subset A : f^n \notin A \forall n > 0\}$. Then $\Sigma \in 0$ and Σ partially ordered by inclusion. If $\mathcal{C} = \{\mathfrak{a}_{\alpha}\}$ a chain then $\cup \mathfrak{a}_{\alpha} \in \Sigma$. Let $P \in \Sigma$ be a maximal element. We claim P prime. Suppose $x, y \notin P$. Then $P + (x), P + (y) \supseteq P$, so $f^n \in P + (x)$ and $f^m \in P + (y)$, so $f^{n+m} \in P + (xy)$, so $xy \notin P$, as reuired. Remark: P comes from a maximal ideal in the localization $A[f^{-1}]$.

$\mathfrak{R}(A) := \cap_{\mathfrak{m} \text{ maximal}} \mathfrak{m}$ for a nonzero ring.

Proposition

 $\mathfrak{R}(A) = \{x|1 - xy \in A^{\times} \forall y\}.$

If for some y the element $1 - xy \notin A^{\times}$ then $1 - xy \in \mathfrak{m}$ maximal, and so is x, so $1 \in \mathfrak{m}$, contradiction. If $x \notin \mathfrak{m}$ for some \mathfrak{m} , then $(x,\mathfrak{m}) = 1 \Rightarrow xy + t = 1 \Rightarrow 1 - xy \in \mathfrak{m} \Rightarrow 1 - xy \notin A^{\times}$.

Observations on operations

- $\mathfrak{a}(\mathfrak{b} + \mathfrak{c}) = \mathfrak{a}\mathfrak{b} + \mathfrak{a}\mathfrak{c}.$
- but $\mathfrak{a} \cap (\mathfrak{b} + \mathfrak{c}) = \mathfrak{a} \cap \mathfrak{b} + \mathfrak{a} \cap \mathfrak{c}$ if $\mathfrak{a} \supset \mathfrak{b}$ or $\mathfrak{a} \supset \mathfrak{c}$ (as if $b + c \in \mathfrak{a}$ then in the first case $c \in \mathfrak{a}$)
- $(\mathfrak{a} + \mathfrak{b})(\mathfrak{a} \cap \mathfrak{b}) \subset \mathfrak{ab}$,
- and we have equality if $\mathfrak{a} + \mathfrak{b} = 1$ (so giving $\mathfrak{a} \cap \mathfrak{b} = \mathfrak{a}\mathfrak{b}$ in this case).
- We say $\mathfrak{a}, \mathfrak{b}$ coprime if $\mathfrak{a} + \mathfrak{b} = 1$.

Chinese remainder theorem

Consider ideals \mathfrak{a}_i and homomorphism $\phi : A \to \prod A/\mathfrak{a}_i$.

Proposition

- (i) If a_i pairwise coprime then $\prod a_i = \cap a_i$.
- (ii) ϕ surjective $\Leftrightarrow \mathfrak{a}_i$ pairwise coprime.
- (iii) ϕ injective $\Leftrightarrow \cap \mathfrak{a}_i = 0$.

(iii) follows since Ker $\phi = \cap \mathfrak{a}_i$. (i) The case n = 2 was done on previous page. Assume known for n - 1, so $\mathfrak{b} := \prod_{i=1}^{n-1} \mathfrak{a}_i = \bigcap_{i=1}^{n-1} \mathfrak{a}_i$. Claim: $\mathfrak{a}_n + \mathfrak{b} = 1$. Indeed we have $\mathfrak{a}_i + \mathfrak{a}_n = 1$ so $x_i + y_i = 1$ with $x_1 \in \mathfrak{a}_i$ and $y_i \in \mathfrak{a}_n$. Now $x := \prod x_i \in \mathfrak{b}$ and $x = \prod 1 - y_i \equiv 1(\mathfrak{a}_n)$. By the case n = 2 we have $\prod \mathfrak{a}_i = \mathfrak{a}_n \mathfrak{b} = \mathfrak{b} \cap \mathfrak{a}_n = \cap \mathfrak{a}_i$. (ii) If ϕ surjective there is $x_1 \in A$ such that $x \equiv \delta_{i,1} \mod \mathfrak{a}_i$ so $\mathfrak{a}_1 + \mathfrak{a}_i = 1$. For \leftarrow take $x_i + y_i = 1$ as above and $y := \prod y_i \in \mathfrak{a}_n, y \equiv 1 \mod \mathfrak{a}_i$.

Proposition

(*i*) \mathfrak{p}_i , i = 1, ..., n primes, $\mathfrak{a} \subset \cup \mathfrak{p}_i$. Then $\mathfrak{a} \subset \mathfrak{p}_i$ for some *i*. (*ii*) $\cap \mathfrak{a}_i \subset \mathfrak{p} \Rightarrow \mathfrak{a}_i \subset \mathfrak{p}$ for some *i*. If $\mathfrak{p} = \cap \mathfrak{a}_i$ then $\mathfrak{p} = \mathfrak{a}_i$ for some *i*.

(i) Suppose true for n − 1 and assume ∀i, a ⊄ p_i. By induction there is x_j ∈ a such that x_j ∉ p_i for i ≠ j. If for some i we have x ∉ p_i we are done. Otherwise all x_i ∈ p_i and consider y_j := ∏_{i≠j} x_i and y = ∑ y_j. Then y ∈ a and for all i we have y ∉ p_i, as needed.
(ii) If p ⊄ a_i for all i then can choose x_i ∈ a_i \ p, so ∏ x_i ∈ ∩a_i \ p.
If p = ∩a_i then by (i) there is i so a_i ⊂ p ⊂ a_i.

Colon ideals, radicals of ideals

$$\begin{aligned} (\mathfrak{a}:\mathfrak{b}) &:= \{x \in A : x\mathfrak{b} \subset \mathfrak{a}\}.\\ \text{Note:} & (\mathfrak{0}:\mathfrak{b}) = Ann(\mathfrak{b}). \text{ In general } (\mathfrak{a}:\mathfrak{b}) = Ann(\mathfrak{b}/(\mathfrak{b}\cap\mathfrak{a}))\\ r(\mathfrak{a}) &:= \{x | \exists n : x^n \in \mathfrak{a}\}.\\ \text{Note:} & r(\mathfrak{a}) = \phi^{-1}\mathfrak{N}(A/\mathfrak{a}), \text{ where } \phi : A \to A/\mathfrak{a}. \text{ This implies:} \end{aligned}$$

Proposition

$$r(\mathfrak{a}) = \bigcap_{\mathfrak{p} \supset \mathfrak{a}} \mathfrak{p}.$$

The binomial theorem says that $r(\mathfrak{a} + \mathfrak{b}) = r(r(\mathfrak{a}) + r(\mathfrak{b}))$. Also $r(\mathfrak{a}) = 1 \Leftrightarrow \mathfrak{a} = 1$. These imply

Proposition

$$\mathfrak{a} + \mathfrak{b} = 1 \Leftrightarrow r(\mathfrak{a}) + r(\mathfrak{b}) = 1.$$

Image: A = A

10/11

Ideals and homomorphisms

If $f : A \to B$ and $\mathfrak{b} \subset B$ an ideal then $\mathfrak{b}^c := f^{-1}\mathfrak{b}$ an ideal. If $\mathfrak{a} \subset A$ and ideal one defines $\mathfrak{a}^e := f(\mathfrak{a})B$ the ideal generated in B. We immediately have

Proposition

(i) $\mathfrak{a} \subset \mathfrak{a}^{ec}$, $\mathfrak{b} \supset \mathfrak{b}^{ce}$, implying (ii) $\mathfrak{a}^{e} = \mathfrak{a}^{ece}$, $\mathfrak{b}^{c} = \mathfrak{b}^{cec}$ and (iii) if *E* is the set of extended and *C* the set of contracted ideals, then $\mathfrak{b} \mapsto \mathfrak{b}^{c}$ is a bijection with inverse $\mathfrak{a} \mapsto \mathfrak{a}^{e}$.