MA 252 notes: Commutative algebra (Distilled from [Atiyah-MacDonald])

Dan Abramovich

Brown University

February 11, 2017

Primary ideals

Definition

 $\mathfrak{q} \subsetneq A$ is primary if whenever $xy \in \mathfrak{q}$ then either $x \in \mathfrak{q}$ or there is n such that $y^n \in \mathfrak{q}$.

This is the same as saying: in the nonzero ring A/\mathfrak{q} every zero-divisor is nilpotent.

The inverse image of a primary ideal is a primary ideal.

Radicals of primary ideals

Lemma

If 0 is primary then $\mathfrak{N}(A)$ is prime.

Note: since $\mathfrak{N}(A)$ is the intersection of all primes, it is the smallest prime in this ring. If $xy \in \mathfrak{N}(A)$ then $x^m y^m = 0$, so either $x^m = 0$, in which case $x \in \mathfrak{N}(A)$, or $y^{mn} = 0$, in which case $y \in \mathfrak{N}(A)$. The lemma implies:

Proposition

If q is primary then r(q) is the smallest prime containing q.

If q is primary and p = r(q) then q is said to be p-primary.

- 4 同 6 4 日 6 4 日 6

- (p^n) is primary. In general p^n are the primary ideals in a PID.
- (x^k, y^m) is (x, y)-primary in k[x, y], even though not the power of a prime.
- $\mathfrak{p} = (x, z)$ is prime in $k[x, y, z]/(xy z^2)$ but \mathfrak{p}^2 is not p-primary: $xy = z^2 \in \mathfrak{p}^2$ but no power of either y is in \mathfrak{p} .

m-primaries, Intersection

Proposition

If $r(\mathfrak{a}) = \mathfrak{m}$ maximal then \mathfrak{a} is \mathfrak{m} -primary.

This implies that \mathfrak{m}^n is \mathfrak{m} -primary.

Since $\mathfrak{m}/\mathfrak{a}$ is maximal and the minimal prime, it is the only one. Every element of A/\mathfrak{a} is either a unit (outside $\mathfrak{m}/\mathfrak{a}$) or nilpotent (inside). A zero divisor is not a unit hence nilpotent.

Lemma

If q_i are p-primary then $q = \bigcap_{i=1}^n q_i$ is p-primary.

Indeed $r(\bigcap_{i=1}^{n}\mathfrak{q}_i) = \bigcap_{i=1}^{n}r(\mathfrak{q}_i) = \mathfrak{p}$. If $xy \in \mathfrak{q}$ but $y \notin \mathfrak{q}$ then $xy \in \mathfrak{q}_i$ but $y \notin \mathfrak{q}_i$ for some *i*, and then $x \in \mathfrak{p}$ so $x^n \in \mathfrak{q}$.

Colon ideals

Lemma

Suppose q is p-primary, $x \in A$. (i) If $x \in q$ then (q : x) = 1. (ii) If $x \notin q$ then (q : x) is p-primary, and r(q : x) = p. (iii) If $x \notin p$ then (q : x) = q.

(i) is the definition of an ideal. (iii) follows since $xy \in \mathfrak{q}$ implies $y \in \mathfrak{q}$. For (ii), assume $y \in (\mathfrak{q} : x)$ so $xy \in \mathfrak{q}$ but $x \notin \mathfrak{q}$, so $y \in \mathfrak{p}$. Namely $\mathfrak{q} \subset (\mathfrak{q} : x) \subset \mathfrak{p}$. So $r((\mathfrak{q} : x)) = \mathfrak{p}$. Now if $yz \in (\mathfrak{q} : x)$ but $y \notin \mathfrak{p}$ then $xyz \in \mathfrak{q}$ so $xz \in \mathfrak{q}$ so $z \in (\mathfrak{q} : x)$.

Primary decompositions

Definition

A primary decomposition of an ideal \mathfrak{a} is an expression $\mathfrak{a} = \bigcap_{i=1}^{n} \mathfrak{q}_i$, where \mathfrak{q}_i are primary. The decomposition is minimal / irredundant if (i) the radicals $r(\mathfrak{q}_i)$ are distinct and (ii) $\forall i, \mathfrak{q}_i \not\supseteq \cap_{i \neq i} \mathfrak{q}_i$.

- By a previous lemma we can replace p-primary q_i by their intersection, achieving (i). To get (ii) we can strike out violating q_i.
- Existence is not always assured.
- Regarding uniqueness, we have to be careful: $(xy, y^2) = (y) \cap (x, y)^2 = (y) \cap (x, y^2).$
- We need a weaker statement which does hold.
- Geometrically in the example there is "something along the *x*-axis" and "something embedded at the origin".

Uniqueness of the primes

Theorem

The radicals $\mathfrak{p}_i = r(\mathfrak{q}_i)$ of a minimal decomposition $\mathfrak{a} = \bigcap_{i=1}^n \mathfrak{q}_i$ are the primes among $\{(\mathfrak{a} : a) | a \in A\}$.

- Indeed, $(\mathfrak{a}: x) = (\bigcap_{i=1}^{n} \mathfrak{q}_i : x) = \bigcap_{i=1}^{n} (\mathfrak{q}_i : x)$ so $r((\mathfrak{a}: x)) = \bigcap_{i=1}^{n} r(\mathfrak{q}_i : x) = \bigcap_{x \notin \mathfrak{q}_i} \mathfrak{p}_i$.
- If r(a:x) is prime, then by an early lemma it coincides with one of the p_j. On the other hand, minimality allows to choose x ∈ ∩_{i≠j}q_j < q_i, so r(a:x) = p_i.
- We call p_i the primes associated to α (or the associated primes of α).

Minimal associated primes are called "isolated", and the primary ideals are "isolated primary components". Others are "embedded", as in the picture!

Proposition

If a decomposable, \mathfrak{p} prime and $\mathfrak{p} \supset \mathfrak{a}$ then $\mathfrak{p} \supset \mathfrak{p}_i$ for some isolated \mathfrak{p}_i . The isolated \mathfrak{p}_i are the minimal elements among primes containing a.

If $\mathfrak{p} \subset \mathfrak{a} = \cap \mathfrak{q}_i$ then $\mathfrak{p} = r(\mathfrak{p}) \supset \cap r(\mathfrak{q}_i) = \cap \mathfrak{p}_i$, so it contais one of them by the ancient lemma. So it contains a minimal one among these.

The union of primes

Proposition

Given minimal decomposition $\mathfrak{a} = \cap \mathfrak{q}_i$, with $\mathfrak{p}_i = r(\mathfrak{q}_i)$, we have $\cup \mathfrak{p}_i = \{x | (\mathfrak{a} : x) \neq \mathfrak{a}\}.$

In particular, if 0 is decomposable, then the union of associated primes forms the set D of zero-divisors. On the other hand going to A/a this is the main case.

We have seen that $D = \bigcup_{x \neq 0} r(0 : x) = \bigcup_x \bigcap_{x \notin q_i} \mathfrak{p}_i$, and $\bigcap_{x \notin q_i} \mathfrak{p}_i \subset \mathfrak{p}_i$, so $D \subset \bigcup \mathfrak{p}_i$. But we have just seen that $\mathfrak{p}_i = r(0, x)$ for some x, so equality holds.

Primary ideals in localization

Proposition

S multiplicative, q a p-primary.

- If $S \cap \mathfrak{p} \neq \emptyset$ then $\mathfrak{q}[S^{-1}] = A[S^{-1}]$.
- If $S \cap \mathfrak{p} = \emptyset$ then $\mathfrak{q}[S^{-1}]$ is $\mathfrak{p}[S^{-1}]$ -primary and contracts to \mathfrak{q} .

If $s \in S \cap p$ then $s^n \in q$ so the unit $s^n/1 \in q[S^{-1}]$. If $S \cap p = \emptyset$ and $sa \in q$ then $a \in q$ by definition of primary. So no element of S is a zero divisor in A/q, so q is a contracted ideal. Also $r(q[S^{-1}]) = r(q)[S^{-1}] = p[S^{-1}]$. If $(a/s)(b/t) \in q[S^{-1}]$ then $abu \in q$, and since $u \notin p$ we get $ab \in q$ so either $a/s \in q[S^{-1}]$ or $(b/t)^n \in q[S^{-1}]$ as needed. Finally we have seen that the contraction of a primary is primary.

・ 同 ト ・ ヨ ト ・ ヨ ト

Primary decomposition in localization

Denote by $S(\mathfrak{a})$ the ideal \mathfrak{a}^{ec} .

Proposition

Suppose $\mathfrak{a} = \cap \mathfrak{q}_i$ minimal, and S meets only $\mathfrak{q}_{m+1}, \ldots, \mathfrak{q}_n$. Then we have a primary decomposition $\mathfrak{a}[S^{-1}] = \bigcap_{i=1}^m \mathfrak{q}_i[S^{-1}]$ and also $S(\mathfrak{a}) = \bigcap_{i=1}^m \mathfrak{q}_i$

First, localization commutes with finite intersections. Then we have described $q_i[S^{-1}]$, which is prime if $i \leq m$ and A otherwise. This is minimal since the $p_i[S^{-1}]$ remain distinct in localization. Contracting gives the second statement.

Isolated sets of associated primes and uniqueness

- A set $\Sigma \subset \{\mathfrak{p}_i\}$ is isolated if whenever $\mathfrak{p}' \in \{\mathfrak{p}_i\}$ and $\mathfrak{p}' \subset \mathfrak{p} \in \Sigma$ then $\mathfrak{p}' \in \Sigma$.
- If Σ isolated and S = A \ ∪_Σp_i then S is multiplicative (it is the intersection of submonoids). Clearly p ∈ Σ ⇒ p ∩ S = Ø. But if p ∉ Σ then p ∩ S ≠ Ø. This implies

Theorem

 $\mathfrak{a} = \cap \mathfrak{q}_i, \Sigma \subset {\mathfrak{p}_i}$ isolated, then $\cap_{\mathfrak{p}_i \in \Sigma} \mathfrak{q}_i$ is independent of the decomposition.

Corollary

The isolated primary components are independent of the decomposition.

A A B