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Discrete valuation rings and Dedekind domains

Unique factorization

Proposition

Let A be a noetherian domain of dimension 1, and a an ideal.
Then there is a unique factorization a =

∏
qi where qi are primary

and r(qi ) distinct.

Consider a minimal primary decomposition a = ∩qi . Since
dimA = 1 we have pi maximal, hence pairwise coprime. So qi
are pairwise coprime, so ∩qi =

∏
qi .

Uniqueness follows from the uniqueness of the primary
decomposition, as all primes are isolated.

In case all primary ideals are prime powers, we have unique
factorization into primes. We’ll describe such rings.
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Discrete valuation rings and Dedekind domains

Discrete valuation rings

A discrete valuation on a field K is a surjective homomorphism
v : K× → Z such that v(x + y) ≥ min(v(x), v(y)).

This implies that {0} ∪ {x : v(x) ≥ 0} is a subring - the
valuation ring. It is indeed a valuation ring of K .

We have seen examples when we discussed valuations rings,
we just need to define v : in Z(p) or Zp define v(p) = 1. In
k[x ](x) or kJxK define v(x) = 1.

A discrete valuation ring is the valuation ring of its fraction
field. We have seen it is local, with maximal ideal
m = {0} ∪ {x : v(x) > 0}
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Discrete valuation rings and Dedekind domains

Ideals in discrete valuation rings

v(x) = v(y) implies (x) = (y).

If a 6= 0 let k = min{v(x) : x ∈ a}. Then
a = {x : v(x) ≥ k} = mk .

An element with v(x) = 1 generates m.

It follows that the nonzero ideals are mk , a single descending
chain.

Hence A noetherian.

m the only nonzero prime, hence dimA = 1
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Discrete valuation rings and Dedekind domains

Chracterizations of discrete valuation rings

Theorem

Let A be Noetherian local domain, dimA = 1. Let m maximal,
k = A/m. We have equivalence:

(i) A DVR

(ii) A integrally closed

(iii) m principal

(iv) dimk m/m
2 = 1

(v) every nonzero ideal is mk

(vi) there is x such that every nonzero ideal is (xk).
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Discrete valuation rings and Dedekind domains

Chracterizations - proof. . .

A. Note that any a 6= 0, 1 is m-primary and contains some mn

(proven for Noetherian)

B. Note that mn 6= mn+1 (since no mk = 0).

(i) implies (ii) since valuation ring.

(iii) implies dimk m/m
2 ≤ 1 by Nakayama, and equality from

B, implying (iv).

Assume (iv). Since a ⊃ mn we can apply what we learned in
Artin rings and get that a/mn,m/mn are principal, so
a/mn = mk/mn, implying (v).

Take x ∈ mrm2, so assuming (v), the ideal (x) = mk with
1 ≤ k < 2 and (vi) follows.

Given (vi) we have (x) = m, and (xk) 6= (xk+1), so a = µxk

for unique k and unit µ. Define v(a) = k and extend
v(a/b) = v(a)− v(b). This defines a valuation. . . (i)
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Discrete valuation rings and Dedekind domains

Chracterizations . . . proof end

To prove (ii) implies (iii) take 0 6= a ∈ m.

By (A), mn ⊂ (a) and mn−1 6⊂ (a) for some n.

Take b ∈ mn−1 r (a) and x = a/b ∈ K .

x−1 6∈ A since b 6∈ (a), so x−1 not integral over A.

This implies x−1m 6⊂ m.

Claim: x−1m = (b/a)m ⊂ A. Indeed (a) ⊃ mn ⊃ mb implies
A ⊃ mb

a

So x−1m = A, and m = Ax = (x). ♠
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Dedekind domains

Theorem

For A noetherian of dimension 1, the following are equivalent:

(i) A integrally closed,

(ii) every primary ideal is a prime power,

(iii) every localization at a maximal ideal is a DVR.

Such rings are called Dedekind domains.

We have seen that being integrally closed is a local property,
so (i) is equivalent to (iii). This is the key equivalence.

If (ii) holds then in every Ap every ideal is mk (by (A.)) so Ap

is DVR.

Conversely, if a is p-primary then a ⊃ pm. We have
Ap/m

m ' A/pm ⊃ a/pm ' ap/m
m. If Ap a DVR then

ap = mk so a/pm = pk/pm so a = pk .
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Discrete valuation rings and Dedekind domains

Unique factorization, rings of integers

Corollary

An ideal a 6= 0 in a Dedekind domain has a unique factorization
a =

∏
pk into prime powers.

Theorem

The ring of integers OK in a number field K is a Dedekind domain.

Noetherian: K/Q separable so OK ⊂
∑

Zvi . So A is a
finitely generated Z-module so Noetherian.

Integrally closed: the integral closure is integrally closed.

Dimension 1: Let p be a nonzero prime. By the preliminaries
to “going up” p ∩ Z 6= 0, so p ∩ Z = (p) is maximal, so p
maximal.
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Fractional ideals

Fix a domain and fraction field A ⊂ K .

A fractional ideal is an A-submidule M ⊂ K such that for
some x ∈ K we have xM ⊂ A.

Ideals are fractional ideals.

Modules of the form Au are principal fractional ideals.

If M ⊂ K is a finitely generated A-module it is a fractional
ideal, by clearing denominators of generators xi = yi/zi .

If A is noetherian and M ⊂ K a fractional ideal then M is
finitely generated: it is isomorphic to the ideal xM.
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Discrete valuation rings and Dedekind domains

Invertible ideals

An invertible ideal M ⊂ K is such that there is N ⊂ K with
MN = A. In this case N = (A : M) := {x ∈ K : xM ⊂ A}:
N ⊂ (A : M) = (A : M)MN ⊂ AN = N.

An invertible ideal is finitely generated: if M(A : M) = A then∑
xiyi = 1, xi ∈ M, yi ∈ N, so x =

∑
(yix)xi with yix ∈ A.

Invertible ideals form a group under multiplication,

Nonzero principal fractional ideals form a subgroup.
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Discrete valuation rings and Dedekind domains

Fractional ideals and localization

Proposition

If M fractional, these are equivalent:

M invertible,

M finitely generated and Mp invertible for all p,

M finitely generated and Mm invertible for all m.

If M invertible, then Ap = (M(A : M))p = Mp(Ap : Mp),
though you need to re-prove (A : M)p = (Ap : Mp) in this
context.

If the last holds, write a = M(A : M), an ideal. Again
am = Mm(Am : Mm) = Am, so a = A.
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Fractional ideals and DVRs

Proposition

A local is a DVR if and only if every nonzero fractional ideal is
invertible.

Assume A DVR and let m = (x), M ⊂ K fractional. There is
y ∈ A such that yM ⊂ A so yM = (x r ) so M = (x r/y)A, in
fact principal invertible of the form x r−sA.

If the fractional ideals are invertible, the ideals are invertible
so finitely generated, and A noetherian. We claim every ideal
is a power of m.
The set of ideals which are not powers of m, if nonempty,
have a maximal element a. Since a 6= m we have a ⊂ m and
m−1a ( m−1m = A an ideal containing a, so m−1a = mk so
a = mk−1, contradiction.
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Fractional ideals and Dedekind domains

Theorem

An integral domain A is a Dedekind domain if and only if every
nonzero fractional ideal is invertible.

Assume A Dedekind and M 6= 0 fractional. For all p 6= 0 we
have Mp fractional ideal in DVR Ap so invertible. Also M
finitely generated as A noetherian. It follows that M is
invertible.

Assume every fractional ideal is invertible. In particular every
ideal is finitely generated so A noetherian. To show that all
Ap are DVRs it suffices by the previous result to show all
ideals ap are invertible over Ap. But this follows since a is
invertible over A.
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Discrete valuation rings and Dedekind domains

Ideal group and ideal class group

Corollary

For A Dedekind, nonzero fractional ideals form a group I(A) under
multiplication.

The unit element is A.
We have an exact sequence 1→ A× → K× → I(A)→ Cl(A)→ 1.

Corollary

A Dedekind domain A is a UFD if and only if it is a PID if and
only if Cl(A) = 1.
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Finiteness of the class group and the unit theorem

Theorem (Dirichlet)

Let K be a number field. Then Cl(OK ) is finite.

Theorem (Dirichlet)

Let K be a number field. Then

O×K ' µ(K )× Zr+s−1,

where the group µ(K ) of roots of 1 in K is ciclic, r is the number
of distinct embeddings K ↪→ R, and r + 2s = [K : Q].
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Affine algebraic curves

Theorem (Riemann, Abel-Jacobi)

Let A be the integral closure of C[x ] in a finite extension K of
C(x). Then there is an integer g such that

Cl(A) ' Cg/Z2g+t ' (S1)2g/Zt ,

namely the subgroup Z2g+t contains a lattice.
Also

A× ' C× × Zt′ .

The integer s = t + t ′ + 1 counts the number of points needed to
compactify the Riemann surface. It is bounded by [K : C(x)].
There is an exact sequence

1→ C× → A× → Zs → (S1)2g × Z→ Cl(A)→ 1.
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