MA 205/206 notes: Crash course on cohomology Following Liu 5.2-3

Dan Abramovich

Brown University

April 22, 2018

• We are working with schemes X.

- The structure is governed by sheaves of abelian groups, such as \mathcal{O}_X .
- Most important are Sheaves of \mathcal{O}_X -modules.
- Particularly useful are Quasi-coherent sheaves of \mathcal{O}_X -modules.
- We want to understand their sections.
- For instance: we classified morphisms $X \to \mathbb{P}^n$ through sections of an invertible sheaf.

- We are working with schemes X.
- The structure is governed by sheaves of abelian groups, such as \mathcal{O}_X .
- Most important are Sheaves of \mathcal{O}_X -modules.
- Particularly useful are Quasi-coherent sheaves of \mathcal{O}_X -modules.
- We want to understand their sections.
- For instance: we classified morphisms $X \to \mathbb{P}^n$ through sections of an invertible sheaf.

- We are working with schemes X.
- The structure is governed by sheaves of abelian groups, such as \mathcal{O}_X .
- Most important are Sheaves of \mathcal{O}_X -modules.
- Particularly useful are Quasi-coherent sheaves of \mathcal{O}_X -modules.
- We want to understand their sections.
- For instance: we classified morphisms $X \to \mathbb{P}^n$ through sections of an invertible sheaf.

- We are working with schemes X.
- The structure is governed by sheaves of abelian groups, such as \mathcal{O}_X .
- Most important are Sheaves of \mathcal{O}_X -modules.
- Particularly useful are Quasi-coherent sheaves of \mathcal{O}_X -modules.
- We want to understand their sections.
- For instance: we classified morphisms X → Pⁿ through sections of an invertible sheaf.

- We are working with schemes X.
- The structure is governed by sheaves of abelian groups, such as \mathcal{O}_X .
- Most important are Sheaves of \mathcal{O}_X -modules.
- Particularly useful are Quasi-coherent sheaves of \mathcal{O}_X -modules.
- We want to understand their sections.
- For instance: we classified morphisms X → Pⁿ through sections of an invertible sheaf.

- We are working with schemes X.
- The structure is governed by sheaves of abelian groups, such as \mathcal{O}_X .
- Most important are Sheaves of \mathcal{O}_X -modules.
- Particularly useful are Quasi-coherent sheaves of \mathcal{O}_X -modules.
- We want to understand their sections.
- For instance: we classified morphisms X → Pⁿ through sections of an invertible sheaf.

Reminder: failure of right-exactness

- Recall the sheaf axiom $0 \to \mathcal{F}(U) \to \prod \mathcal{F}(U_i) \to \prod \mathcal{F}(U_{ij})$.
- If $0 \to \mathcal{F}' \to \mathcal{F} \to \mathcal{F}'' \to 0$ exact then $0 \to \mathcal{F}'(X) \to \mathcal{F}(X) \to \mathcal{F}''(X)$ exact. .
- but right exactness fails in general:
- say Y = two points in $X = \mathbb{P}^1$;
- then $0 \rightarrow \mathcal{I}_Y \rightarrow \mathcal{O}_X \rightarrow \mathcal{O}_Y \rightarrow 0$, but
- $0 \rightarrow 0 \rightarrow k \rightarrow k^2 \rightarrow 0$ is not.

Reminder: failure of right-exactness

- Recall the sheaf axiom $0 \to \mathcal{F}(U) \to \prod \mathcal{F}(U_i) \to \prod \mathcal{F}(U_{ij})$.
- If $0 \to \mathcal{F}' \to \mathcal{F} \to \mathcal{F}'' \to 0$ exact then $0 \to \mathcal{F}'(X) \to \mathcal{F}(X) \to \mathcal{F}''(X)$ exact...
- but right exactness fails in general:
- say Y = two points in $X = \mathbb{P}^1$;
- then $0 \rightarrow \mathcal{I}_Y \rightarrow \mathcal{O}_X \rightarrow \mathcal{O}_Y \rightarrow 0$, but
- $0 \rightarrow 0 \rightarrow k \rightarrow k^2 \rightarrow 0$ is not.

• Recall the sheaf axiom $0 \to \mathcal{F}(U) \to \prod \mathcal{F}(U_i) \to \prod \mathcal{F}(U_{ij})$.

• If
$$0 \to \mathcal{F}' \to \mathcal{F} \to \mathcal{F}'' \to 0$$
 exact then
 $0 \to \mathcal{F}'(X) \to \mathcal{F}(X) \to \mathcal{F}''(X)$ exact. .

• but right exactness fails in general:

• say
$$Y =$$
 two points in $X = \mathbb{P}^1$;

- then $0 \rightarrow \mathcal{I}_Y \rightarrow \mathcal{O}_X \rightarrow \mathcal{O}_Y \rightarrow 0$, but
- $0 \rightarrow 0 \rightarrow k \rightarrow k^2 \rightarrow 0$ is not.

• Recall the sheaf axiom $0 \to \mathcal{F}(U) \to \prod \mathcal{F}(U_i) \to \prod \mathcal{F}(U_{ij})$.

• If
$$0 \to \mathcal{F}' \to \mathcal{F} \to \mathcal{F}'' \to 0$$
 exact then
 $0 \to \mathcal{F}'(X) \to \mathcal{F}(X) \to \mathcal{F}''(X)$ exact. .

- but right exactness fails in general:
- say Y = two points in $X = \mathbb{P}^1$;
- then $0 \to \mathcal{I}_Y \to \mathcal{O}_X \to \mathcal{O}_Y \to 0$, but

• $0 \rightarrow 0 \rightarrow k \rightarrow k^2 \rightarrow 0$ is not.

• Recall the sheaf axiom $0 \to \mathcal{F}(U) \to \prod \mathcal{F}(U_i) \to \prod \mathcal{F}(U_{ij})$.

• If
$$0 \to \mathcal{F}' \to \mathcal{F} \to \mathcal{F}'' \to 0$$
 exact then
 $0 \to \mathcal{F}'(X) \to \mathcal{F}(X) \to \mathcal{F}''(X)$ exact. .

- but right exactness fails in general:
- say Y = two points in $X = \mathbb{P}^1$;
- then $0 \to \mathcal{I}_Y \to \mathcal{O}_X \to \mathcal{O}_Y \to 0$, but
- $0 \rightarrow 0 \rightarrow k \rightarrow k^2 \rightarrow 0$ is not.

Comments on how this is resolved

- We'll follow Liu, following SERRE, *Faisceax algébriques cohérents*, to resolve using Čech cohomology. This works for sections of quasi-coherent sheaves.
- Hartshorne follows GROTHENDIECK, *Sur quelques points d'algèbre homologique*¹, to resolve this using derived finctors. This works in the context of left-exact additive functors on abelian categories with enough injective objects.
- An important modern approach uses derived categories (GELFAND-MANIN, WEIBEL), still in the additive realm.
- Homotopy theory has even loftier approaches (model categories, ...)

Comments on how this is resolved

- We'll follow Liu, following SERRE, *Faisceax algébriques cohérents*, to resolve using Čech cohomology. This works for sections of quasi-coherent sheaves.
- Hartshorne follows GROTHENDIECK, *Sur quelques points d'algèbre homologique*¹, to resolve this using derived finctors. This works in the context of left-exact additive functors on abelian categories with enough injective objects.
- An important modern approach uses derived categories (GELFAND-MANIN, WEIBEL), still in the additive realm.
- Homotopy theory has even loftier approaches (model categories, ...)

Comments on how this is resolved

- We'll follow Liu, following SERRE, *Faisceax algébriques cohérents*, to resolve using Čech cohomology. This works for sections of quasi-coherent sheaves.
- Hartshorne follows GROTHENDIECK, *Sur quelques points d'algèbre homologique*¹, to resolve this using derived finctors. This works in the context of left-exact additive functors on abelian categories with enough injective objects.
- An important modern approach uses derived categories (GELFAND-MANIN, WEIBEL), still in the additive realm.
- Homotopy theory has even loftier approaches (model categories, ...)

- We'll follow Liu, following SERRE, *Faisceax algébriques cohérents*, to resolve using Čech cohomology. This works for sections of quasi-coherent sheaves.
- Hartshorne follows GROTHENDIECK, *Sur quelques points d'algèbre homologique*¹, to resolve this using derived finctors. This works in the context of left-exact additive functors on abelian categories with enough injective objects.
- An important modern approach uses derived categories (GELFAND-MANIN, WEIBEL), still in the additive realm.
- Homotopy theory has even loftier approaches (model categories, ...)

¹never do that to yourself!

- Given a covering $\mathcal{U} := \{U_i\}$ of X one defines a complex $0 \to \mathcal{F}(X) \to C^0(\mathcal{U}, \mathcal{F}) \xrightarrow{d_0} C^1(\mathcal{U}, \mathcal{F}) \xrightarrow{d_1} \cdots$,
- where $C^{p}(\mathcal{U},\mathcal{F}) := \prod \mathcal{F}(U_{i_0,\ldots,i_p}).$

• For $f \in C^p(\mathcal{U}, \mathcal{F})$ one defines

$$df = \sum_{0}^{p+1} (-1)^k f_{i_0, \dots, \hat{i_k}, \dots, i_{p+1}} | u_{i_0, \dots, i_{p+1}} |$$

Proposition (5.2.6)

 $\check{H}^{0}(\mathcal{U},\mathcal{F})=\mathcal{F}(X).$

- Given a covering $\mathcal{U} := \{U_i\}$ of X one defines a complex $0 \to \mathcal{F}(X) \to C^0(\mathcal{U}, \mathcal{F}) \xrightarrow{d_0} C^1(\mathcal{U}, \mathcal{F}) \xrightarrow{d_1} \cdots$,
- where $C^{p}(\mathcal{U},\mathcal{F}) := \prod \mathcal{F}(U_{i_0,\ldots,i_p}).$
- For $f \in C^p(\mathcal{U}, \mathcal{F})$ one defines

$$df = \sum_{0}^{p+1} (-1)^k f_{i_0, \dots, \hat{i_k}, \dots, i_{p+1}} |_{U_{i_0, \dots, i_{p+1}}}$$

Proposition (5.2.6)

 $\check{H}^{0}(\mathcal{U},\mathcal{F})=\mathcal{F}(X).$

- Given a covering $\mathcal{U} := \{U_i\}$ of X one defines a complex $0 \to \mathcal{F}(X) \to C^0(\mathcal{U}, \mathcal{F}) \xrightarrow{d_0} C^1(\mathcal{U}, \mathcal{F}) \xrightarrow{d_1} \cdots$,
- where $C^{p}(\mathcal{U},\mathcal{F}) := \prod \mathcal{F}(U_{i_0,\ldots,i_p}).$
- For $f \in C^p(\mathcal{U}, \mathcal{F})$ one defines

$$df = \sum_{0}^{p+1} (-1)^k f_{i_0, \dots, \hat{i_k}, \dots, i_{p+1}} |_{U_{i_0, \dots, i_{p+1}}}|$$

Exercise: d² = 0.
Define H^p(U, F) = Ker(d_p)/ℑ(d_{p-1}).

Proposition (5.2.6)

 $\check{H}^{0}(\mathcal{U},\mathcal{F})=\mathcal{F}(X).$

- Given a covering $\mathcal{U} := \{U_i\}$ of X one defines a complex $0 \to \mathcal{F}(X) \to C^0(\mathcal{U}, \mathcal{F}) \xrightarrow{d_0} C^1(\mathcal{U}, \mathcal{F}) \xrightarrow{d_1} \cdots$,
- where $C^{p}(\mathcal{U},\mathcal{F}) := \prod \mathcal{F}(U_{i_0,\ldots,i_p}).$
- For $f \in C^p(\mathcal{U}, \mathcal{F})$ one defines

$$df = \sum_{0}^{p+1} (-1)^k f_{i_0, \dots, \hat{i_k}, \dots, i_{p+1}} |_{U_{i_0, \dots, i_{p+1}}}|$$

Proposition (5.2.6)

 $\check{H}^{0}(\mathcal{U},\mathcal{F})=\mathcal{F}(X).$

Instead of $C(\mathcal{U}, \mathcal{F})$ one can work instead with alternating chains $C'(\mathcal{U}, \mathcal{F})$ or with the direct summand $C''(\mathcal{U}, \mathcal{F}) = \prod_{i_0 < \cdots < i_p} \mathcal{F}(U_{i_0, \dots, i_p}).$

Proposition

We have
$$\check{H}(\mathcal{U},\mathcal{F}) = \check{H}'(\mathcal{U},\mathcal{F}) = \check{H}''(\mathcal{U},\mathcal{F}).$$

This is proved by Serre using a homotopy of chain complexes.

Corollary

If \mathcal{U} contains n opens then $\check{H}^{p}(\mathcal{U},\mathcal{F})=0$ for all $p\geq n$.

▲□ ► < □ ► </p>

Instead of $C(\mathcal{U}, \mathcal{F})$ one can work instead with alternating chains $C'(\mathcal{U}, \mathcal{F})$ or with the direct summand $C''(\mathcal{U}, \mathcal{F}) = \prod_{i_0 < \cdots < i_p} \mathcal{F}(U_{i_0, \dots, i_p}).$

Proposition

We have
$$\check{H}(\mathcal{U},\mathcal{F}) = \check{H}'(\mathcal{U},\mathcal{F}) = \check{H}''(\mathcal{U},\mathcal{F}).$$

This is proved by Serre using a homotopy of chain complexes.

Corollary

If \mathcal{U} contains n opens then $\check{H}^{p}(\mathcal{U},\mathcal{F})=0$ for all $p\geq n$.

- 4 同 2 4 日 2 4 日 2

Instead of $C(\mathcal{U}, \mathcal{F})$ one can work instead with alternating chains $C'(\mathcal{U}, \mathcal{F})$ or with the direct summand $C''(\mathcal{U}, \mathcal{F}) = \prod_{i_0 < \cdots < i_p} \mathcal{F}(U_{i_0, \dots, i_p}).$

Proposition

We have
$$\check{H}(\mathcal{U},\mathcal{F}) = \check{H}'(\mathcal{U},\mathcal{F}) = \check{H}''(\mathcal{U},\mathcal{F}).$$

This is proved by Serre using a homotopy of chain complexes.

Corollary

If
$${\mathcal U}$$
 contains n opens then $\check{H}^p({\mathcal U},{\mathcal F})=0$ for all $p\geq n.$

・ロト ・同ト ・ヨト ・ヨト

Example: Consider X = P¹_A with the open sets U_i = D₊(T_i).
The Čech complex C''(U, F) of O_X is

$$0 \to A \to A[t] \oplus A[t^{-1}] \stackrel{d_0}{\to} A[t, t^{-1}] \to 0 \cdots$$

- $\check{H}(\mathcal{U}, \mathcal{O}_X) = \operatorname{Ker}(d_0) = A$,
- $\check{H}^1(\mathcal{U}, \mathcal{O}_X) = \operatorname{Coker}(d_0) = 0$,
- and the rest is 0.

Example: Consider X = P¹_A with the open sets U_i = D₊(T_i).
The Čech complex C''(U, F) of O_X is

$$0 \rightarrow A \rightarrow A[t] \oplus A[t^{-1}] \stackrel{d_0}{\rightarrow} A[t, t^{-1}] \rightarrow 0 \cdots$$

•
$$\check{\mathsf{H}}(\mathcal{U},\mathcal{O}_X)=\mathsf{Ker}(d_0)=A$$
,

•
$$\check{H}^1(\mathcal{U},\mathcal{O}_X) = \operatorname{Coker}(d_0) = 0$$
,

and the rest is 0.

- A refinement $\mathcal{V} = \{V_j\}_{j \in J}$ of $\mathcal{U} = \{U_i\}_{i \in I}$ is a covering \mathcal{V} with a map $\sigma : J \to I$ such that $U_{\sigma(i)} \subset V_i$.
- Get a map σ^{*}: C(U, F) → C(V, F) compatible with grading and differentials,
- giving $\sigma^* : \check{H}(\mathcal{U}, \mathcal{F}) \to \check{H}(\mathcal{V}, \mathcal{F}).$
- Serre shows this homomorphism is independent of σ .
- Two coverings are equivalent if each is a refinement of the other.
- Define

$$\check{\mathrm{H}}^{p}(X,\mathcal{F}) = \varinjlim_{\mathcal{U}} \check{\mathrm{H}}^{p}(\mathcal{U},\mathcal{F}),$$

- For quasicompact spaces finite covers suffice. For schemes affine covers suffice.
- Read Theorem 5.2.12 on a criterion for $\check{H}(U, \mathcal{F}) \to \check{H}(X, \mathcal{F})$ to be an isomorphism (Leray's theorem)

- A refinement V = {V_j}_{j∈J} of U = {U_i}_{i∈I} is a covering V with a map σ : J → I such that U_{σ(i)} ⊂ V_j.
- Get a map $\sigma^* : C(\mathcal{U}, \mathcal{F}) \to C(\mathcal{V}, \mathcal{F})$ compatible with grading and differentials,
- giving $\sigma^* : \check{H}(\mathcal{U}, \mathcal{F}) \to \check{H}(\mathcal{V}, \mathcal{F}).$
- Serre shows this homomorphism is independent of σ .
- Two coverings are equivalent if each is a refinement of the other.
- Define

$$\check{\mathrm{H}}^{p}(X,\mathcal{F}) = \varinjlim_{\mathcal{U}} \check{\mathrm{H}}^{p}(\mathcal{U},\mathcal{F}),$$

- For quasicompact spaces finite covers suffice. For schemes affine covers suffice.
- Read Theorem 5.2.12 on a criterion for H(U, F) → H(X, F) to be an isomorphism (Leray's theorem)

- A refinement V = {V_j}_{j∈J} of U = {U_i}_{i∈I} is a covering V with a map σ : J → I such that U_{σ(i)} ⊂ V_j.
- Get a map $\sigma^* : C(\mathcal{U}, \mathcal{F}) \to C(\mathcal{V}, \mathcal{F})$ compatible with grading and differentials,
- giving $\sigma^* : \check{H}(\mathcal{U}, \mathcal{F}) \to \check{H}(\mathcal{V}, \mathcal{F}).$
- Serre shows this homomorphism is independent of σ .
- Two coverings are equivalent if each is a refinement of the other.
- Define

$$\check{\mathrm{H}}^{p}(X,\mathcal{F}) = \varinjlim_{\mathcal{U}} \check{\mathrm{H}}^{p}(\mathcal{U},\mathcal{F}),$$

- For quasicompact spaces finite covers suffice. For schemes affine covers suffice.
- Read Theorem 5.2.12 on a criterion for $\check{H}(U, \mathcal{F}) \to \check{H}(X, \mathcal{F})$ to be an isomorphism (Leray's theorem)

- A refinement V = {V_j}_{j∈J} of U = {U_i}_{i∈I} is a covering V with a map σ : J → I such that U_{σ(i)} ⊂ V_j.
- Get a map $\sigma^* : C(\mathcal{U}, \mathcal{F}) \to C(\mathcal{V}, \mathcal{F})$ compatible with grading and differentials,
- giving $\sigma^* : \check{H}(\mathcal{U}, \mathcal{F}) \to \check{H}(\mathcal{V}, \mathcal{F}).$
- Serre shows this homomorphism is independent of σ .
- Two coverings are equivalent if each is a refinement of the other.
- Define

$$\check{\mathrm{H}}^{p}(X,\mathcal{F}) = \varinjlim_{\mathcal{U}} \check{\mathrm{H}}^{p}(\mathcal{U},\mathcal{F}),$$

- For quasicompact spaces finite covers suffice. For schemes affine covers suffice.
- Read Theorem 5.2.12 on a criterion for H(U, F) → H(X, F) to be an isomorphism (Leray's theorem)

- A refinement V = {V_j}_{j∈J} of U = {U_i}_{i∈I} is a covering V with a map σ : J → I such that U_{σ(i)} ⊂ V_j.
- Get a map $\sigma^* : C(\mathcal{U}, \mathcal{F}) \to C(\mathcal{V}, \mathcal{F})$ compatible with grading and differentials,
- giving $\sigma^* : \check{H}(\mathcal{U}, \mathcal{F}) \to \check{H}(\mathcal{V}, \mathcal{F}).$
- Serre shows this homomorphism is independent of σ .
- Two coverings are equivalent if each is a refinement of the other.
- Define

$$\check{\mathrm{H}}^{p}(X,\mathcal{F}) = \varinjlim_{\mathcal{U}} \check{\mathrm{H}}^{p}(\mathcal{U},\mathcal{F}),$$

the $\check{\mathsf{C}}\mathsf{ech}$ cohomology of $\mathcal{F}.$

- For quasicompact spaces finite covers suffice. For schemes affine covers suffice.
- Read Theorem 5.2.12 on a criterion for H(U, F) → H(X, F) to be an isomorphism (Leray's theorem)

- A refinement V = {V_j}_{j∈J} of U = {U_i}_{i∈I} is a covering V with a map σ : J → I such that U_{σ(i)} ⊂ V_j.
- Get a map $\sigma^* : C(\mathcal{U}, \mathcal{F}) \to C(\mathcal{V}, \mathcal{F})$ compatible with grading and differentials,
- giving $\sigma^* : \check{H}(\mathcal{U}, \mathcal{F}) \to \check{H}(\mathcal{V}, \mathcal{F}).$
- Serre shows this homomorphism is independent of σ .
- Two coverings are equivalent if each is a refinement of the other.
- Define

$$\check{\mathrm{H}}^{p}(X,\mathcal{F}) = \varinjlim_{\mathcal{U}} \check{\mathrm{H}}^{p}(\mathcal{U},\mathcal{F}),$$

- For quasicompact spaces finite covers suffice. For schemes affine covers suffice.
- Read Theorem 5.2.12 on a criterion for H(U, F) → H(X, F) to be an isomorphism (Leray's theorem)

- A refinement V = {V_j}_{j∈J} of U = {U_i}_{i∈I} is a covering V with a map σ : J → I such that U_{σ(i)} ⊂ V_j.
- Get a map $\sigma^* : C(\mathcal{U}, \mathcal{F}) \to C(\mathcal{V}, \mathcal{F})$ compatible with grading and differentials,
- giving $\sigma^* : \check{H}(\mathcal{U}, \mathcal{F}) \to \check{H}(\mathcal{V}, \mathcal{F}).$
- Serre shows this homomorphism is independent of σ .
- Two coverings are equivalent if each is a refinement of the other.
- Define

$$\check{\mathrm{H}}^{p}(X,\mathcal{F}) = \varinjlim_{\mathcal{U}} \check{\mathrm{H}}^{p}(\mathcal{U},\mathcal{F}),$$

- For quasicompact spaces finite covers suffice. For schemes affine covers suffice.
- Read Theorem 5.2.12 on a criterion for $\check{H}(U, \mathcal{F}) \rightarrow \check{H}(X, \mathcal{F})$ to be an isomorphism (Leray's theorem)

- The construction of $C(\mathcal{U}, \mathcal{F})$ and $\check{H}(\mathcal{U}, \mathcal{F})$ is functorial in \mathcal{F} .
- Hence $\check{H}(\mathcal{U}, \mathcal{F})$ is functorial in \mathcal{F} .
- Suppose now $0 \to \mathcal{F}' \to \mathcal{F} \to \mathcal{F}'' \to 0$ exact,
- and suppose further

 $0 \to C(\mathcal{U}, \mathcal{F}') \to C(\mathcal{U}, \mathcal{F}) \to C(\mathcal{U}, \mathcal{F}'') \to 0$ exact.

• Then

$$\stackrel{\partial}{\to} \check{H}^{p}(\mathcal{U},\mathcal{F}') \to \check{H}^{p}(\mathcal{U},\mathcal{F}) \to \check{H}^{p}(\mathcal{U},\mathcal{F}'') \stackrel{\partial}{\to}$$

exat.

• If further this holds for a cofinal family of coverings, then

$$\overset{\partial}{\to} \check{H}^{p}(X,\mathcal{F}') \to \check{H}^{p}(X,\mathcal{F}) \to \check{H}^{p}(X,\mathcal{F}'') \overset{\partial}{\to}$$

- The construction of $C(\mathcal{U}, \mathcal{F})$ and $\check{H}(\mathcal{U}, \mathcal{F})$ is functorial in \mathcal{F} .
- Hence $\check{H}(\mathcal{U}, \mathcal{F})$ is functorial in \mathcal{F} .
- Suppose now $0 \to \mathcal{F}' \to \mathcal{F} \to \mathcal{F}'' \to 0$ exact,
- and suppose further

 $0 \to C(\mathcal{U},\mathcal{F}') \to C(\mathcal{U},\mathcal{F}) \to C(\mathcal{U},\mathcal{F}'') \to 0 \text{ exact}.$

Then

$$\stackrel{\partial}{\to} \check{H}^{\rho}(\mathcal{U},\mathcal{F}') \to \check{H}^{\rho}(\mathcal{U},\mathcal{F}) \to \check{H}^{\rho}(\mathcal{U},\mathcal{F}'') \stackrel{\partial}{\to}$$

exat.

• If further this holds for a cofinal family of coverings, then

$$\overset{\partial}{\to} \check{H}^{p}(X, \mathcal{F}') \to \check{H}^{p}(X, \mathcal{F}) \to \check{H}^{p}(X, \mathcal{F}'') \overset{\partial}{\to}$$

- The construction of $C(\mathcal{U}, \mathcal{F})$ and $\check{H}(\mathcal{U}, \mathcal{F})$ is functorial in \mathcal{F} .
- Hence $\check{H}(\mathcal{U}, \mathcal{F})$ is functorial in \mathcal{F} .
- Suppose now $0 \to \mathcal{F}' \to \mathcal{F} \to \mathcal{F}'' \to 0$ exact,
- and suppose further

 $0 \to C(\mathcal{U},\mathcal{F}') \to C(\mathcal{U},\mathcal{F}) \to C(\mathcal{U},\mathcal{F}'') \to 0 \text{ exact}.$

Then

$$\stackrel{\partial}{\to} \check{H}^{\rho}(\mathcal{U},\mathcal{F}') \to \check{H}^{\rho}(\mathcal{U},\mathcal{F}) \to \check{H}^{\rho}(\mathcal{U},\mathcal{F}'') \stackrel{\partial}{\to}$$

exat.

• If further this holds for a cofinal family of coverings, then

$$\stackrel{\partial}{\to} \check{H}^{p}(X,\mathcal{F}') \to \check{H}^{p}(X,\mathcal{F}) \to \check{H}^{p}(X,\mathcal{F}'') \stackrel{\partial}{\to}$$

- The construction of $C(\mathcal{U}, \mathcal{F})$ and $\check{H}(\mathcal{U}, \mathcal{F})$ is functorial in \mathcal{F} .
- Hence $\check{H}(\mathcal{U}, \mathcal{F})$ is functorial in \mathcal{F} .
- Suppose now $0 \to \mathcal{F}' \to \mathcal{F} \to \mathcal{F}'' \to 0$ exact,
- and suppose further

 $0 \to C(\mathcal{U},\mathcal{F}') \to C(\mathcal{U},\mathcal{F}) \to C(\mathcal{U},\mathcal{F}'') \to 0 \text{ exact}.$

Then

$$\stackrel{\partial}{\to} \check{H}^{\rho}(\mathcal{U},\mathcal{F}') \to \check{H}^{\rho}(\mathcal{U},\mathcal{F}) \to \check{H}^{\rho}(\mathcal{U},\mathcal{F}'') \stackrel{\partial}{\to}$$

exat.

• If further this holds for a cofinal family of coverings, then

$$\stackrel{\partial}{\rightarrow} \check{H}^{p}(X,\mathcal{F}') \rightarrow \check{H}^{p}(X,\mathcal{F}) \rightarrow \check{H}^{p}(X,\mathcal{F}'') \stackrel{\partial}{\rightarrow}$$
In general we only have

Proposition (2.15)

Suppose $0 \to \mathcal{F}' \to \mathcal{F} \to \mathcal{F}'' \to 0$ exact. Then there is a functorial $\partial : \mathcal{F}''(X) \to \check{H}^1(X, \mathcal{F}')$ with exact sequence

$$egin{aligned} 0 &
ightarrow \mathcal{F}'(x)
ightarrow \mathcal{F}(x)
ightarrow \mathcal{F}''(x) \ &rac{\partial}{
ightarrow} \check{\mathrm{H}}^1(X,\mathcal{F}')
ightarrow \check{\mathrm{H}}^1(X,\mathcal{F})
ightarrow \check{\mathrm{H}}^1(X,\mathcal{F}'). \end{aligned}$$

In fact in general one uses other cohomology constructions.

In general we only have

Proposition (2.15)

Suppose $0 \to \mathcal{F}' \to \mathcal{F} \to \mathcal{F}'' \to 0$ exact. Then there is a functorial $\partial : \mathcal{F}''(X) \to \check{H}^1(X, \mathcal{F}')$ with exact sequence

$$egin{aligned} 0 &
ightarrow \mathcal{F}'(x)
ightarrow \mathcal{F}(x)
ightarrow \mathcal{F}''(x) \ &rac{\partial}{
ightarrow} \check{\mathrm{H}}^1(X,\mathcal{F}')
ightarrow \check{\mathrm{H}}^1(X,\mathcal{F})
ightarrow \check{\mathrm{H}}^1(X,\mathcal{F}'), \end{aligned}$$

In fact in general one uses other cohomology constructions.

Quasicoherent on affines

Lemma

Let X be affine, \mathcal{F} quasicoherent, \mathcal{U} a finite covering by principal opens. Then $\check{H}^{p}(\mathcal{U}, \mathcal{F}) = 0$ for $p \geq 1$.

- When we proved Proposition 5.1.8, I showed this for you as a Lemma in case p = 1. The proof is "the same", with slightly more horrendous indices.
- This boils down to constructing a homotopy using a "partition of unity" $\sum h_i g_i^m = 1$, where $U_i = D(g_i)$.

Theorem (2.18)

Let X be affine, \mathcal{F} quasicoherent. Then $\check{H}^{p}(X, \mathcal{F}) = 0$ for $p \geq 1$.

Indeed the family of finite coverings by principal opens is cofinal.

Lemma

Let X be affine, \mathcal{F} quasicoherent, \mathcal{U} a finite covering by principal opens. Then $\check{H}^{p}(\mathcal{U}, \mathcal{F}) = 0$ for $p \geq 1$.

• When we proved Proposition 5.1.8, I showed this for you as a Lemma in case p = 1. The proof is "the same", with slightly more horrendous indices.

• This boils down to constructing a homotopy using a "partition of unity" $\sum h_i g_i^m = 1$, where $U_i = D(g_i)$.

Theorem (2.18)

Let X be affine, \mathcal{F} quasicoherent. Then $\check{H}^{p}(X, \mathcal{F}) = 0$ for $p \geq 1$.

Indeed the family of finite coverings by principal opens is cofinal.

Lemma

Let X be affine, \mathcal{F} quasicoherent, \mathcal{U} a finite covering by principal opens. Then $\check{H}^{p}(\mathcal{U}, \mathcal{F}) = 0$ for $p \geq 1$.

- When we proved Proposition 5.1.8, I showed this for you as a Lemma in case p = 1. The proof is "the same", with slightly more horrendous indices.
- This boils down to constructing a homotopy using a "partition of unity" $\sum h_i g_i^m = 1$, where $U_i = D(g_i)$.

Theorem (2.18)

Let X be affine, \mathcal{F} quasicoherent. Then $\check{H}^{p}(X, \mathcal{F}) = 0$ for $p \geq 1$.

Indeed the family of finite coverings by principal opens is cofinal.

(日) (同) (三) (三)

Lemma

Let X be affine, \mathcal{F} quasicoherent, \mathcal{U} a finite covering by principal opens. Then $\check{H}^{p}(\mathcal{U}, \mathcal{F}) = 0$ for $p \geq 1$.

- When we proved Proposition 5.1.8, I showed this for you as a Lemma in case p = 1. The proof is "the same", with slightly more horrendous indices.
- This boils down to constructing a homotopy using a "partition of unity" $\sum h_i g_i^m = 1$, where $U_i = D(g_i)$.

Theorem (2.18)

Let X be affine, \mathcal{F} quasicoherent. Then $\check{H}^{p}(X, \mathcal{F}) = 0$ for $p \geq 1$.

Indeed the family of finite coverings by principal opens is cofinal.

- 4 同 1 4 日 1 4 日

- This implies that $\check{H}^{p}(\mathbb{P}^{1}_{A}, \mathcal{O}) = 0$ for all p > 0.
- This is proven in the book as a consequence of Leray's acyclicity, which is not proven there.
- One can prove directly using the total complex of a double complex
- One deduces that $\check{H}^{p}(\mathcal{U},\mathcal{F}) \to \check{H}^{p}(\mathcal{W},\mathcal{F})$ is an isomorphism.

- This implies that $\check{H}^{p}(\mathbb{P}^{1}_{A},\mathcal{O})=0$ for all p>0.
- This is proven in the book as a consequence of Leray's acyclicity, which is not proven there.
- One can prove directly using the total complex of a double complex
- One deduces that $\check{H}^{p}(\mathcal{U},\mathcal{F}) \to \check{H}^{p}(\mathcal{W},\mathcal{F})$ is an isomorphism.

- This implies that $\check{H}^{p}(\mathbb{P}^{1}_{\mathcal{A}},\mathcal{O}) = 0$ for all p > 0.
- This is proven in the book as a consequence of Leray's acyclicity, which is not proven there.
- One can prove directly using the total complex of a double complex
- One deduces that $\check{H}^{p}(\mathcal{U},\mathcal{F}) \to \check{H}^{p}(\mathcal{W},\mathcal{F})$ is an isomorphism.

- This implies that $\check{H}^{p}(\mathbb{P}^{1}_{A}, \mathcal{O}) = 0$ for all p > 0.
- This is proven in the book as a consequence of Leray's acyclicity, which is not proven there.
- One can prove directly using the total complex of a double complex
- One deduces that $\check{H}^{p}(\mathcal{U},\mathcal{F}) \to \check{H}^{p}(\mathcal{W},\mathcal{F})$ is an isomorphism.

- This implies that $\check{H}^{p}(\mathbb{P}^{1}_{\mathcal{A}},\mathcal{O})=0$ for all p>0.
- This is proven in the book as a consequence of Leray's acyclicity, which is not proven there.
- One can prove directly using the total complex of a double complex
- One deduces that $\check{H}^{p}(\mathcal{U},\mathcal{F}) \to \check{H}^{p}(\mathcal{W},\mathcal{F})$ is an isomorphism.

Corollary

Let X be separated, $0 \to \mathcal{F}' \to \mathcal{F} \to \mathcal{F}'' \to 0$ exact, then we have a long exact sequence

$$\begin{split} 0 &\to \mathcal{F}'(x) \to \mathcal{F}(x) \to \mathcal{F}''(x) \\ &\stackrel{\partial}{\to} \check{H}^{1}(X, \mathcal{F}') \to \check{H}^{1}(X, \mathcal{F}) \to \check{H}^{1}(X, \mathcal{F}'') \\ &\stackrel{\partial}{\to} \check{H}^{2}(X, \mathcal{F}') \to \check{H}^{2}(X, \mathcal{F}) \to \check{H}^{2}(X, \mathcal{F}'') \\ &\stackrel{\partial}{\to} \cdots \end{split}$$

< ∃ >

Suppose X either notherian or separated and quasicompact. Then the following are equivalent:

- (i) X affine.
- (ii) $\check{H}^{p}(X, \mathcal{F})$ for every quasicoherent \mathcal{F} and p > 0.

(iii) $\check{H}^{1}(X, \mathcal{F})$ for every quasicoherent \mathcal{F} .

- Let $A = \mathcal{O}(X)$. Need to show $\phi : X \to \operatorname{Spec} A$ an isomorphism.
- For $f \in A$ we have $X_f = \phi^{-1}D(f)$ and by an old result $\mathcal{O}_X(X_f) = A[f^{-1}].$
- If X_f affine then $\phi_{X_f}: X_f \to D(f)$ an isomorphism,
- so it suffices to show (1) each x ∈ X lies in an affine X_f, and
 (2) φ surjective.

□ ► < □ ► </p>

Suppose X either notherian or separated and quasicompact. Then the following are equivalent:

- (i) X affine.
 (ii) H
 ^p(X, F) for every quasicoherent F and p > 0.
 (iii) H
 ¹(X, F) for every quasicoherent F.
 - Let $A = \mathcal{O}(X)$. Need to show $\phi : X \to \operatorname{Spec} A$ an isomorphism.
 - For $f \in A$ we have $X_f = \phi^{-1}D(f)$ and by an old result $\mathcal{O}_X(X_f) = A[f^{-1}].$
 - If X_f affine then $\phi_{X_f}: X_f \to D(f)$ an isomorphism,
 - so it suffices to show (1) each x ∈ X lies in an affine X_f, and
 (2) φ surjective.

Suppose X either notherian or separated and quasicompact. Then the following are equivalent:

- (i) X affine.
 (ii) H
 ^p(X, F) for every quasicoherent F and p > 0.
 (iii) H
 ¹(X, F) for every quasicoherent F.
 - Let $A = \mathcal{O}(X)$. Need to show $\phi : X \to \operatorname{Spec} A$ an isomorphism.
 - For $f \in A$ we have $X_f = \phi^{-1}D(f)$ and by an old result $\mathcal{O}_X(X_f) = A[f^{-1}].$
 - If X_f affine then $\phi_{X_f}: X_f \to D(f)$ an isomorphism,
 - so it suffices to show (1) each x ∈ X lies in an affine X_f, and
 (2) φ surjective.

Suppose X either notherian or separated and quasicompact. Then the following are equivalent:

- (i) X affine.
 (ii) H
 ^p(X, F) for every quasicoherent F and p > 0.
 (iii) H
 ¹(X, F) for every quasicoherent F.
 - Let A = O(X). Need to show φ : X → Spec A an isomorphism.
 - For $f \in A$ we have $X_f = \phi^{-1}D(f)$ and by an old result $\mathcal{O}_X(X_f) = A[f^{-1}].$
 - If X_f affine then $\phi_{X_f}: X_f o D(f)$ an isomorphism,
 - so it suffices to show (1) each x ∈ X lies in an affine X_f, and
 (2) φ surjective.

伺 ト イヨト イヨト

Suppose X either notherian or separated and quasicompact. Then the following are equivalent:

- (i) X affine.
 (ii) H
 ^p(X, F) for every quasicoherent F and p > 0.
 (iii) H
 ¹(X, F) for every quasicoherent F.
 - Let $A = \mathcal{O}(X)$. Need to show $\phi : X \to \operatorname{Spec} A$ an isomorphism.
 - For $f \in A$ we have $X_f = \phi^{-1}D(f)$ and by an old result $\mathcal{O}_X(X_f) = A[f^{-1}].$
 - If X_f affine then $\phi_{X_f}: X_f \to D(f)$ an isomorphism,
 - so it suffices to show (1) each $x \in X$ lies in an affine X_f , and (2) ϕ surjective.

伺 ト イヨト イヨト

- The closure $\overline{\{x\}}$ is quasicompact, hence has a closed point;
- might as well assume x closed.
- Let $\mathcal{M} = \mathcal{I}_{\{x\}}$. Let $U \ni x$ be an affine neighborhood. Let $J = \mathcal{I}_{X \smallsetminus U}$.
- $0 \to \mathcal{M}\mathcal{J} \to \mathcal{J} \to \mathcal{J}/\mathcal{M}\mathcal{J} \to 0$ is exact.
- The latter is a skyscraper with fiber k(x) at x.
- By assumption $H^1(X, \mathcal{MJ}) = 0$,
- and by the general exact sequence there is $f \in \mathcal{J}$ such that $f(x) \neq 0$.
- Note that $X_f = D_U(f)$ is an affine neighborhood of x.

- The closure $\overline{\{x\}}$ is quasicompact, hence has a closed point;
- might as well assume x closed.
- Let $\mathcal{M} = \mathcal{I}_{\{x\}}$. Let $U \ni x$ be an affine neighborhood. Let $J = \mathcal{I}_{X \smallsetminus U}$.
- $0 \to \mathcal{M}\mathcal{J} \to \mathcal{J} \to \mathcal{J}/\mathcal{M}\mathcal{J} \to 0$ is exact.
- The latter is a skyscraper with fiber k(x) at x.
- By assumption $H^1(X, \mathcal{MJ}) = 0$,
- and by the general exact sequence there is $f \in \mathcal{J}$ such that $f(x) \neq 0$.
- Note that $X_f = D_U(f)$ is an affine neighborhood of x.

- The closure $\overline{\{x\}}$ is quasicompact, hence has a closed point;
- might as well assume x closed.
- Let $\mathcal{M} = \mathcal{I}_{\{x\}}$. Let $U \ni x$ be an affine neighborhood. Let $J = \mathcal{I}_{X \smallsetminus U}$.
- $0 \to \mathcal{M}\mathcal{J} \to \mathcal{J} \to \mathcal{J}/\mathcal{M}\mathcal{J} \to 0$ is exact.
- The latter is a skyscraper with fiber k(x) at x.
- By assumption $H^1(X, \mathcal{MJ}) = 0$,
- and by the general exact sequence there is $f \in \mathcal{J}$ such that $f(x) \neq 0$.
- Note that $X_f = D_U(f)$ is an affine neighborhood of x.

- The closure $\overline{\{x\}}$ is quasicompact, hence has a closed point;
- might as well assume x closed.
- Let $\mathcal{M} = \mathcal{I}_{\{x\}}$. Let $U \ni x$ be an affine neighborhood. Let $J = \mathcal{I}_{X \smallsetminus U}$.
- $0 \to \mathcal{M}\mathcal{J} \to \mathcal{J} \to \mathcal{J}/\mathcal{M}\mathcal{J} \to 0$ is exact.
- The latter is a skyscraper with fiber k(x) at x.
- By assumption $H^1(X, \mathcal{MJ}) = 0$,
- and by the general exact sequence there is $f \in \mathcal{J}$ such that $f(x) \neq 0$.
- Note that $X_f = D_U(f)$ is an affine neighborhood of x.

伺 ト イ ヨ ト イ ヨ ト

- The closure $\overline{\{x\}}$ is quasicompact, hence has a closed point;
- might as well assume x closed.
- Let $\mathcal{M} = \mathcal{I}_{\{x\}}$. Let $U \ni x$ be an affine neighborhood. Let $J = \mathcal{I}_{X \smallsetminus U}$.
- $0 \to \mathcal{M}\mathcal{J} \to \mathcal{J} \to \mathcal{J}/\mathcal{M}\mathcal{J} \to 0$ is exact.
- The latter is a skyscraper with fiber k(x) at x.
- By assumption $H^1(X, \mathcal{MJ}) = 0$,
- and by the general exact sequence there is $f \in \mathcal{J}$ such that $f(x) \neq 0$.
- Note that $X_f = D_U(f)$ is an affine neighborhood of x.

通 と イ ヨ と イ ヨ と

- The closure $\overline{\{x\}}$ is quasicompact, hence has a closed point;
- might as well assume x closed.
- Let $\mathcal{M} = \mathcal{I}_{\{x\}}$. Let $U \ni x$ be an affine neighborhood. Let $J = \mathcal{I}_{X \smallsetminus U}$.
- $0 \to \mathcal{M}\mathcal{J} \to \mathcal{J} \to \mathcal{J}/\mathcal{M}\mathcal{J} \to 0$ is exact.
- The latter is a skyscraper with fiber k(x) at x.
- By assumption $H^1(X, \mathcal{MJ}) = 0$,
- and by the general exact sequence there is $f \in \mathcal{J}$ such that $f(x) \neq 0$.
- Note that $X_f = D_U(f)$ is an affine neighborhood of x.

通 と イ ヨ と イ ヨ と

• Take finitely many f_i so that $X = \bigcup X_{f_i}$.

- Need to show $A = \bigcup X_{f_i}$, namely $(f_1, \ldots, f_m) = (1)$.
- Consider $\psi : \mathcal{O}_X^n \to \mathcal{O}_X$, where $\psi(a_1, \ldots, a_n) = \sum a_i f_i$.
- 0 → Kerψ → Oⁿ → O → 0 is an exact sequence of quasicoherent sheaves.
- Since H¹(X, Kerψ) = 0 we have Aⁿ → A surjective, as needed!

- Take finitely many f_i so that $X = \bigcup X_{f_i}$.
- Need to show $A = \bigcup X_{f_i}$, namely $(f_1, \ldots, f_m) = (1)$.
- Consider $\psi : \mathcal{O}_X^n \to \mathcal{O}_X$, where $\psi(a_1, \ldots, a_n) = \sum a_i f_i$.
- 0 → Kerψ → Oⁿ → O → 0 is an exact sequence of quasicoherent sheaves.
- Since H¹(X, Kerψ) = 0 we have Aⁿ → A surjective, as needed!

- Take finitely many f_i so that $X = \bigcup X_{f_i}$.
- Need to show $A = \bigcup X_{f_i}$, namely $(f_1, \ldots, f_m) = (1)$.
- Consider $\psi : \mathcal{O}_X^n \to \mathcal{O}_X$, where $\psi(a_1, \ldots, a_n) = \sum a_i f_i$.
- 0 → Kerψ → Oⁿ → O → 0 is an exact sequence of quasicoherent sheaves.
- Since H¹(X, Kerψ) = 0 we have Aⁿ → A surjective, as needed!

- Take finitely many f_i so that $X = \bigcup X_{f_i}$.
- Need to show $A = \bigcup X_{f_i}$, namely $(f_1, \ldots, f_m) = (1)$.
- Consider $\psi : \mathcal{O}_X^n \to \mathcal{O}_X$, where $\psi(a_1, \ldots, a_n) = \sum a_i f_i$.
- 0 → Kerψ → Oⁿ → O → 0 is an exact sequence of quasicoherent sheaves.
- Since H¹(X, Kerψ) = 0 we have Aⁿ → A surjective, as needed!

伺 ト イ ヨ ト イ ヨ ト

- Take finitely many f_i so that $X = \bigcup X_{f_i}$.
- Need to show $A = \bigcup X_{f_i}$, namely $(f_1, \ldots, f_m) = (1)$.
- Consider $\psi : \mathcal{O}_X^n \to \mathcal{O}_X$, where $\psi(a_1, \ldots, a_n) = \sum a_i f_i$.
- 0 → Kerψ → Oⁿ → O → 0 is an exact sequence of quasicoherent sheaves.
- Since H¹(X, Kerψ) = 0 we have Aⁿ → A surjective, as needed!

Write *d* for the maximal dimension of a fiber of $X \rightarrow \text{Spec } A$.

Proposition

- Write $Y = \overline{X}$ and $Z = Y \setminus X$.
- Write $Y_1 = V(f), X_1 = X \cap Y_1, Z_1 = Z \cap Z_1.$
- We have by induction d affines covering X_1 ,
- so together with $D_+(f)$ they give d affines.

Write *d* for the maximal dimension of a fiber of $X \rightarrow \text{Spec } A$.

Proposition

- Write $Y = \overline{X}$ and $Z = Y \setminus X$.
- Write $Y_1 = V(f), X_1 = X \cap Y_1, Z_1 = Z \cap Z_1.$
- We have by induction d affines covering X_1 ,
- so together with $D_+(f)$ they give d affines.

Write *d* for the maximal dimension of a fiber of $X \rightarrow \text{Spec } A$.

Proposition

- Write $Y = \overline{X}$ and $Z = Y \setminus X$.
- Write $Y_1 = V(f), X_1 = X \cap Y_1, Z_1 = Z \cap Z_1.$
- We have by induction d affines covering X_1 ,
- so together with $D_+(f)$ they give d affines.

Write *d* for the maximal dimension of a fiber of $X \rightarrow \text{Spec } A$.

Proposition

- Write $Y = \overline{X}$ and $Z = Y \setminus X$.
- Write $Y_1 = V(f), X_1 = X \cap Y_1, Z_1 = Z \cap Z_1.$
- We have by induction d affines covering X_1 ,
- so together with $D_+(f)$ they give d affines.

Relative cohomology: affine case

We say $f: X \to Y$ is quasicompact if preimage of affine open is quasicompact.

Lemma

Let $f : X \to \text{Spec } A$ be separated and quasicompact, \mathcal{F} quasicoherent on X, and M an A-module. Denote $\mathcal{F} \otimes_A M = \mathcal{F} \otimes f^* \tilde{M}$. Then there is a canonical morphism $H^p(X, \mathcal{F}) \otimes_A M \to H^p(X, \mathcal{F} \otimes_A M)$, which is an isomorphism when M is flat.

- Taking a finite affine covering all the intersections are affine.
- One verifies term by term that $C^{p}(\mathcal{U}, \mathcal{F}) \otimes M = C^{p}(\mathcal{U}, \mathcal{F} \otimes M).$
- If K[•] is a complex of A-modules there is a canonical map h^p(K[•]) ⊗ M → h^p(K[•] ⊗ M), which is isomorphic if M is flat, as needed.

Corollary

Assume further B is a flat A-algebra, and $\rho : X_B \to X$ the base change. Then $H^p(X, \mathcal{F}) \otimes_A B \simeq H^p(X_B, \rho^* \mathcal{F})$.

One notes that $C(\mathcal{U}_B, \rho^*\mathcal{F}) = C(\mathcal{U}, \mathcal{F} \otimes_A B).$

Say $f: X \to Y$ separated and quasicompact, \mathcal{F} quasicoherent on X. For $V \subset Y$ affine open and $p \ge 0$ define $R^p f_* \mathcal{F}(V) := H^p(f^{-1}V, \mathcal{F}).$

Proposition

This is a quasicoherent sheaf on Y.

We call it the *p*-th higher direct image sheaf. If $W \subset V$ principal open we have a homomorphism

$$H^p(f^{-1}V,\mathcal{F})\otimes_{\mathcal{O}(V)}\mathcal{O}(W) o H^p(f^{-1}W,\mathcal{F}),$$

which is an isomorphism since $\mathcal{O}(W)$ is a flat $\mathcal{O}(V)$ algebra.

Flat sheaves

We say \mathcal{F} is flat at x if \mathcal{F}_x is a flat $\mathcal{O}_{X,x}$ -module. If $f: X \to Y$ we say that \mathcal{F} is flat over Y at x if \mathcal{F}_x is a flat $\mathcal{O}_{Y,f(x)}$ -module. We say \mathcal{F} is flat over Y if t is flat over Y at all $x \in X$.

Lemma

Assume \mathcal{F} quasicoherent. Then \mathcal{F} is flat over X if and only if for all affine opens $\mathcal{F}(U)$ is a flat $\mathcal{O}(U)$ -module. If furthermore X locally noetherian and \mathcal{F} coherent, then \mathcal{F} is flat over X if and only if \mathcal{F} is locally free.

A module is flat if and only if all its localizations are. A finite module over a noetherian local ring is flat if and only if it is free.
Proposition

Let $f : X \to Y$ be separated and quasicompact, \mathcal{F} quasicoherent on X and \mathcal{G} quasicoherent on Y. Then there is a canonical homomorphism $(R^p f_* \mathcal{F}) \otimes_{\mathcal{O}_Y} \mathcal{G} \to R^p f_*(\mathcal{F} \otimes_{\mathcal{O}_X} f^* \mathcal{G})$ which is an isomorphism whenever \mathcal{G} is flat over Y.

- $\bullet\,$ If ${\cal G}$ is flat, this homomorphism is called "flat base change".
- For a morphism $g: Y' \to Y$ with pullback $g': X' \to X$ and $f': X' \to Y'$ this gives $g^*(R^p f_*\mathcal{F}) \to R^p f'_*(g'^*\mathcal{F})$, an isomorphism if g is flat.
- To prove let $V \subset Y$ be affine.
- $LHS = H^p(f^{-1}V, \mathcal{F}) \otimes_{\mathcal{O}(V)} \mathcal{G}(V),$
- $RHS = H^p(f^{-1}V, \mathcal{F} \otimes_{\mathcal{O}(V)} \mathcal{G}(V)).$
- This was done under "affine case".

Say $f: X \to Y$ a quasiprojective morphism, Y locally noetherian. Write $y = \max_{y \in Y} \dim X_y$.

Proposition

If \mathcal{F} quasicoherent on X then $R^p f_* \mathcal{F} = 0$ whenever p > r.

Proof: pass to affines, where it was done.

Proposition

Say
$$B = A[X_0, \dots, X_d]$$
 and $X = \operatorname{Proj} B$. Then

(a)
$$H^0(X, \mathcal{O}(n)) = B_n$$
,

(b)
$$H^{i}(X, \mathcal{O}(n)) = 0$$
 for $0 < i < d$

(c)
$$H^d(X, \mathcal{O}(n)) \simeq H^0(X, \mathcal{O}(-n-d-1))^{\vee}$$
.

(a) has been proven. (c) is an exercise assigned. (b) can be found in Hartshorne or FAC.

/□ ▶ < 글 ▶ < 글

Theorem

If A noetherian, X/A projective, \mathcal{L} ample, \mathcal{F} coherent then

- $H^p(X, \mathcal{F})$ is a finitely generated A-module for all p.
- For large n and any p > 0 we have $H^p(X, \mathcal{F} \otimes \mathcal{L}(n)) = 0$.
- Say \mathcal{L}^k is very ample giving an embedding $f: X \to \mathbb{P}^d_A$.
- H^p(X, F) = H^p(P^d_A, f_{*}F) by an exercise you are doing for Friday. So may assume X = P^d_A.
- Proving the result for *F* ⊗ *L^j*, 0 ≤ *j* < *r* shows that it is enough to take *L* = *O*(1).

伺 ト イ ヨ ト イ ヨ ト

Serre vanishing - completed

- $H^p(X, \mathcal{F})$ is a finitely generated A-module for all p.
- For large *n* and any p > 0 we have $H^p(X, \mathcal{F} \otimes \mathcal{L}(n)) = 0$.
- We know that H^p(X, F) = 0 for p > d. Apply descending induction.
- Choose an exact sequence $0 \to \mathcal{G} \to \mathcal{O}(m)^r \to \mathcal{F} \to 0$. We get $H^p(\mathcal{O}(m)^r) \to H^p(\mathcal{F}) \to H^{p+1}(\mathcal{G})$ exact.
- We know the result for $\mathcal{O}(m)^r$ and for H^{p+1} , and it follows for $H^p(\mathcal{F})$

Corollary

Let $X \to Y$ be a projective morphism, Y noetherian, \mathcal{F} coherent. Then $R^p f_* \mathcal{F}$ is coherent.

Theorem

For a proper morphism $X \to \text{Spec } A$ and invertible \mathcal{L} the following are equivalent:

- \mathcal{L} is ample on X
- for any coherent \mathcal{F} , for all p, for large enough n we have $H^p(X, \mathcal{F} \otimes \mathcal{L}^n) = 0.$
- For any ideal sheaf \mathcal{J} , for large enough n we have $H^p(X, \mathcal{J} \otimes \mathcal{L}^n) = 0.$

We proved (i) \Rightarrow (ii) \rightarrow (iii).