MA 205 notes: Sheaves of \mathcal{O}_X -modules Following Liu 5.1

Dan Abramovich

Brown University

Today

- A scheme is a (locally) ringed space (X, O_X) which has an open covering X = ∪ Spec A_α. A morphism of schemes is a morphism of the corresponding locally ringed spaces.
- You learned a whole lot about schemes without considering sheaves other than \mathcal{O}_X .
- You can imagine that other sheaves might be of interest. For instance, the ideal *I_Y* of a closed subscheme *Y* ⊂ *X* is naturally a sheaf which holds the key to understanding *Y*.
- Differential forms must say something about a scheme just like in the theory of manifolds.
- We have come to a point where we have to use them.

直 と く ヨ と く ヨ と

Definition

An \mathcal{O}_X -module is a sheaf of abelian groups \mathcal{F} with a bilinear map $\mathcal{O}_X \times \mathcal{F} \to \mathcal{F}$ with the usual module axioms. *

Note: you know what the product of sheaves is. Note: this is the same as an \mathcal{O}_X -module in the category of sheaves of abelian groups. So these form a category in the natural way! Note: One can define direct products, more generally limits, of sheaves of \mathcal{O}_X -modules in the obvious manner. Direct sums also work.

Note: The tensor product $\mathcal{F} \otimes_{\mathcal{O}_X} \mathcal{G}$ is the sheaf associated to the presheaf $U \mapsto \mathcal{F}(U) \otimes_{\mathcal{O}_X(U)} \mathcal{G}(U)$. Same care is needed with colimits.

Note: $\mathcal{H}om_{\mathcal{O}_X}(\mathcal{F}, \mathcal{G})$ is the sheaf given by $U \mapsto \underline{\mathrm{Hom}}_{\mathcal{O}_X|_U}(\mathcal{F}|_U, \mathcal{G}|_U).$

直 と く ヨ と く ヨ と

Global generation

 $\mathcal{F}(U)$ is an $\mathcal{O}_X(U)$ -module and \mathcal{F}_x is an $\mathcal{O}_{X,x}$ -module. We have an $\mathcal{O}_X(X)$ -module homomorphism $\mathcal{F}(X) \to \mathcal{F}_x$.

Definition

 \mathcal{F} is globally generated \cdot if the image of $\mathcal{F}(X) \to \mathcal{F}_x$ generates \mathcal{F}_x as an $\mathcal{O}_{X,x}$ -module. In other words, $\mathcal{F}(X) \otimes_{\mathcal{O}_X(X)} \mathcal{O}_{X,x} \to \mathcal{F}_x$ is surjective.

For instance \mathcal{O}_X is globally generated, any $\oplus_I \mathcal{O}_X$ or its quotient is also.

Lemma (5.1.3)

 \mathcal{F} is globally generated if and only if there is an epimorphism $\oplus_I \mathcal{O}_X \to \mathcal{F}.$

Indeed if \mathcal{F} is globally generated the homomorphism $\oplus_{\mathcal{F}(X)}\mathcal{O}_X \to \mathcal{F}$ sending the basis element corresponding to s to $s|_U$ is surjective. The other direction is the remark above.

Definition

A sheaf of \mathcal{O}_X -modules is quasi-coherent if every $x \in X$ has an open neighborhood $x \in U \subset X$ and an exact sequence $\bigoplus_J \mathcal{O}_X |_U \to \bigoplus_I \mathcal{O}_X |_U \to \mathcal{F}|_U \to 0.$

This generality is important for instance in complex analysis. In algebraic geometry there is a wonderful coincidence.* For a module M over a ring A we define a natural sheaf \widetilde{M} . The main result is

Theorem

A sheaf \mathcal{F} is quasicoherent if and only if for every affine open $U = \operatorname{Spec} A \subset X$ there is an A-module M such that $\mathcal{F}|_U \simeq \widetilde{M}$.*. We get an equivalence A-mod $\simeq QCoh(\operatorname{Spec} A)$.

同 ト イ ヨ ト イ ヨ ト

Sheaves associated to modules

- Let X = Spec A and M an A-module. We define a sheaf M by specifying it on principal opens: M(D(f)) := M[f⁻¹].
- One needs to check that this satisfies the B-sheaf axiom. This turns out to require exactly the same proof as for O_X, using the "partition of unity" ∑ a_if^ℓ_i = 1 whenever ∪D(f_i) = X.*
- Consequently $\widetilde{M}_{\mathfrak{p}} = M_{\mathfrak{p}}$ and \widetilde{M} is an \mathcal{O}_X -module.
- One has a functor $M \mapsto \widetilde{M}$, which respects direct sums since localization does: $\widetilde{\oplus M}_i = \oplus \widetilde{M}_i$.

Lemma

 $M \to N \to L$ exact if and only if $\widetilde{M} \to \widetilde{N} \to \widetilde{L}$ exact.

Indeed $M \to N \to L$ exact if and only if $M_{\mathfrak{p}} \to N_{\mathfrak{p}} \to L_{\mathfrak{p}}$ exact $\forall \mathfrak{p}$, if and only if $\widetilde{M}_{\mathfrak{p}} \to \widetilde{N}_{\mathfrak{p}} \to \widetilde{L}_{\mathfrak{p}}$ exact $\forall \mathfrak{p}$, if and only if $\widetilde{M} \to \widetilde{N} \to \widetilde{L}$ exact.

So both $M \mapsto \widetilde{M}$ and $\widetilde{M} \mapsto \widetilde{M}(X) = M$ are exact functors!

\widetilde{M} is quasicoherent, and a converse

Proposition

 \widetilde{M} is quasicoherent

Take a presentation $\oplus_J A \to \oplus_I A \to M \to 0$. By compatibility with direct sums and exactness it induces a presentation $\oplus_J \mathcal{O}_X \to \oplus_I \mathcal{O}_X \to \widetilde{M} \to 0$, as needed. Note: For any sheaf of \mathcal{O}_X -modules on an affine X there is a canonical homomorphism $\widetilde{\mathcal{F}(X)} \to \mathcal{F}$.

Proposition

Suppose X affine and $\bigoplus_J \mathcal{O}_X \to \bigoplus_J \mathcal{O}_X \xrightarrow{\alpha} \mathcal{F} \to 0$ a presentation. Then $\widetilde{\mathcal{F}(X)} \to \mathcal{F}$ is an isomorphism.

Write $M = Im(\alpha(X))$. So $\oplus_J A \to \oplus_I A \to M \to 0$ is exact, and so $\oplus_J \mathcal{O}_X \to \oplus_I \mathcal{O}_X \to \widetilde{M} \to 0$ exact, hence $\widetilde{M} \to \mathcal{F}$ an isomorphism, and $M = \mathcal{F}(X)$, as needed.

The proposition implies that \mathcal{F} is quasicoherent if and only if there is some covering by $U_i = \operatorname{Spec} A_i$ with $\mathcal{F}_{U_i} = \widetilde{M}_i$.

Proposition (1.6••)

Assume X is either Noetherian or separated and quasicompact*, \mathcal{F} quasi-coherent, and $f \in \mathcal{O}_X(X)$. Then $\mathcal{F}(X)[f^{-1}] \to \mathcal{F}(X_f)$ is an isomorphism.

- Given the proposition, take any affine open U ⊂ X, for which the proposition applies;
- hence $\mathcal{F}(U)[f^{-1}] \to \mathcal{F}(D(f))$ for any $f \in \mathcal{O}_X(U)$.
- Since these form a basis $\mathcal{F}(U) \to \mathcal{F}|_U$ is an isomorphism, and the theorem follows.

伺 ト イ ヨ ト イ ヨ

Proof of the proposition

- To prove the proposition cover $X = \bigcup_{\text{finite}} U_i$ where $\mathcal{F}_{U_i} = \widetilde{\mathcal{F}(U_i)}$.
- Write $V_i = X_f \cap U_i = D(f|_{U_i})$, which are also affine, so $\mathcal{F}(U_i)[f^{-1}] \to \mathcal{F}(V_i)$ is an isomorphism.
- It follows that $\mathcal{F}(X)[f^{-1}] \to \mathcal{F}(X_f)$ is injective.
- The assumption propagates from X to opens such as U_i ∩ U_j, so the right arrow is injective too;
- by the Snake Lemma the left arrow is surjective, hence an isomorphism

A surprisingly useful result (and vanishing of \check{H}^1)

Proposition

Suppose X affine and $0 \to \mathcal{F} \to \mathcal{G} \to \mathcal{H} \to 0$ an exact sequence of \mathcal{O}_X -modules with \mathcal{F} quasicoherent. Then $0 \to \mathcal{F}(X) \to \mathcal{G}(X) \to \mathcal{H}(X) \to 0$ is exact.

- We need to take $s \in \mathcal{H}(X)$ and lift it to $\mathcal{G}(X)$.
- By definition of surjectivity we can lift to $t_i \in \mathcal{G}(U_i)$ with $U_i = D(f_i)$ principal opens.
- The difference $t_j t_i \in \mathcal{G}(U_{ij})$ is $v_{ij} \in \mathcal{F}(U_{ij})$, and these satisfy the cocycle condition $v_{ij}|_{U_{iik}} v_{ik}|_{U_{iik}} + v_{jk}|_{U_{iik}} = 0$.

Lemma

There are $w_i \in \mathcal{F}(U_i)$ so that $v_{ij} = w_j - w_i$.

With the lemma the elements t'_i := t_i − w_i ∈ G(U_i) have the property t'_i − t'_j = 0, hence define a section t' ∈ G(X) mapping to s, implying the proposition.

Proof that \check{H}^1 (quasicoherent) = 0 on affine

Lemma

There are
$$w_i \in \mathcal{F}(U_i)$$
 so that $v_{ij} = w_j - w_i$.*

- Writing $\mathcal{F} = \widetilde{M}$ let $v_{ij} = m_{ij}/(f_i f_j)^r$, with $m_{ij} \in M$, for sufficiently large r good for all ij.
- The cocycle condition means that for all a, i, j we have $m_{ai}f_j^r - m_{aj}f_i^r + m_{ij}f_a^r = 0 \in M[(f_af_if_j)^{-1}]$, so for large ℓ we have $f_a^{\ell}(m_{ai}f_j^r - m_{aj}f_i^r + m_{ij}f_a^r) = 0 \in M[(f_if_j)^{-1}]$
- Write $\sum h_a f_a^{\ell+r} = 1$.
- Define $w_i = \sum_a h_a f_a^\ell(m_{ai}/f_i^r) \in M[f_i^{-1}]$. Now*

$$(w_{j} - w_{i})|_{U_{ij}} = \sum_{a} h_{a} f_{a}^{\ell} (m_{aj} f_{i}^{r} - m_{ai} f_{j}^{r}) / (f_{i} f_{j})^{r}$$
$$= \sum_{a} h_{a} f_{a}^{\ell} (m_{ij} f_{a}^{r}) / (f_{i} f_{j})^{r} = m_{ij} / (f_{i} f_{j})^{r} = v_{ij}$$

Definition

 \mathcal{F} is (locally) finitely generated if for all $x \in X$ there is a neighborhood $x \in U \subset X$ and epimorphism $\mathcal{O}_U^m \to \mathcal{F}|_U$. \mathcal{F} is coherent if further for any* $\alpha : \mathcal{O}_U^n \to \mathcal{F}|_U$ also ker α is finitely generated.

This is absolutely crucial for complex analytic spaces, but again in algebraic geometry it is well-behaved, at least for locally noetherian schemes.

Proposition

Let X be a locally noetherian scheme. Then a quasi-coherent \mathcal{F} is coherent if and only if it is locally finitely generated, if and only if $\mathcal{F}(U)$ is finitely generated over $\mathcal{O}_X(U)$ for every affine open U.

・ 同 ト ・ ヨ ト ・ ヨ ト

Proof of proposition

- Coherent implies locally finitely generated by definition.
- If \mathcal{F} is locally finitely generated and U affine, we can find a finite covering $U = \bigcup U_i$ by principal opens and epimorphisms $\mathcal{O}_{U_i}^{m_i} \to \mathcal{F}|_{U_i}$.
- By quasi-coherence we have $\mathcal{O}_{U_i}^{m_i}(U_i) \to \mathcal{F}(U_i)$ surjective, and $\mathcal{F}(U) \otimes_{\mathcal{O}(U)} \mathcal{O}(U_i) \to \mathcal{F}(U_i)$ an isomorphism.
- Find a finitely generated submodule $M \subset \mathcal{F}(U)$ such that $M \otimes_{\mathcal{O}(U)} \mathcal{O}(U_i) \to \mathcal{F}(U_i)$ surjective for all *i*.
- Now $\widetilde{M} \to \mathcal{F}|_U$ surjective so $\mathcal{F}(U)$ is finitely generated.
- We may take $M = \mathcal{O}(U)^m$.
- Now let Oⁿ → F be a homomorphism on some affine. It is determined by Aⁿ → M. Since A noetherian the kernel is also finitely generated, as needed.

高 と く ヨ と く ヨ と

Basic properties

- Quasi-coherence is preserved by direct sums. Local finite generation preserved by finite direct sums.
- If \mathcal{F}, \mathcal{G} are quasi-coherent then $\mathcal{F} \otimes_{\mathcal{O}} \mathcal{G}$ is quasi-coherent, with module $\mathcal{F}(U) \otimes_{\mathcal{O}(U)} \mathcal{G}(U)$ on any affine open.
- The kernel and cokernel of a homomorphism of quasi-coherent sheaves is quasi-coherent. Same for coherent on a locally Noetherian scheme.
- An extension of quasi-coherent sheaves is quasi-coherent. Same for coherent on a locally Noetherian scheme.

Indeed the useful result gives an exact sequence $0 \to \mathcal{F}(U) \to \mathcal{G}(U) \to \mathcal{H}(U) \to 0$, so a diagram with exact rows

Pull back and push forward

- Given $f : X \to Y$ the structure arrow $f^{\#} : \mathcal{O}_Y \to f_*\mathcal{O}_X$ is equivalent to $f^{\#} : f^{-1}\mathcal{O}_Y \to \mathcal{O}_X$.
- Define $f^*\mathcal{G} := f^{-1}\mathcal{G} \otimes_{f^{-1}\mathcal{O}_Y} \mathcal{O}_X.^*$
- Note $f^*\mathcal{O}_Y = \mathcal{O}_X$ and f^* commutes with direct sums.

Propoerties:

•
$$f^*\mathcal{G}_x = \mathcal{G}_{f(x)} \otimes_{\mathcal{O}_{Y,f(x)}} \mathcal{O}_{X,x}$$
.

• If $X = \operatorname{Spec} B$, $Y = \operatorname{Spec} A$, $\mathcal{G} = \widetilde{M}$ affine then $f^*\mathcal{G} = \widetilde{M \otimes_A B}$.

• If \mathcal{G} quasi-coherent then f^*G quasi-coherent.

The first follows from $f^{-1}\mathcal{G}_X = \mathcal{G}_{f(X)}$. Fix presentation $\oplus_I A \to \oplus_J A \to M \to 0$ giving presentation $\oplus_I \mathcal{O}_Y \to \oplus_J \mathcal{O}_Y \to \mathcal{G} \to 0$. Direct sums and right exactness give presentation $\oplus_I \mathcal{O}_X \to \oplus_J \mathcal{O}_X \to f^*\mathcal{G} \to 0$. On the other hand we also have presentation $\oplus_I B \to \oplus_J B \to M \otimes_A B \to 0$ giving $\oplus_I \mathcal{O}_X \to \oplus_J \mathcal{O}_X \to \widetilde{M} \otimes_A B \to 0$. This gives an isomorphism $\widetilde{M} \otimes_A B \to f^*\mathcal{G}$.

- Assume either X noetherian or f separated and quasi-compact. If F quasi-coherent then f_{*}F quasi-coherent.
- If f finite and F quasi-coherent and L.F.G then f_{*}F quasi-coherent and L.F.G.

We may assume Y affine, so X either noetherian or separated and quasi-compact.

- We want to show $f_*\mathcal{F} = \widetilde{\mathcal{F}(X)}$. Enough to evaluate $f_*\mathcal{F}(D(g))$. Write $g' = f^*g$. $f_*\mathcal{F}(D(g)) = \mathcal{F}(f^{-1}D(g)) = \mathcal{F}(X_{g'}) \simeq \mathcal{F}(X)[{g'}^{-1}] = \mathcal{F}(X) \otimes_A A[g^{-1}]$, as needed.
- f finite implies affine, so separated and quasi-compact, so $f_*\mathcal{F} = \widetilde{\mathcal{F}(X)}$. Now $\mathcal{F}(X)$ is finitely generated over $\mathcal{O}_X(X)$ so finitely generated over $\mathcal{O}_Y(Y)$.

伺 と く ヨ と く ヨ と …

Proposition

The correspondence $\{Z \subset X\} \leftrightarrow \{\text{Ker}i^{\#}\}\$ is an order-reversing 1-1 correspondence between closed subschemes and quasi-coherent ideal sheaves.

We may assume X = Spec A affine. There is already a correspondence between sheaves of ideals and closed ringed subspaces.

If Z = V(I) is a closed subscheme then it was shown that Ker $i^{\#}(D(g)) = I[g^{-1}]$ so Ker $i^{\#} = \tilde{I}$ is quasi-coherent. If $\tilde{I} := \mathcal{I} \subset \mathcal{O}_X$ a quasi-coherent ideal sheaf then it was shown that the ringed subspace $V(\mathcal{I})$ is the closed subscheme Spec A/I.

Sheaf associated to a graded module

- Let B = ⊕_{n≥0}B_n be a graded ring, M = ⊕_{n∈Z}M_n a graded module.
- For a homogeneous f ∈ B₊ one defined an affine open D₊(f) ⊂ X := Proj B with ring B_(f) = B[f⁻¹]₀, the elements of degree 0 in the Z-graded ring B[f⁻¹].
- Define $M_{(f)} = M[f^{-1}]_{0,*}$ the elements of degree 0 in the graded $B[f^{-1}]$ -module $M[f^{-1}]$, namely $M_{(f)} = \{mf^{-d} | m \in M_{d \deg f}, d \in \mathbb{N}\}.$

Proposition

There exists a unique quasi-coherent sheaf \widetilde{M} on X such that $\widetilde{M}|_{D_+(f)} = \widetilde{M_{(f)}}$. For $\mathfrak{p} \in \operatorname{Proj} B$ we have $\widetilde{M}_{\mathfrak{p}} = (M_{\mathfrak{p}})_0$.

For this note that $M_{(fg)} = M_{(f)}[(g^{\deg f}/f^{\deg g})^{-1}]$ or repeat the argument of \mathcal{O}_X .

This is not an equivalence.

The twisting sheaf and twists of sheaves

- Define a graded module B(n) by $B(n)_d = B_{n+d}$. Denote $\mathcal{O}_X(n) := \widetilde{B(n)}$.
- If $f \in B_1$ then $B(n)_{(f)} = f^n B_{(f)}$. So $\mathcal{O}_X(n)|_{D_+(f)} = (\mathcal{O}_X|_{D_+(f)})f^n$.
- We have $\mathcal{O}_X(n) \otimes_{\mathcal{O}_X} \mathcal{O}_X(m) = \mathcal{O}_X(n+m)$. The sheaf $\mathcal{O}_X(1)$ is called the twisting sheaf.
- For a scheme Y one has a canonical morphism f : P^d_Y → P^d_Z.
 One defines O_{P^d_Y}(n) = f*O_{P^d_Z}(n).
- It is an exercise (5.1.20) to show that when $Y = \operatorname{Spec} A$ affine then $\mathcal{O}_{\mathbb{P}^d_Y}(n)$ coincides with $A[T_0, \ldots, T_d](1)$.

Definition

Let $X = \mathbb{P}^n_A$, let \mathcal{F} be an \mathcal{O}_X -module. The *n*-th twist of \mathcal{F} is $\mathcal{F}(n) := \mathcal{F} \otimes_{\mathcal{O}_X} \mathcal{O}_X(n)$. For an immersion* $Y \stackrel{\iota}{\hookrightarrow} X$ write $\mathcal{O}_Y(1) = \iota^* \mathcal{O}_X(1)$ and for a quasi-coherent \mathcal{F} write $\mathcal{F}(n) := \mathcal{F} \otimes_{\mathcal{O}_Y} \mathcal{O}_Y(n)$.

Proposition (1.22)

Let $B = A[T_0, ..., T_d], d \ge 1*$ and $X = \operatorname{Proj} B$. Then $(\mathcal{O}_X(n))(X) = B_n$, so $\bigoplus_{\mathbb{Z}} (\mathcal{O}_X(n))(X) = B$.

- A section of (O_X(n))(X) restricts to sections of (O_X(n))(D₊(T_i)) which agree on intersections.
- These are submodules of homogeneous elements of $A[T_0, \ldots, T_d, T_0^{-1}, \ldots, T_n^{-1}]$ where only T_i can be in the denominator.
- Since d > 0 this means that no T_i can be in the denominator, giving a homogeneous polynomial of degree n.

Note that if d = 0 one gets $\bigoplus_{\mathbb{Z}} (\mathcal{O}_X(n))(X) = B[T_0^{-1}]$

伺 ト イ ヨ ト イ ヨ ト

Invertible sheaves

- We say that an O_X-module L is invertible if every x ∈ X has a neighborhood x ∈ U ⊂ X and an isomorphism L|_U ≃ O_X|_U.
- Since Pⁿ_Y is covered by D₊(x₀) which have degree 1, we see that O_{P^d_Y}(n) is invertible.
- If \mathcal{L} invertible and $s \in \mathcal{L}(X)$ one defines an open $X_s = \{x \in X : \mathcal{L}_x = \mathcal{O}_{X,x} \cdot s_x\} \subset X.$
- It generalizes X_f when $f \in \mathcal{O}_X(X)$.

Proposition (• 1.25)

Let X be either noetherian or separated and quasicompact, \mathcal{L} invertible, \mathcal{F} quasi-coherent. Fix $s \in \mathcal{L}(X)$.

- (1) Let $f \in \mathcal{F}(X)$ with $f|_{X_s} = 0$. Then there is $n \ge 0$ such that $fs^n = 0 \in \mathcal{F} \otimes_{\mathcal{O}_X} \mathcal{L}^n$.
- (2) Let $g \in \mathcal{F}(X_s)$, Then there is $n \ge 0$ and $f \in (\mathcal{F} \otimes_{\mathcal{O}_X} \mathcal{L}^n)(X)$ such that $f|_{X_s} = gs^n$.

Let X_i be finitely many opens covering X with isomorphisms $\mathcal{L}_i \stackrel{\phi_i}{\simeq} \mathcal{O}_{X_i}$, and $t_i = \phi_i(s)$.

Let $f \in \mathcal{F}(X)$ with $f|_{X_s} = 0$. Then there is $n \ge 0$ such that $fs^n = 0 \in \mathcal{F} \otimes_{\mathcal{O}_X} \mathcal{L}^n$.

- As $X_i \cap X_s = (X_i)_{t_i}$ we can use Proposition 1.6.
- So there is *n* such that $fs^n|_{X_i} = ft_i^n = 0$, for all *i*.
- By the sheaf axiom $fs^n = 0 \spadesuit$

Let $g \in \mathcal{F}(X_s)$, Then there is $n \ge 0$ and $f \in (\mathcal{F} \otimes_{\mathcal{O}_X} \mathcal{L}^n)(X)$ such that $f|_{X_s} = gs^n$.

- By 1.6 there is k and $h_i \in (\mathcal{F} \otimes_{\mathcal{O}_X} \mathcal{L}^n)(X_i)$ such that $gs^k|_{(X_i)_s} = gt_i^k = h_i|_{(X_i)_s}$, for all i.
- Note that $(h_i h_j)|_{(X_{ij})_s} = 0$, and the assumption propagates to the opens X_{ij} .
- So by (1) there is m so that $(h_i s^m h_j s^m)|_{X_{ij}} = 0$ for all i, j.
- By the sheaf axiom there is f so that $f|_{X_i} = h_i s^m$ as needed.

Serre's eventual global generation

For an immersion $Y \stackrel{\iota}{\hookrightarrow} \mathbb{P}^d_A$ we wrote $\mathcal{O}_Y(1) = \iota^* \mathcal{O}_{\mathbb{P}^d_A}(1)$ and for a quasi-coherent \mathcal{F} we wrote $\mathcal{F}(n) := \mathcal{F} \otimes_{\mathcal{O}_Y} \mathcal{O}_Y(n)$.

Theorem

Say X projective over A and \mathcal{F} locally finitely generated quasi-coherent. There exists n_0 so that for all $n \ge n_0$ the sheaf $\mathcal{F}(n)$ is globally generated.

- By assumption there is $\iota: X \hookrightarrow \mathbb{P}^d_A$.
- There is a nice exercise (5.1.6) showing $(\iota_*\mathcal{F})(n) = \iota_*(\mathcal{F}(n))$.
- Since $\iota_*(\mathcal{F}(n))(\mathbb{P}^d_A) = (\mathcal{F}(n))(X)$, and since $\iota_*(\mathcal{F}(n))_{f(X)} = (\mathcal{F}(n))_X$ we may and do replace X by \mathbb{P}^d_A .
- For each *i* we have \$\mathcal{F}(D_+(\mathcal{T}_i))\$, and thus \$\mathcal{F}|_{D_+(\mathcal{T}_i)}\$, generated by finitely many \$s_{ij}\$. Thus \$\mathcal{F}(n)|_{D_+(\mathcal{T}_i)}\$ is generated by \$s_{ij}\$\mathcal{T}_i^n\$.
- By the proposition there is *n* such that $s_{ij}T_i^n = u_{ij}|_{D_+(T_i)}$, with $u_{ij} \in (\mathcal{F}(n))(X)$, for all *i*, *j*, as needed.

Corollary

Again X projective over A and \mathcal{F} locally finitely generated quasi-coherent. There is m and an epimorphism $\mathcal{O}_X^r(m) \to \mathcal{F}$.

- Indeed for any *n* in the theorem take an epimorphism $\mathcal{O}_X^r \to \mathcal{F}(n).$
- Taking $\otimes_{\mathcal{O}_X} \mathcal{O}_X(-n)$ get an epimorphism $\mathcal{O}_X^r(-n) o \mathcal{F}$,
- so m = -n works.

25/37

$\Gamma_*(\mathcal{F})$

- A quasi-coherent sheaf \mathcal{F} on Spec A satisfies $\mathcal{F} = \mathcal{F}(Spec A)$.
- Suppose instead $X = \operatorname{Proj} B$ with $B = A[T_0, \ldots, T_d]$. The A-module $\Gamma_{\bullet}(\mathcal{F}) := \bigoplus_{n \ge 0} \Gamma(X, \mathcal{F}(n))$ is a graded B-module via $\Gamma(X, \mathcal{O}_X(n)) \otimes_Z \Gamma(X, \mathcal{F}(m)) \to \Gamma(X, \mathcal{F}(n+m))$.

Lemma

we have an isomorphism $\widetilde{\Gamma_{\bullet}(\mathcal{F})} \to \mathcal{F}$.

- Note that in general $M \to \Gamma_{\bullet}(\widetilde{M})$ is not an isomorphism.*
- Let T = T₀ and U = D₊(T₀). By affine case it suffices to show that Γ_●(F)_(T) → F(U) is an isomorphism...
- Let $T^{-n}t \in \Gamma_{\bullet}(\mathcal{F})_{(T)}$, with $t \in \Gamma(\mathcal{F}(n))$.
- So $t|_U \in \Gamma(U, \mathcal{F}(n)) = T^n \Gamma(U, \mathcal{F})$, and $t|_U = T^n s$ for unique $s \in \mathcal{F}(U)$.
- This is surjective by Proposition 1.25 (2) and injective by Proposition 1.25 (1).

Proposition

With A, B, X as above, let $Z \subset X$ be closed. Then $Z = \operatorname{Proj} B/I$ for some homogeneous ideal $I \subset B$. In particular any projective A-scheme is of the form $\operatorname{Proj} C$.*

- Let \mathcal{I} be the quasi-coherent sheaf of ideals defining Z and $I = \Gamma_{\bullet}(\mathcal{I})$.
- $\mathcal{I}(n) \subset \mathcal{O}_X(n)$ because $\mathcal{O}(n)$ is locally free hence flat.
- So by Proposition 1.22, $I \subset \Gamma_{\bullet}(\mathcal{O}_X) = B$.
- By the Lemma $\tilde{I} = \mathcal{I}$. So $\mathcal{I}_{V(I)} = \tilde{I} = \mathcal{I}$ and V(I) = Z.*

Maps to projective space

For an invertible \mathcal{L} and section $s \in \mathcal{L}(X)$ one has an isomorphism $\mathcal{O}_{X_s} \simeq \mathcal{L}_{X_s}$ via $1 \mapsto s$. The inverse maps $t \mapsto t/s$.

Proposition (5.1.31)

Let Z/A be a scheme and $X = \operatorname{Proj} A[T_0, \ldots, T_d]$.

- 1) If $f : Z \to X$ an A-morphism then $f^*\mathcal{O}_X(1)$ is generated by the d + 1 sections f^*T_i .
- 2) If \mathcal{L} an invertible sheaf on Z generated by sections s_0, \ldots, s_d there is a unique morphism $f : Z \to X$ with $s_i = f^*T_i$.
- 1) Note \mathcal{T}_i generate $\mathcal{O}_X(1)$, with epimorphism $\mathcal{O}_X^{d=1} \to \mathcal{O}_X(1)$ giving epimorphism $\mathcal{O}_Z^{d=1} \to f^* \mathcal{O}_Z(1)$ by right-exactness of \otimes .
- 2) Define $Z_{s_i} \to D_+(T_i)$ via the A-algebra homomorphism $T_j/T_i \mapsto s_j/s_i \in \mathcal{O}_Z(Z_{s_i})$. These glue, and give an isomorphism $\mathcal{L} = f^*\mathcal{O}_X(1)$.

Maps to projective space: the fundamental question

Examples: power maps, Veronese, Segre.

Note: the morphism f is not changed by rescaling s_i simultaneously.

Note: An invertible linear transformation on s_i results in composing with the corresponding projective linear transformation on \mathbb{P}^d . The fundamental question of projective geometry is: what are the possible ways to map Z to projective space? The discussion says that this is equivalent to: what are the invertible sheaves with finitely many generating sections (up to

chosen equivalence)?

Definition

 $\operatorname{Pic}(X) = \operatorname{set}$ of isomorphism classes of invertible sheaves, with group structure given by $\mathcal{L}_1 \otimes_{\mathcal{O}_X} \mathcal{L}_2$ and $\mathcal{L}^{-1} = \mathcal{H}om_{\mathcal{O}_X}(\mathcal{L}, \mathcal{O}_X)$.

Sections up to rescaling will be characterized in terms of linear systems of Cartier divisors.

Definition

A sheaf of the form $\iota^* \mathcal{O}_{\mathbb{P}^d_A}(1)$, with $\iota : X \hookrightarrow \mathbb{P}^d_A$ an immersion, is very ample over A. An invertible sheaf \mathcal{L} is ample if for every finitely generated quasi-coherent \mathcal{F} there is n_0 such that $\mathcal{F} \otimes \mathcal{L}^n$ is globally generated for all $n \ge n_0$.

Theorem

Say $f : X \to \text{Spec } A$ is of finite type, and either X noetherian or f separated. If \mathcal{L} is ample on X there is $m \ge 1$ such that \mathcal{L}^m is very ample.

Lemma

Say either X noetherian or f separated, and \mathcal{L} is ample on X. Each $x \in X$ has an affine neighborhood of the form $X_s, s \in \mathcal{L}^n(X)$.

- Let U be an affine neighborhood of x on which $\mathcal{L}|_U \simeq \mathcal{O}_X|_U$, and $\mathcal{J} = \mathcal{I}(X \smallsetminus U)$.
- The inclusion *J* ⊂ *O_U* gives *J* ⊗ *Lⁿ* = *JLⁿ* ⊂ *Lⁿ*, since *Lⁿ* locally free.
- By ampleness there is a section $s \in (\mathcal{JL}^n)(X)$ generating $(\mathcal{JL}^n)_x = \mathcal{L}^n_x$, so $x \in X_s \subset U$.
- The isomorphism $\mathcal{L}|_U \simeq \mathcal{O}_X|_U$ carries s to $f \in \mathcal{O}_X(U)$, so $X_s = D_H(f)$ is affine.

伺 ト イヨト イヨト

Proof of the theorem: lifting coordinates to sections and embedding

- Say O_X(X_s) = A[f₁,..., f_k]. For some r we have that s^r f_j lifts to s_j ∈ L^{nr}(X).
- X is covered by finitely many, X_s, renumbered X_{s_i}. May choose *n*, *r* good for all *i*, *j*.
- Consider $Y = \operatorname{Proj} A[\{T_i, T_{ij}\}]$. By Proposition 5.1.31 there is $\phi: X \to Y$ with $\phi^* \mathcal{O}_Y(1) = \mathcal{L}$.
- $X_{s_i} = \phi^{-1}D_+(T_i)$ and $\mathcal{O}_Y(D_+(T_i)) \to \mathcal{O}_X(X_{s_i})$ surjective.
- So ϕ a closed embedding, as needed.

伺 ト イ ヨ ト イ ヨ ト

Lemma

Assume X either Noetherian or quasicompact and separated; \mathcal{L} invertible.

- a) If $X = \cup X_{s_i}$ affine open cover for $s_i \in \mathcal{L}(X)$, then \mathcal{L} ample.
- b) If \mathcal{L} ample and U subset X open and quasicompact then $\mathcal{L}|_U$ ample.

Corollary

If $X \rightarrow \text{Spec } A$ as in theorem, then it is quasi-projective if and only if there is an ample sheaf.

The theorem gives ample \Rightarrow quasi-projective. If quasi-projective then X open in a projective Y, which has an ample. By the lemma the restriction is ample.

Proof of Lemma

a)

- Suppose \mathcal{F} finitely generated and quasicoherent. Say f_{ij} generate $\mathcal{F}(X_{s_i})$.
 - Then $f_{ij}s_i^n$ lift to $t_{ij} \in (\mathcal{F} \otimes \mathcal{L}^n)(X)$ generating the sheaf on X_{s_i} , for some *n* and for all *i*, as needed.
- b) By the Lemma there are sections of \mathcal{L}^r satisfying (a). Also $U \cap X_{s_j}$ is covered by finitely many principal opens $D_{X_{s_j}}(h_{ij}) \subset X_{s_j}$. So $s_j^n h_{ij}$ lifts to $t_{ij} \in \mathcal{L}(X)$. Now $u_{ij} = t_{ij}|_U$ have $U_{u_{ij}} = D_{X_{s_j}}(h_{ij})$ are affine so satisfy (a) on U, and $\mathcal{L}|_U$ ample by (a).

ヨッ イヨッ イヨッ

Proposition

Let $f : X \to Y$ be a proper morphism of locally noetherian schemes, \mathcal{L} invertible on X. Fix $y \in Y$ and $\phi : X_{Y,y} := X \times_Y \operatorname{Spec} \mathcal{O}_{Y,y} \to X$ the canonical base change morphism.

- a) If $\phi^* \mathcal{L}$ is globally generated then there is an open $y \in V \subset Y$ such that \mathcal{L}_{X_V} is globally generated.
- b) If $\phi^* \mathcal{L}$ is ample then there is an open $y \in V \subset Y$ such that \mathcal{L}_{X_V} is ample.

Lemma (Flat base change)

Assume Y = Spec A affine. Then $\mathcal{F}(X) \otimes_A \mathcal{O}_{Y,y} \to \mathcal{F}(X_{Y,y})$ an isomorphism.

36/37

We may replace Y by affine open.

- a) Then $\phi^* \mathcal{L}(X_{Y,y}) = \mathcal{L}(X) \otimes_A \mathcal{O}_{Y,y}$ and $\phi^* \mathcal{L}_x = \mathcal{L}_x$. So $\mathcal{L}(X) \otimes_A \mathcal{O}_X \to \mathcal{L}$ is surjective along $f^{-1}y$. There is an open set of X containing $f^{-1}y$ where this is surjective. Since $X \to Y$ is proper tehre is a neighborhood of y where this is surjective.
- b) By taking a high power we may assume $\phi^* \mathcal{L}$ is very ample and globally generated. Shrinking Y and using (a) we may assume \mathcal{L} is globally generated. Since X is quasicompact a finite number of sections suffices, giving a morphism $X \to \mathbb{P}^d_A$. Let Z is the closure of the image, with $f: X \to Z$ the morphism. This is an isomorphism to the image along $X_{Y,y}$, so it is an isomorphism on an open set (this is exercise 3.2.5).

伺 ト イ ヨ ト イ ヨ ト