MA 205 notes: Sheaves of \mathcal{O}_X -modules Following Liu 5.1

Dan Abramovich

Brown University

Today

э

 $2Q$

- A scheme is a (locally) ringed space (X, \mathcal{O}_X) which has an open covering $X=\bigcup \operatorname{Spec} A_\alpha.$ A morphism of schemes is a morphism of the corresponding locally ringed spaces.
- You learned a whole lot about schemes without considering sheaves other than \mathcal{O}_X .
- You can imagine that other sheaves might be of interest. For instance, the ideal \mathcal{I}_Y of a closed subscheme $Y \subset X$ is naturally a sheaf which holds the key to understanding Y .
- Differential forms must say something about a scheme just like in the theory of manifolds.
- We have come to a point where we have to use them.

(何) (ヨ) (ヨ)

Definition

An \mathcal{O}_X -module is a sheaf of abelian groups $\mathcal F$ with a bilinear map $\mathcal{O}_{\mathbf{X}} \times \mathcal{F} \rightarrow \mathcal{F}$ with the usual module axioms. $*$

Note: you know what the product of sheaves is.

Note: this is the same as an \mathcal{O}_X -module in the category of sheaves of abelian groups. So these form a category in the natural way! Note: One can define direct products, more generally limits, of sheaves of \mathcal{O}_X -modules in the obvious manner. Direct sums also work.

Note: The tensor product $\mathcal{F} \otimes_{\mathcal{O}_X} \mathcal{G}$ is the sheaf associated to the presheaf $U \mapsto \mathcal{F}(U) \otimes_{\mathcal{O}_Y(U)} \mathcal{G}(U)$. Same care is needed with colimits.

Note: $\mathcal{H}\mathit{om}_{\mathcal{O}_{\mathcal{X}}}(\mathcal{F}, \mathcal{G})$ is the sheaf given by $U \mapsto \underline{\text{Hom}}_{\mathcal{O}_X|_U}(\mathcal{F}|_U, \mathcal{G}|_U).$

∢何 ▶ ∢ ヨ ▶ ∢ ヨ ▶

Global generation

 $\mathcal{F}(U)$ is an $\mathcal{O}_X(U)$ -module and \mathcal{F}_X is an $\mathcal{O}_{X,X}$ -module. We have an $\mathcal{O}_X(X)$ -module homomorphism $\mathcal{F}(X) \to \mathcal{F}_X$.

Definition

F is globally generated* if the image of $\mathcal{F}(X) \to \mathcal{F}_X$ generates \mathcal{F}_X as an $\mathcal{O}_{X,x}$ -module. In other words, $\mathcal{F}(X) \otimes_{\mathcal{O}_X(X)} \mathcal{O}_{X,x} \to \mathcal{F}_X$ is surjective.

For instance \mathcal{O}_X is globally generated, any $\bigoplus_i \mathcal{O}_X$ or its quotient is also.

Lemma (5.1.3)

 F is globally generated if and only if there is an epimorphism $\bigoplus_{I} \mathcal{O}_X \to \mathcal{F}.$

Indeed if $\mathcal F$ is globally generated the homomorphism $\bigoplus_{\mathcal{F}(X)} \mathcal{O}_X \to \mathcal{F}$ sending the basis element corresponding to s to $s|_U$ is surjective. The other direction is the [rem](#page-2-0)[ar](#page-4-0)[k](#page-2-0) [a](#page-3-0)[b](#page-4-0)[ov](#page-0-0)[e.](#page-36-0)

Definition

A sheaf of \mathcal{O}_X -modules is quasi-coherent if every $x \in X$ has an open neighborhood $x \in U \subset X$ and an exact sequence \bigoplus _IO_X $|U \to \bigoplus$ _IO_X $|U \to \mathcal{F}|$

This generality is important for instance in complex analysis. In algebraic geometry there is a wonderful coincidence.* For a module M over a ring A we define a natural sheaf M. The main result is

Theorem

A sheaf F is quasicoherent if and only if for every affine open $U =$ Spec A $\subset X$ there is an A-module M such that $\mathcal{F}|_U \simeq M.*$. We get an equivalence A-mod \simeq QCoh(Spec A).

∢ 何 ≯ → ミ ≯ → (手

Sheaves associated to modules

- Let $X = \text{Spec } A$ and M an A-module. We define a sheaf M by specifying it on principal opens: $\mathcal{M}(D(f)) := \mathcal{M}[f^{-1}].$
- \bullet One needs to check that this satisfies the B-sheaf axiom. This turns out to require exactly the same proof as for \mathcal{O}_X , using the "partition of unity" $\sum a_i f_i^\ell = 1$ whenever $\cup D(f_i) = X.*$
- Consequently $M_p = M_p$ and M is an \mathcal{O}_X -module.
- One has a functor $M \mapsto \widetilde{M}$, which respects direct sums since localization does: $\oplus M_i = \oplus M_i$.

Lemma

 $M \to N \to L$ exact if and only if $\widetilde{M} \to \widetilde{N} \to \widetilde{L}$ exact.

Indeed $M \to N \to L$ exact if and only if $M_p \to N_p \to L_p$ exact $\forall p$, if and only if $\widetilde{M}_{p} \to \widetilde{N}_{p} \to \widetilde{L}_{p}$ exact $\forall p$, if and only if $\widetilde{M} \to \widetilde{N} \to \widetilde{L}$ exact.

So both $M \mapsto \widetilde{M}$ a[n](#page-6-0)d $\widetilde{M} \mapsto \widetilde{M}(X) = M$ are [ex](#page-4-0)[act](#page-6-0) [fu](#page-5-0)n[cto](#page-0-0)[rs](#page-36-0)[!](#page-0-0)

 M is quasicoherent, and a converse

Proposition

 \dot{M} is quasicoherent

Take a presentation $\oplus_{l}A \rightarrow \oplus_{l}A \rightarrow M \rightarrow 0$. By compatibility with direct sums and exactness it induces a presentation $\bigoplus_{I} \mathcal{O}_X \to \bigoplus_{I} \mathcal{O}_X \to M \to 0$, as needed. Note: For any sheaf of \mathcal{O}_X -modules on an affine X there is a canonical homomorphism $\mathcal{F}(X) \to \mathcal{F}$.

Proposition

Suppose X affine and $\oplus_J {\mathcal O}_X \to \oplus_I {\mathcal O}_X \stackrel{\alpha}{\to} {\mathcal F} \to 0$ a presentation. Then $\mathcal{F}(X) \to \mathcal{F}$ is an isomorphism.

Write $M = Im(\alpha(X))$. So $\oplus_J A \to \oplus_J A \to M \to 0$ is exact, and so $\bigoplus_{i} \mathcal{O}_X \to \bigoplus_{i} \mathcal{O}_X \to M \to 0$ exact, hence $M \to \mathcal{F}$ an isomorphism, and $M = \mathcal{F}(X)$, as needed. \spadesuit

The proposition implies that $\mathcal F$ is quasicoherent if and only if there is some covering by $U_i = \text{Spec } A_i$ with $\mathcal{F}_{U_i} = M_i$.

Proposition (1.6**)

Assume X is either Noetherian or separated and quasicompact*, F quasi-coherent, and $f\in\mathcal{O}_\mathsf{X}(\mathsf{X})$. Then $\mathcal{F}(\mathsf{X})[f^{-1}]\to\mathcal{F}(\mathsf{X}_f)$ is an isomorphism.

- Given the proposition, take any affine open $U \subset X$, for which the proposition applies;
- hence $\mathcal{F}(U)[f^{-1}] \to \mathcal{F}(D(f))$ for any $f \in \mathcal{O}_\mathcal{X}(U).$
- Since these form a basis $\mathcal{F}(U) \to \mathcal{F}|_U$ is an isomorphism, and the theorem follows.♠

母→ マミ→ マミ

Proof of the proposition

- To prove the proposition cover $X = \bigcup_{\text{finite}} U_i$ where $\mathcal{F}_{U_i} = \mathcal{F}(U_i).$
- Write $V_i=X_f\cap U_i=D(f|_{U_i})$, which are also affine, so $\mathcal{F}(U_i)[f^{-1}] \to \mathcal{F}(V_i)$ is an isomorphism.
- This means that in the diagram

$$
0 \longrightarrow \mathcal{F}(X)[f^{-1}] \longrightarrow \oplus \mathcal{F}(U_i)[f^{-1}] \longrightarrow \oplus \mathcal{F}(U_i \cap U_j)[f^{-1}]
$$

\n
$$
\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow
$$

\n
$$
0 \longrightarrow \mathcal{F}(X_f) \longrightarrow \oplus \mathcal{F}(V_i) \longrightarrow \oplus \mathcal{F}(V_i \cap V_j)
$$

\nthe arrow β is an isomorphism.

- It follows that $\mathcal{F}(X)[f^{-1}]\rightarrow \mathcal{F}(X_f)$ is injective.
- The assumption propagates from X to opens such as $U_i\cap U_j,$ so the right arrow is injective too;
- by the Snake Lemma the left arrow is surjective, hence an isomorphism ♠

伊 ト イヨ ト イヨ ト

A surprisingly useful result (and vanishing of $\check{H}^1)$

Proposition

Suppose X affine and $0 \to \mathcal{F} \to \mathcal{G} \to \mathcal{H} \to 0$ an exact sequence of \mathcal{O}_X -modules with F quasicoherent. Then $0 \to \mathcal{F}(X) \to \mathcal{G}(X) \to \mathcal{H}(X) \to 0$ is exact.

- We need to take $s \in \mathcal{H}(X)$ and lift it to $\mathcal{G}(X)$.
- \bullet By definition of surjectivity we can lift to $t_i \in \mathcal{G}(U_i)$ with $U_i = D(f_i)$ principal opens.
- The difference $t_i t_i \in \mathcal{G}(U_{ii})$ is $v_{ii} \in \mathcal{F}(U_{ii})$, and these satisfy the cocycle condition $v_{ij}|_{U_{iik}} - v_{ik}|_{U_{iik}} + v_{jk}|_{U_{iik}} = 0$.

Lemma

There are $w_i \in \mathcal{F}(U_i)$ so that $v_{ij} = w_j - w_i$.

With the lemma the elements $t_i':=t_i-w_i\in \mathcal{G}(U_i)$ have the property $t'_i - t'_j = 0$, hence define a section $t' \in \mathcal{G}(X)$ mapping to s, implying the proposition.

Proof that $\check{H}^1(\mathsf{quasicoherent})=0$ on affine

Lemma

There are
$$
w_i \in \mathcal{F}(U_i)
$$
 so that $v_{ij} = w_j - w_i$.

- Writing $\mathcal{F} = M$ let $v_{ij} = m_{ij}/(f_if_j)'$, with $m_{ij} \in M$, for sufficiently large r good for all $i\overline{j}$.
- \bullet The cocycle condition means that for all a, i, j we have $m_{ai}f^r_j - m_{aj}f^r_i + m_{ij}f^r_a = 0 \in M[(f_af_if_j)^{-1}],$ so for large ℓ we have $f_a^{\ell}(m_{ai}f_j^r - m_{aj}f_i^r + m_{ij}f_a^r) = 0 \in M[(f_if_j)^{-1}]$
- Write $\sum h_a f_a^{\ell+r} = 1$.
- Define $w_i = \sum_a h_a f_a^{\ell}(m_{ai}/f_i^r) \in M[f_i^{-1}]$ $\binom{c-1}{i}$. Now*

$$
(w_j - w_i)|_{U_{ij}} = \sum_{a} h_a f_a^{\ell} (m_{aj} f_i^r - m_{ai} f_j^r)/(f_i f_j)^r
$$

=
$$
\sum_{a} h_a f_a^{\ell} (m_{ij} f_a^r)/(f_i f_j)^r = m_{ij}/(f_i f_j)^r = v_{ij}
$$

Definition

F is (locally) finitely generated if for all $x \in X$ there is a neighborhood $x \in U \subset X$ and epimorphism $\mathcal{O}_U^m \to \mathcal{F}|_U$. $\mathcal F$ is coherent if further for any $*\alpha: \mathcal{O}_{\pmb{U}}^n \to \mathcal{F}|_{\pmb{U}}$ also ker α is finitely generated.

This is absolutely crucial for complex analytic spaces, but again in algebraic geometry it is well-behaved, at least for locally noetherian schemes.

Proposition

Let X be a locally noetherian scheme. Then a quasi-coherent F is coherent if and only if it is locally finitely generated, if and only if $F(U)$ is finitely generated over $\mathcal{O}_X(U)$ for every affine open U.

 $\mathcal{A} \oplus \mathcal{B}$ and $\mathcal{A} \oplus \mathcal{B}$ and $\mathcal{B} \oplus \mathcal{B}$

Proof of proposition

- Coherent implies locally finitely generated by definition.
- If F is locally finitely generated and U affine, we can find a finite covering $U = \cup U_i$ by principal opens and epimorphisms $\mathcal{O}_{U_i}^{m_i} \rightarrow \mathcal{F}|_{U_i}.$
- By quasi-coherence we have $\mathcal{O}_{U}^{m_i}$ $\begin{aligned} &\substack{m_i\ (U_i)\to\mathcal{F}(U_i)\ \text{surjective, and}\end{aligned}$ $\mathcal{F}(U) \otimes_{\mathcal{O}(U)} \mathcal{O}(U_i) \rightarrow \mathcal{F}(U_i)$ an isomorphism.
- Find a finitely generated submodule $M \subset \mathcal{F}(U)$ such that $M \otimes_{\mathcal{O}(U)} \mathcal{O}(U_i) \rightarrow \mathcal{F}(U_i)$ surjective for all *i*.
- Now $\widetilde{M} \to \mathcal{F}|_U$ surjective so $\mathcal{F}(U)$ is finitely generated.
- We may take $M = \mathcal{O}(U)^m$.
- Now let $\mathcal{O}^n \to \mathcal{F}$ be a homomorphism on some affine. It is determined by $A^n \to M$. Since A noetherian the kernel is also finitely generated, as needed.

イ伊 メ ミ メ イヨ メー

Basic properties

- Quasi-coherence is preserved by direct sums. Local finite generation preserved by finite direct sums.
- If \mathcal{F}, \mathcal{G} are quasi-coherent then $\mathcal{F} \otimes_{\mathcal{O}} \mathcal{G}$ is quasi-coherent, with module $\mathcal{F}(U) \otimes_{\mathcal{O}(U)} \mathcal{G}(U)$ on any affine open.
- The kernel and cokernel of a homomorphism of quasi-coherent sheaves is quasi-coherent. Same for coherent on a locally Noetherian scheme.
- An extension of quasi-coherent sheaves is quasi-coherent. Same for coherent on a locally Noetherian scheme.

Indeed the useful result gives an exact sequence $0 \to \mathcal{F}(U) \to \mathcal{G}(U) \to \mathcal{H}(U) \to 0$, so a diagram with exact rows

$$
0 \longrightarrow \widetilde{\mathcal{F}(U)} \longrightarrow \widetilde{\mathcal{G}(U)} \longrightarrow \widetilde{\mathcal{H}(U)} \longrightarrow 0
$$

$$
\downarrow \simeq \qquad \qquad \downarrow \simeq
$$

$$
0 \longrightarrow \mathcal{F} \longrightarrow \mathcal{G} \longrightarrow \mathcal{H} \longrightarrow 0
$$

ねゃ マミャマミャ

Pull back and push forward

- Given $f: X \to Y$ the structure arrow $f^\# : \mathcal{O}_Y \to f_* \mathcal{O}_X$ is equivalent to $f^\# : f^{-1}\mathcal{O}_Y \rightarrow \mathcal{O}_X.$
- Define $f^{\ast} \mathcal{G} := f^{-1} \mathcal{G} \otimes_{f^{-1} \mathcal{O}_Y} \mathcal{O}_{X}.^{\ast}$
- Note $f^* \mathcal{O}_Y = \mathcal{O}_X$ and f^* commutes with direct sums.

Propoerties:

$$
\bullet \ \ f^* \mathcal{G}_x = \mathcal{G}_{f(x)} \otimes_{\mathcal{O}_{Y, f(x)}} \mathcal{O}_{X, x}.
$$

If $X = \operatorname{Spec} B$, $Y = \operatorname{Spec} A$, $G = M$ affine then $f^*\mathcal{G} = \widetilde{M \otimes_A B}.$

If G quasi-coherent then $f * G$ quasi-coherent. The first follows from $f^{-1}\mathcal{G}_x=\mathcal{G}_{f(x)}.$ Fix presentation $\oplus_1 A \to \oplus_1 A \to M \to 0$ giving presentation $\bigoplus_{I} \mathcal{O}_{Y} \rightarrow \bigoplus_{I} \mathcal{O}_{Y} \rightarrow \mathcal{G} \rightarrow 0$. Direct sums and right exactness give presentation $\oplus_I \mathcal{O}_X \to \oplus_J \mathcal{O}_X \to f^* \mathcal{G} \to 0$. On the other hand we also have presentation $\bigoplus_l B \to \bigoplus_l B \to M \otimes_A B \to 0$ giving $\bigoplus_{I} \mathcal{O}_X \to \bigoplus_{I} \mathcal{O}_X \to M \otimes_A B \to 0$. This gives an isomorphism $M \widetilde{\otimes_A} B \to f^* \mathcal{G}.$

- Assume either X noetherian or f separated and quasi-compact. If F quasi-coherent then f_*F quasi-coherent.
- **•** If f finite and F quasi-coherent and L.F.G then $f_*\mathcal{F}$ quasi-coherent and L.F.G.

We may assume Y affine, so X either noetherian or separated and quasi-compact.

- We want to show $f_*\mathcal{F} = \mathcal{F}(X)$. Enough to evaluate $f_*\mathcal{F}(D(g))$. Write $g' = f^*g$. $f_*\mathcal{F}(D(g)) = \mathcal{F}(f^{-1}D(g)) =$ $\mathcal{F}(X_{\mathcal{g}'}) \simeq \mathcal{F}(X)[{\mathcal{g}'}^{-1}] = \mathcal{F}(X) \otimes_{A} A [{\mathcal{g}'}^{-1}],$ as needed.
- \bullet f finite implies affine, so separated and quasi-compact, so $f_*\mathcal{F} = \mathcal{F}(X)$. Now $\mathcal{F}(X)$ is finitely generated over $\mathcal{O}_X (X)$ so finitely generated over $\mathcal{O}_Y(Y)$.

イ何 メ ミ メ イヨ メ

Proposition

The correspondence $\{Z \subset X\} \leftrightarrow \{\text{Ker } i^{\#}\}\$ is an order-reversing 1-1 correspondence between closed subschemes and quasi-coherent ideal sheaves.

We may assume $X = \text{Spec } A$ affine. There is already a correspondence between sheaves of ideals and closed ringed subspaces.

If $Z = V(I)$ is a closed subscheme then it was shown that Ker $i^{\#}(D(g)) = I[g^{-1}]$ so Ker $i^{\#} = \widetilde{I}$ is quasi-coherent. If $\widetilde{I}:=\mathcal{I}\subset\mathcal{O}_{\mathsf{X}}$ a quasi-coherent ideal sheaf then it was shown that the ringed subspace $V(\mathcal{I})$ is the closed subscheme Spec A/I.

 $\mathbb{R}^n \times \mathbb{R}^n \xrightarrow{\sim} \mathbb{R}^n \times \mathbb{R}^n$

Sheaf associated to a graded module

- Let $B = \bigoplus_{n>0} B_n$ be a graded ring, $M = \bigoplus_{n \in \mathbb{Z}} M_n$ a graded module.
- For a homogeneous $f \in B_+$ one defined an affine open $D_+(f)\subset X:=\operatorname{\sf Proj} B$ with ring $B_{(f)}=B[f^{-1}]_0,$ the elements of degree 0 in the $\mathbb Z$ -graded ring $\dot{B}[\acute{f}^{-1}].$
- Define $\mathcal{M}_{(f)} = \mathcal{M}[f^{-1}]_{0},$ the elements of degree 0 in the graded $\mathcal{B}[\widehat{f}^{-1}]$ -module $\mathcal{M}[f^{-1}]$, namely $M_{(f)} = \{ mf^{-d} | m \in M_{d \deg f}, d \in \mathbb{N} \}.$

Proposition

There exists a unique quasi-coherent sheaf \overline{M} on X such that $M|_{D_{+}(f)} = M_{(f)}$. For $\mathfrak{p} \in \text{Proj } B$ we have $M_{\mathfrak{p}} = (M_{\mathfrak{p}})_{0}$.

For this note that $M_{(fg)} = M_{(f)}[(g^{\deg f}/f^{\deg g})^{-1}]$ or repeat the argument of \mathcal{O}_X .

This is not an equivalence.

スタンスミンスミント ミ

The twisting sheaf and twists of sheaves

- Define a graded module $B(n)$ by $B(n)_d = B_{n+d}$. Denote $\mathcal{O}_X(n) := B(n).$
- If $f \in B_1$ then $B(n)_{(f)} = f^n B_{(f)}$. So $\mathcal{O}_X(n)|_{D_+(f)} = (\mathcal{O}_X|_{D_+(f)})f^n$.
- We have $\mathcal{O}_X(n) \otimes_{\mathcal{O}_X} \mathcal{O}_X(m) = \mathcal{O}_X(n+m)$. The sheaf $\mathcal{O}_X(1)$ is called the twisting sheaf.
- For a scheme Y one has a canonical morphism $f: \mathbb{P}^d_Y \to \mathbb{P}^d_{\mathbb{Z}}.$ One defines $\mathcal{O}_{\mathbb{P}^d_Y}(n) = f^*\mathcal{O}_{\mathbb{P}^d_{\mathbb{Z}}}(n).$
- It is an exercise (5.1.20) to show that when $Y = \operatorname{Spec} A$ affine then $\mathcal{O}_{\mathbb{P}_Y^d}(n)$ coincides with $A[T_0, \ldots, T_d](1).$

Definition

Let $X = \mathbb{P}^n_A$, let $\mathcal F$ be an $\mathcal O_X$ -module. The *n*-th twist of $\mathcal F$ is $\mathcal{F}(n) := \mathcal{F} \otimes_{\mathcal{O}_{\mathcal{X}}} \mathcal{O}_{\mathcal{X}}(n).$ For an immersion* $Y \stackrel{\iota}{\hookrightarrow} X$ write $\mathcal{O}_Y(1) = \iota^*\mathcal{O}_X(1)$ and for a quasi-cohere[n](#page-17-0)t F write $\mathcal{F}(n) := \mathcal{F} \otimes_{\mathcal{O}_Y} \mathcal{O}_Y(n)$ [.](#page-19-0)

Proposition (1.22)

Let $B = A[T_0, \ldots, T_d], d > 1*$ and $X = \text{Proj } B$. Then $(\mathcal{O}_X(n))(X) = B_n$, so $\bigoplus_{\mathbb{Z}} (\mathcal{O}_X(n))(X) = B$.

- A section of $(\mathcal{O}_X(n))(X)$ restricts to sections of $(\mathcal{O}_X(n))(D_+(T_i))$ which agree on intersections.
- These are submodules of homogeneous elements of $A[T_0, \ldots, T_d, T_0^{-1}, \ldots, T_n^{-1}]$ where only T_i can be in the denominator.
- Since $d > 0$ this means that no T_i can be in the denominator, giving a homogeneous polynomial of degree n.

Note that if $d = 0$ one gets $\bigoplus_{\mathbb{Z}}(\mathcal{O}_X(n))(X) = B[T_0^{-1}]$

∢ 何 ▶ 《 手 》 《 手 》

Invertible sheaves

- We say that an \mathcal{O}_X -module $\mathcal L$ is invertible if every $x \in X$ has a neighborhood $x \in U \subset X$ and an isomorphism $\mathcal{L}|_{U} \simeq \mathcal{O}_{X}|_{U}$.
- Since \mathbb{P}^n_Y is covered by $D_+(x_0)$ which have degree 1, we see that $\mathcal{O}_{\mathbb{P}_\mathcal{V}^d}(n)$ is invertible.
- If $\mathcal L$ invertible and $s \in \mathcal L(X)$ one defines an open $X_s = \{x \in X : \mathcal{L}_x = \mathcal{O}_{X,x} \cdot s_x\} \subset X.$
- It generalizes X_f when $f \in \mathcal{O}_X(X)$.

Proposition (* 1.25)

Let X be either noetherian or separated and quasicompact, $\mathcal L$ invertible, F quasi-coherent. Fix $s \in \mathcal{L}(X)$.

- (1) Let $f \in \mathcal{F}(X)$ with $f|_{X_s} = 0$. Then there is $n \geq 0$ such that $f\mathfrak{s}^n=0\in\mathcal{F}\otimes_{\mathcal{O}_X}\mathcal{L}^n.$
- (2) Let $g \in \mathcal{F}(X_s)$, Then there is $n \geq 0$ and $f \in (\mathcal{F} \otimes_{\mathcal{O}_X} \mathcal{L}^n)(X)$ such that $f|_{X_s} = gs^n$.

Let X_i be finitely many opens covering X with isomorphisms $\mathcal{L}_i \stackrel{\phi_i}{\simeq} \mathcal{O}_{X_i}$, and $t_i = \phi_i(s)$.

Let $f \in \mathcal{F}(X)$ with $f|_{X_s} = 0$. Then there is $n \geq 0$ such that f sⁿ = 0 \in $\mathcal{F} \otimes_{\mathcal{O}_X} \mathcal{L}^n$.

- As $X_i \cap X_s = (X_i)_{t_i}$ we can use Proposition 1.6.
- So there is *n* such that $f s^n |_{X_i} = f t_i^n = 0$, for all *i*.
- By the sheaf axiom $f s^n = 0 \spadesuit$

つくい

Let $g\in \mathcal{F}(X_{\sf s})$, Then there is $n\geq 0$ and $f\in (\mathcal{F}\otimes_{\mathcal{O}_X}\mathcal{L}^n)(X)$ such that $f |_{X_s} = gs^n$.

- By 1.6 there is k and $h_i \in (\mathcal{F} \otimes_{\mathcal{O}_X} \mathcal{L}^n)(X_i)$ such that $\left. {\it g s}^k \right|_{\left(X_i \right)_s} = \it g t_i^k = h_i|_{\left(X_i \right)_s}$, for all $i.$
- Note that $(h_i h_j)|_{(X_{ii})_s} = 0$, and the assumption propagates to the opens X_{ii} .
- So by (1) there is m so that $(h_i s^m h_j s^m)|_{X_{ij}} = 0$ for all i, j .
- By the sheaf axiom there is f so that $f|_{X_i} = h_i s^m$ as needed.♠

つくい

Serre's eventual global generation

For an immersion $Y\stackrel{\iota}{\hookrightarrow}\mathbb{P}_A^d$ we wrote $\mathcal{O}_Y(1)=\iota^*\mathcal{O}_{\mathbb{P}_A^d}(1)$ and for a quasi-coherent F we wrote $\mathcal{F}(n) := \mathcal{F} \otimes_{\mathcal{O}_{\mathcal{Y}}} \mathcal{O}_{\mathcal{Y}}(n)$.

Theorem

Say X projective over A and $\mathcal F$ locally finitely generated quasi-coherent. There exists n_0 so that for all $n > n_0$ the sheaf $\mathcal{F}(n)$ is globally generated.

- By assumption there is $\iota: X \hookrightarrow \mathbb{P}^d_A$.
- **•** There is a nice exercise (5.1.6) showing $(\iota_* \mathcal{F})(n) = \iota_*(\mathcal{F}(n))$.
- Since $\iota_*(\mathcal{F}(n))(\mathbb{P}_\mathcal{A}^d)=(\mathcal{F}(n))(X)$, and since $\iota_*(\mathcal{F}(n))_{f(x)} = (\mathcal{F}(n))_x$ we may and do replace X by \mathbb{P}_A^d .
- For each i we have $\mathcal{F}(D_+(\mathcal{T}_i))$, and thus $\mathcal{F}|_{D_+(\mathcal{T}_i)}$, generated by finitely many s_{ij} . Thus $\mathcal{F}(n)|_{D_{+}(\mathcal{T}_i)}$ is generated by $s_{ij} \, \mathcal{T}^n_i$.
- By the proposition there is *n* such that $s_{ij}T_i^n = u_{ij}|_{D_{+}(\mathcal{T}_i)}$, with $u_{ii} \in (\mathcal{F}(n))(X)$, for all *i*, *j*, as nee[de](#page-22-0)[d.](#page-24-0) \spadesuit

Corollary

Again X projective over A and $\mathcal F$ locally finitely generated quasi-coherent. There is m and an epimorphism $\mathcal{O}_X^r(m) \to \mathcal{F}.$

- Indeed for any n in the theorem take an epimorphism $\mathcal{O}_X^r \to \mathcal{F}(n)$.
- Taking $\otimes_{\mathcal{O}_X}\mathcal{O}_X(-n)$ get an epimorphism $\mathcal{O}_X^r(-n) \to \mathcal{F}$,

 \bullet so $m = -n$ works.

伊 ▶ イヨ ▶ イヨ ▶

つくい

$\mathsf{\Gamma }_{\ast}(\mathcal{F})$

- A quasi-coherent sheaf F on Spec A satisfies $\mathcal{F} = \mathcal{F}(\mathsf{Spec}\,A)$.
- Suppose instead $X = \text{Proj } B$ with $B = A[T_0, \ldots, T_d]$. The A-module $\Gamma_{\bullet}(\mathcal{F}) := \bigoplus_{n>0} \Gamma(X, \mathcal{F}(n))$ is a graded B-module via $\Gamma(X, \mathcal{O}_X(n)) \otimes_Z \Gamma(X, \mathcal{F}(m)) \to \Gamma(X, \mathcal{F}(n+m)).$

Lemma

we have an isomorphism $\widetilde{\Gamma_{\bullet}(\mathcal{F})}\to\mathcal{F}.$

- Note that in general $M \to \Gamma_{\bullet}(M)$ is not an isomorphism.*
- Let $T = T_0$ and $U = D_+(T_0)$. By affine case it suffices to show that $\Gamma_{\bullet}(\mathcal{F})_{(\mathcal{T})} \to \mathcal{F}(U)$ is an isomorphism.**
- Let $T^{-n}t \in \Gamma_{\bullet}(\mathcal{F})_{(\mathcal{T})}$, with $t \in \Gamma(\mathcal{F}(n))$.
- So $t|_U\in \Gamma(U,{\mathcal F}(n))=\, T^n\Gamma(U,{\mathcal F}),$ and $t|_U=\, T^n s$ for unique $s \in \mathcal{F}(U)$.
- This is surjective by Proposition 1.25 (2) and injective by Proposition 1.25 (1).

Proposition

With A, B, X as above, let $Z \subset X$ be closed. Then $Z = \text{Proj } B/I$ for some homogeneous ideal $I \subset B$. In particular any projective A-scheme is of the form Proj C^*

- Let $\mathcal I$ be the quasi-coherent sheaf of ideals defining Z and $I = \Gamma_{\bullet}(\mathcal{I}).$
- $\mathcal{I}(n) \subset \mathcal{O}_X(n)$ because $\mathcal{O}(n)$ is locally free hence flat.
- So by Proposition 1.22, $I \subset \Gamma_{\bullet}(\mathcal{O}_X) = B$.
- By the Lemma $\widetilde{I} = \mathcal{I}$. So $\mathcal{I}_{V(I)} = \widetilde{I} = \mathcal{I}$ and $V(I) = Z.*$

Maps to projective space

For an invertible $\mathcal L$ and section $s \in \mathcal L(X)$ one has an isomorphism $\mathcal{O}_{X_s}\simeq \mathcal{L}_{X_s}$ via $1\mapsto s.$ The inverse maps $t\mapsto t/s.$

Proposition (5.1.31)

Let Z/A be a scheme and $X = \text{Proj } A[T_0, \ldots, T_d]$.

- 1) If $f:Z\to X$ an A-morphism then $f^*\mathcal{O}_X(1)$ is generated by the $d+1$ sections f^*T_i .
- 2) If L an invertible sheaf on Z generated by sections s_0, \ldots, s_d there is a unique morphism $f: Z \to X$ with $s_i = f^*T_i$.
- 1) Note T_i generate $\mathcal{O}_X(1)$, with epimorphism $\mathcal{O}_X^{d=1} \to \mathcal{O}_X(1)$ giving epimorphism $\mathcal{O}^{d=1}_Z \to f^*\mathcal{O}_Z(1)$ by right-exactness of \otimes .
- 2) Define $Z_{s_i} \rightarrow D_+(T_i)$ via the A-algebra homomorphism $T_j/T_i \mapsto s_j/s_i \in \mathcal{O}_Z(Z_{s_i}).$

These glue, and give an isomorphism $\mathcal{L} = f^* \mathcal{O}_X(1)$.

イロメ イ母メ イヨメ イヨメーヨー

Maps to projective space: the fundamental question

Examples: power maps, Veronese, Segre.

Note: the morphism f is not changed by rescaling s_i simultaneously.

Note: An invertible linear transformation on s_i results in composing with the corresponding projective linear transformation on \mathbb{P}^d .

The fundamental question of projective geometry is: what are the possible ways to map Z to projective space?

The discussion says that this is equivalent to: what are the invertible sheaves with finitely many generating sections (up to chosen equivalence)?

Definition

 $Pic(X) = set$ of isomorphism classes of invertible sheaves, with group structure given by $\mathcal{L}_1 \otimes_{\mathcal{O}_X} \mathcal{L}_2$ and $\mathcal{L}^{-1} = \mathcal{H}$ om $_{\mathcal{O}_X}(\mathcal{L}, \mathcal{O}_X).$

Sections up to rescaling will be characterized in terms of linear systems of Cartier divisors. $\mathcal{A} \oplus \mathcal{B}$ and $\mathcal{A} \oplus \mathcal{B}$ and $\mathcal{B} \oplus \mathcal{B}$

Definition

A sheaf of the form $\iota^*\mathcal{O}_{\mathbb{P}_A^d}(1)$, with $\iota:X\hookrightarrow \mathbb{P}_A^d$ an immersion, is very ample over A. An invertible sheaf $\mathcal L$ is ample if for every finitely generated quasi-coherent ${\mathcal F}$ there is n_0 such that ${\mathcal F} \otimes {\mathcal L}^n$ is globally generated for all $n > n_0$.

Theorem

Say $f: X \to \text{Spec } A$ is of finite type, and either X noetherian or f separated. If $\mathcal L$ is ample on X there is $m\geq 1$ such that $\mathcal L^m$ is very ample.

医阿里氏阿里

Lemma

Say either X noetherian or f separated, and $\mathcal L$ is ample on X . Each $x \in X$ has an affine neighborhood of the form X_s , $s \in \mathcal{L}^n(X)$.

- Let U be an affine neighborhood of x on which $\mathcal{L}|_{U} \simeq \mathcal{O}_{X}|_{U}$, and $\mathcal{J} = \mathcal{I}(X \setminus U)$.
- The inclusion $\mathcal{J} \subset \mathcal{O}_U$ gives $\mathcal{J} \otimes \mathcal{L}^n = \mathcal{J} \mathcal{L}^n \subset \mathcal{L}^n$, since \mathcal{L}^n locally free.
- By ampleness there is a section $s \in (\mathcal{JL}^n)(X)$ generating $(\mathcal{J}\mathcal{L}^n)_x = \mathcal{L}^n_x$, so $x \in X_s \subset U$.
- The isomorphism $\mathcal{L}|_{U} \simeq \mathcal{O}_{X}|_{U}$ carries s to $f \in \mathcal{O}_{X}(U)$, so $X_s = D_H(f)$ is affine.

同 ▶ ヨ ヨ ▶ ヨ ヨ ▶

 200

Proof of the theorem: lifting coordinates to sections and embedding

- Say $\mathcal{O}_X(X_s)=A[f_1,\ldots,f_k].$ For some r we have that s^rf_j lifts to $s_i \in \mathcal{L}^{nr}(X)$.
- X is covered by finitely many, $X_{\mathtt{s}}$, renumbered $X_{\mathtt{s}_i}$. May choose n, r good for all i, j .
- Consider $Y = \text{Proj } A[\{T_i, T_{ij}\}]$. By Proposition 5.1.31 there is $\phi: X \to Y$ with $\phi^* \mathcal{O}_Y(1) = \mathcal{L}$.
- $\mathcal{X}_{\mathsf{s}_i} = \phi^{-1}D_+(\mathcal{T}_i)$ and $\mathcal{O}_{\mathcal{Y}}(D_+(\mathcal{T}_i)) \to \mathcal{O}_{\mathcal{X}}(\mathcal{X}_{\mathsf{s}_i})$ surjective.
- So ϕ a closed embedding, as needed.

同 ▶ ヨ ヨ ▶ ヨ ヨ ▶

 200

Lemma

Assume X either Noetherian or quasicompact and separated; $\mathcal L$ invertible.

a) If $X=\cup X_{\mathsf{s}_i}$ affine open cover for $\mathsf{s}_i\in \mathcal{L}(X)$, then $\mathcal L$ ample.

b) If L ample and U subsetX open and quasicompact then $\mathcal{L}|_{U}$ ample.

Corollary

If $X \rightarrow$ Spec A as in theorem, then it is quasi-projective if and only if there is an ample sheaf.

The theorem gives ample \Rightarrow quasi-projective. If quasi-projective then X open in a projective Y, which has an ample. By the lemma the restriction is ample.

and in

→ 何 ▶ → ヨ ▶ → ヨ ▶

Proof of Lemma

- a) Suppose $\mathcal F$ finitely generated and quasicoherent. Say f_{ii} generate $\mathcal{F}(X_{\mathsf{s}_i})$.
	- Then $f_{ij}s_i^n$ lift to $t_{ij}\in (\mathcal{F}\otimes \mathcal{L}^n)(X)$ generating the sheaf on X_{s_i} , for some *n* and for all *i*, as needed.
- b) By the Lemma there are sections of \mathcal{L}^r satisfying (a). Also $U\cap X_{\mathsf{s}_j}$ is covered by finitely many principal opens $D_{X_{s_j}}(h_{ij}^{\cdot})\subset X_{s_j}.$ So $s_j^nh_{ij}$ lifts to $t_{ij}\in\mathcal{L}(X).$ Now $u_{ij}=t_{ij}|_U$ have $U_{u_{ij}} = D_{X_{\mathrm{s}_j}}(h_{ij})$ are affine so satisfy (a) on U , and $\mathcal{L}|_U$ ample by (a).

伊 ト イヨ ト イヨ ト

つくい

Proposition

Let $f: X \rightarrow Y$ be a proper morphism of locally noetherian schemes, $\mathcal L$ invertible on X. Fix $y \in Y$ and $\phi: X_{Y,y} := X \times_Y$ Spec $\mathcal{O}_{Y,y} \to X$ the canonical base change morphism.

- a) If $\phi^* \mathcal{L}$ is globally generated then there is an open $y \in V \subset Y$ such that \mathcal{L}_{X_V} is globally generated.
- b) If $\phi^* \mathcal{L}$ is ample then there is an open $y \in V \subset Y$ such that \mathcal{L}_{X_V} is ample.

Lemma (Flat base change)

Assume Y = Spec A affine. Then $\mathcal{F}(X) \otimes_A \mathcal{O}_{Y,\nu} \to \mathcal{F}(X_{Y,\nu})$ an isomorphism.

 \mathcal{A} and \mathcal{A} in the set of \mathcal{B}

One only needs X noetherian or separated and quasi-compact. Pick a finite affine open covering $X=\cup U_i.$ The sequence $0 \to \mathcal{F}(X) \to \oplus \mathcal{F}(U_i) \to \oplus \mathcal{F}(U_i \cap U_i)$ induces a commutative diagram with exact rows $0\longrightarrow \mathcal{F}(X)\otimes_A{\mathcal O}_{Y,y}\longrightarrow\oplus \mathcal{F}(U_i)\otimes_A{\mathcal O}_{Y,y}\longrightarrow \oplus \mathcal{F}(U_i\cap U_j)\otimes_A{\mathcal O}_{Y,y}$ \downarrow \downarrow ŗ ľ $^{\prime}$ $0\!\longrightarrow\!\mathcal{F}(X_{Y,y})\!\longrightarrow\!\mathop{\oplus}\limits \mathcal{F}((U_i)_{Y,y})\!\longrightarrow\!\mathop{\oplus}\limits \mathcal{F}((U_i\cap U_j)_{Y,y})$ the arrow β is an isomorphism. So the left arrow is injective. Same holds for X replaced by $U_i \cap U_j$. So it is an isomorphism.

つくい

We may replace Y by affine open.

- a) Then $\phi^* \mathcal{L}(X_{Y,y}) = \mathcal{L}(X) \otimes_A \mathcal{O}_{Y,y}$ and $\phi^* \mathcal{L}_x = \mathcal{L}_x$. So $\mathcal{L}(X)\otimes_{\mathcal{A}}\mathcal{O}_X\rightarrow \mathcal{L}$ is surjective along $f^{-1}y.$ There is an open set of X containing $f^{-1}y$ where this is surjective. Since $X \rightarrow Y$ is proper tehre is a neighborhood of y where this is surjective.
- b) By taking a high power we may assume $\phi^* \mathcal{L}$ is very ample and globally generated. Shrinking Y and using (a) we may assume $\mathcal L$ is globally generated. Since X is quasicompact a finite number of sections suffices, giving a morphism $X \to \mathbb{P}^d_A$. Let Z is the closure of the image, with $f : X \rightarrow Z$ the morphism. This is an isomorphism to the image along $X_{Y,y}$, so it is an isomorphism on an open set (this is exercise 3.2.5).

メラト メミト メミト