Factorization of birational maps on steroids IAS, April 14, 2015

Dan Abramovich

Brown University

April 14, 2015

This is work with Michael Temkin (Jerusalem)

Abramovich (Brown)

Statement

Theorem (\aleph -Temkin, after Włodarczyk 03, \aleph -Karu-Matsuki-Wł 02) Let $\phi : X \to Y$ be a projective birational morphism of regular, noetherian *qe schemes.* Assume either char = 0 or strong resolution holds. Then ϕ factors as

$$X = V_0 \stackrel{\varphi_1}{\dashrightarrow} V_1 \stackrel{\varphi_2}{\dashrightarrow} \dots \stackrel{\varphi_{\ell-1}}{\dashrightarrow} V_{\ell-1} \stackrel{\varphi_{\ell}}{\dashrightarrow} V_{\ell} = Y ,$$

with V_i regular, projective over Y, and φ_i or φ_i^{-1} is the blowing up of a regular Z_i ($\subset X_i$ or X_{i+1}).

The factorization is functorial for regular surjective $Y_1 \rightarrow Y$, namely for $X_1 = X \times_Y Y_1$ get the factorization with $(V_i)_1 = V_i \times_Y Y_1$ etc.

Question

What's a regular morphism? what's a qe scheme?

Regular morphisms and qe schemes

Definition

- $f: Y \to X$ is regular if
 - flat and
 - all geometric fibers of $f: X \to Y$ are regular.

Definition

X is a **qe scheme** if:

- locally noetherian,
- for any Y/X of finite type, $Y_{reg} \subset Y$ is open; and
- For any $x \in X$, Spec $\hat{\mathcal{O}}_{X,x} \to X$ is a regular morphism.

I'll give examples if you ask.

Lesson: Commutative rings are as bad as you feared.

Nature

Why?

- Qe schemes are the natural world for resolution of singularities.
- (Temkin) they show up in "nature".

IAS nature = \mathbb{C} analytic. Can we factor? consider $Y = \mathbb{C}^n$, and for X blow up

- (1,0) once
- (2,0) twice
 - • •
- (n,0) *n* times at infinitely near points.

There is no way to factor this in finitely many steps.

Problem

The local rings are noetherian, but not the Stein patches.

Consider closed polydisc $D \subset \mathbb{C}^r$ ("Stein compact") and sheaf $\mathcal{O}_D := \mathcal{O}_{\mathbb{C}^r}|_D$ (overconvergent functions).

Theorem (Frisch 67, Matsumura)

 $A_D := \Gamma(D, \mathcal{O}_D)$ is an excellent regular noetherian ring.

Correspondences

- There is an "algebraization" correspondence: closed complex subspaces of *D* correspond to closed subschemes of $D^{alg} := \operatorname{Spec} A_D$ etc. No weird boundary phenomena.
- There is an analytification functor from schemes of finite type over *D^{alg}* → complex spaces over *D*. It preserves regularity.
- Use these as patches to build complex geometry of "analytic germs".
- There is a similar picture with affinoids in rigid analytic or Berkovich spaces, affine formal schemes, etc.

Analytic factorization

Theorem (\aleph -Temkin, generalizing the compact complex manifold case (\aleph KMW))

Let Y be a compact nonsingular analytic germ. Any $X \to Y$ projective bimeromorphic can be factored into blowings up and down as before.

This requires GAGA.

```
Theorem (GAGA, Serre's Théorème 3)
```

Analytification induces a cohomology-preserving equivalence

 $Coh(\mathbb{P}^n_{D^{alg}}) \leftrightarrow Coh(\mathbb{P}^n_D).$

Lemma (correspondence)

For an affinoid Y, analytification induces bijections

- {Blowings up X/Y^{alg} } \leftrightarrow {Blowings up X^{an}/Y },
- {Factorizations $X \dashrightarrow Y^{alg}$ } \leftrightarrow {Factorizations $X^{an} \dashrightarrow Y$ }.

Analytic factorization given correspondence Lemma

- Write $Y = \bigcup Y_i$ with Y_i affinoids so Y_i^{alg} qe schemes.
- Write $X_i := BI_I Y_i = X \times_Y Y_i$, so $X_i^{alg} = BI_{I^{alg}} Y_I^{alg}$ regular.
- Get blowup $\sqcup X_i^{alg} \to \sqcup Y_i^{alg}$.
- Apply algebraic factorization $\sqcup X_i^{alg} \dashrightarrow \to \dashrightarrow \sqcup Y_i^{alg}$.
- Analytification gives corresponding $\sqcup X_i \dashrightarrow \to \sqcup Y_i$.
- The theorem follows from the claim below:

Claim (Analytic Patching)

Let $Y_* \subset Y_1 \cap Y_2$ be affinoid, and $X_* = Bl_I Y_*$. Then the restrictions of $X_1 \dashrightarrow Y_1$ and $X_2 \dashrightarrow Y_2$ to $X_* \to Y_*$ coincide.

Claim and Lemma

By the Correspondence Lemma, Analytic Patching follows from

Lemma (Algebraic Patching)

Let $X_*^{alg} = Bl_{I^{alg}} Y_*^{alg}$. Then the restrictions of $X_1^{alg} \dashrightarrow Y_1^{alg}$ and $X_2^{alg} \dashrightarrow Y_2^{alg}$ to $X_*^{alg} \to Y_*^{alg}$ coincide.

Proof.

Let $Z = Y_1^{alg} \sqcup Y_2^{alg}$ and $W = Z \sqcup Y_*^{alg}$. The embeddings $Y_*^{alg} \to Y_i^{alg}$ and the identity $Z \to Z$ give two maps $h_i : W \to Z$. These are regular (Temkin!) and surjective. Write $X_Z = Bl_{I^{alg}}Z = X_1^{alg} \sqcup X_2^{alg}$. Note that $h_1^*X_Z = h_2^*X_Z$, since they

are the blowings up of the same ideal sheaf.

Functoriality for regular surjective morphisms gives the Lemma.

About GAGA

- It is magnificent.
- You can too:

Lemma (Dimension Lemma)

We have
$$H^{i}(\mathbb{P}^{n}_{D^{alg}},\mathcal{F})=H^{i}(\mathbb{P}^{n}_{D},\mathcal{F}^{\mathrm{an}})=0$$
 for $i>n$ and all $\mathcal{F}.$

Lemma (Structure Sheaf Lemma) We have $H^{i}(\mathbb{P}^{n}_{D^{alg}}, \mathcal{O}) = H^{i}(\mathbb{P}^{n}_{D}, \mathcal{O})$ for all *i*.

Proof of lemmas

Proof of Dimension Lemma.

Use Čech covers of $\mathbb{P}^n_D = \bigcup_{i=0}^n D^n[1+\epsilon] \times D$ by closed standard polydisks.

More on GAGA in the appendix.

Factorization step 1: birational cobordism

We follow Włodarczyk's original ideas. Much works for schemes.

Claim

There is (functorially) a regular projective $(B \rightarrow Y, O_B(1))$, with \mathbb{G}_m action, such that:

$$B_{a_{\min}}^{ss} /\!\!/ \mathbb{G}_m = X, \quad B_{a_{\max}}^{ss} /\!\!/ \mathbb{G}_m = Y.$$

Proof.

If $X = Bl_I Y$, then take the deformation of the normal cone of Z(I) and resolve singularities to get B.

Factorization step 2: VGIT

Claim

The quotient $B_a^{ss} \to B_a^{ss} /\!\!/ \mathbb{G}_m$ is affine, $a_{\min} \leq a \leq a_{\max}$,

Claim

There is a functorial factorization of ϕ into a sequence of

$$B^{ss}_{a_i-} /\!\!/ \mathbb{G}_m \quad \rightarrow \quad B^{ss}_{a_i} /\!\!/ \mathbb{G}_m \quad \leftarrow \quad B^{ss}_{a_i+} /\!\!/ \mathbb{G}_m.$$

For this, study relatively affine actions of diagonalizable groups on locally noetherian schemes. The maps result from

$$B_{a_i-}^{ss} \hookrightarrow B_{a_i}^{ss} \leftrightarrow B_{a_i+}^{ss}$$

Factorization step 3: torific blowups

Claim

There is (functorially) an invariant ideal J_i on $B_{a_i}^{ss}$ so that $B_{a_i}^{tor} := BI_{J_i}B_{a_i}^{ss}$, with its exceptional divisor, is toroidal and the \mathbb{G}_m action is a toroidal action.

- Over a field k, a pair (B, E) is toroidal if locally it has a regular morphism to a toric variety (X_σ, D) with its toric divisor D = X_σ - T. In general there is a criterion by Kato.
- The action is toroidal if the map is equivariant for a subgroup of T.
- The proof requires studying logarithmically regular schemes. The ideal is the torific ideal of ℵ-de Jong and ℵKMW.

Factorization step 4: Luna's fundamental lemma

Definition (Special orbits)

An orbit $\mathbb{G}_m \cdot x \subset X$ is *special* if it is closed in the fiber of $X \to X /\!\!/ \mathbb{G}_m$.

Definition (Inert morphisms)

A \mathbb{G}_m -equivariant $X \to Y$ is *inert* if (1) it takes special orbits to special orbits and (2) it preserves inertia groups.

Theorem (Luna's fundamental lemma, [Luna 73,Bardsley-Richardson 85, Alper 10,ℵ-Temkin])

A regular and inert \mathbb{G}_m -equivariant $X \to Y$ is strongly regular, namely (1) $X \parallel \mathbb{G}_m \to Y \parallel \mathbb{G}_m$ is regular and (2) $X = Y \times_{Y \parallel \mathbb{G}_m} X \parallel \mathbb{G}_m$. Factorization step 5: torification is torific

Claim

The following diagram is toroidal:

This uses Luna and the properties of torific ideals.

Factorization step 6: resolving and patching

An argument using canonical resolution of &KMW allows one to replace $B_{a_i-}^{tor} /\!\!/ \mathbb{G}_m$ by regular toroidal schemes so that $B_{a_{i-1}+}^{tor} /\!\!/ \mathbb{G}_m \xrightarrow{} B_{a_i-}^{tor} /\!\!/ \mathbb{G}_m$ is a sequence of blowings down and up of nonsingular centers. Finally we have

Claim (Morelli 96, Wł97, ℵ-Matsuki-Rashid, ℵKMW, ℵ-Temkin)

There is a toroidal factorization of $B_{a_i-}^{tor} / / \mathbb{G}_m \longrightarrow B_{a_i+}^{tor} / / \mathbb{G}_m$, functorial with respect to regular surjective morphisms.

This requires generalized cone complexes of ℵ-Caporaso-Payne.

GAGA appendix: Serre's proof - cohomology

Lemma (Twisting Sheaf Lemma) We have $H^{i}(\mathbb{P}^{r}_{A}, \mathcal{O}(n)) = H^{i}(\mathbb{P}^{r}_{D}, \mathcal{O}(n))$ for all i, r, n.

Proof.

Induction on r and $0 \to \mathcal{O}_{\mathbb{P}^r_D}(n-1) \to \mathcal{O}_{\mathbb{P}^r_D}(n) \to \mathcal{O}_{\mathbb{P}^{r-1}_D}(n) \to 0$

So the result for *n* is equivalent to the result for n - 1. By the Structure Sheaf Lemma it holds for n = 0 so it holds for all *n*.

GAGA appendix: Serre's proof - cohomology

Proposition (Serre's Théorème 1)

Let \mathcal{F} be a coherent sheaf on \mathbb{P}_A^r . The homomorphism $h^*: H^i(\mathbb{P}_A^r, \mathcal{F}) \to H^i(\mathbb{P}_D^r, h^*\mathcal{F})$ is an isomorphism for all *i*.

Proof.

Descending induction on *i* for all coherent \mathbb{P}_A^r modules, the case i > r given by the Dimension Lemma.

Choose a resolution $0 \to \mathcal{G} \to \mathcal{E} \to \mathcal{F} \to 0$ with \mathcal{E} a sum of twisting sheaves. Flatness of h implies $0 \to h^*\mathcal{G} \to h^*\mathcal{E} \to h^*\mathcal{F} \to 0$ exact.

so the arrow $H^i(\mathbb{P}^r_A, \mathcal{F}) \to H^i(\mathbb{P}^r_D, h^*\mathcal{F})$ surjective, and so also for \mathcal{G} , and finish by the 5 lemma.

Abramovich (Brown)

GAGA appendix: Serre's proof - Homomorphisms

Proposition (Serre's Théorème 2)

For any coherent $\mathbb{P}_A^r\text{-modules}\ \mathcal{F},\mathcal{G}$ the natural homomorphism

 $\underline{\operatorname{Hom}}_{\mathbb{P}_{A}^{r}}(\mathcal{F},\mathcal{G}) \to \underline{\operatorname{Hom}}_{\mathbb{P}_{D}^{r}}(h^{*}\mathcal{F},h^{*}\mathcal{G})$

is an isomorphism. In particular the functor h* is fully faithful.

Proof.

By Serre's Théorème 1, suffices to show that $h^*\mathcal{H}om_{\mathbb{P}_A^r}(\mathcal{F},\mathcal{G}) \to \mathcal{H}om_{\mathbb{P}_D^r}(h^*\mathcal{F},h^*\mathcal{G})$ is an isomorphism.

$$\begin{split} \left(h^{*}\mathcal{H}om_{\mathbb{P}_{A}^{r}}(\mathcal{F},\mathcal{G})\right)_{x} &= Hom_{\mathcal{O}_{x^{\prime}}}(\mathcal{F}_{x^{\prime}},\mathcal{G}_{x^{\prime}})\otimes_{\mathcal{O}_{x^{\prime}}}\mathcal{O}_{x} \\ &= Hom_{\mathcal{O}_{x}}(\mathcal{F}_{x^{\prime}}\otimes_{\mathcal{O}_{x^{\prime}}}\mathcal{O}_{x},\mathcal{G}_{x^{\prime}}\otimes_{\mathcal{O}_{x^{\prime}}}\mathcal{O}_{x}) \\ &= \mathcal{H}om_{\mathbb{P}_{x}^{\prime}}(h^{*}\mathcal{F},h^{*}\mathcal{G})_{x}. \end{split}$$

by flatness.

GAGA appendix: Serre's proof - generation of twisted sheaves

Proposition (Cartan's Théorème A)

For any coherent sheaf \mathcal{F} on \mathbb{P}_D^r there is n_0 so that $\mathcal{F}(n)$ is globally generated whenever $n > n_0$.

Proof.

Induction on r.

Suffices to generate stalk at x. Choose $H \ni x$, and get an exact sequence $0 \to \mathcal{O}(-1) \to \mathcal{O} \to \mathcal{O}_H \to 0$. This gives $\mathcal{F}(-1) \xrightarrow{\varphi_1} \mathcal{F} \xrightarrow{\varphi_0} \mathcal{F}_H \to 0$ which breaks into

$$0 o \mathcal{G} o \mathcal{F}(-1) o \mathcal{P} o 0 \qquad ext{and} \qquad 0 o \mathcal{P} o \mathcal{F} o \mathcal{F}_H o 0,$$

where \mathcal{G} and \mathcal{F}_H are coherent sheaves on H,

Serre's proof - generation of twisted sheaves (continued) Proof of Cartan's Théorème A, continued.

 $0 \to \mathcal{G} \to \mathcal{F}(-1) \to \mathcal{P} \to 0 \qquad \text{and} \qquad 0 \to \mathcal{P} \to \mathcal{F} \to \mathcal{F}_H \to 0,$

so right terms in

$$H^1(\mathbb{P}^r_D,\mathcal{F}(n-1))
ightarrow H^1(\mathbb{P}^r_D,\mathcal{P}(n))
ightarrow H^2(H,\mathcal{G}(n))$$

and

$$H^{1}(\mathbb{P}^{r}_{D},\mathcal{P}(n)) \to H^{1}(\mathbb{P}^{r}_{D},\mathcal{F}(n)) \to H^{1}(H,\mathcal{F}_{H}(n))$$

vanish for large *n*. So $h^1(\mathbb{P}_D^r, \mathcal{F}(n))$ is descending, and when it stabilizes $H^1(\mathbb{P}_D^r, \mathcal{P}(n)) \to H^1(\mathbb{P}_D^r, \mathcal{F}(n))$ is bijective so $H^0(\mathbb{P}_X^r, \mathcal{F}(n)) \to H^0(H, \mathcal{F}_H(n))$ is surjective. Sections in $H^0(H, \mathcal{F}_H(n))$ generate $\mathcal{F}_H(n)$ by dimension induction, and by Nakayama the result at $x \in H$ follows.

GAGA appendix: Serre's proof - the equivalence

Peoof of Serre's Théorème 3.

Choose a resolution $\mathcal{O}(-n_1)^{k_1} \xrightarrow{\psi} \mathcal{O}(-n_0)^{k_0} \to \mathcal{F} \to 0$. By Serre's Théorème 2 the homomorphism ψ is the analytification of an algebraic sheaf homomorphism ψ' , so the cokernel \mathcal{F} of ψ is also the analytification of the cokernel of ψ' .