Factorization of birational maps for qe schemes in characteristic 0 AMS special session on Algebraic Geometry joint work with M. Temkin (Hebrew University)

Dan Abramovich

Brown University

October 24, 2014

Factorization of birational maps: varieties

Theorem (Włodarczyk, ℵ-Karu-Matsuki-Włodarczyk (2002))

Let $\phi : X_1 \to X_2$ be the blowing up of a coherent ideal sheaf I on a variety X_2 over a field of characteristic 0 and let $U \subset X_2$ be the complement of the support of I. Assume X_1, X_2 are regular. Then ϕ can be factored, functorially for smooth surjective morphisms on X_2 , into a sequence of blowings up and down of smooth centers disjoint from U:

$$X_1 = V_0 \stackrel{\varphi_1}{-} \succ V_1 \stackrel{\varphi_2}{-} \succ \dots \stackrel{\varphi_{\ell-1}}{-} \lor V_{\ell-1} \stackrel{\varphi_\ell}{-} \succ V_\ell = X_2$$

Factorization of birational maps: qe schemes

Theorem (ℵ-Temkin)

Let $\phi : X_1 \to X_2$ be the blowing up of a coherent ideal sheaf I on a qe scheme X_2 over a field of characteristic 0 and let $U \subset X_2$ be the complement of the support of I. Assume X_1, X_2 are regular. Then ϕ can be factored, functorially for regular surjective morphisms on X_2 , into a sequence of blowings up and down of regular centers disjoint from U:

$$X_1 = V_0 \stackrel{\varphi_1}{-} \succ V_1 \stackrel{\varphi_2}{-} \succ \dots \stackrel{\varphi_{\ell-1}}{-} \lor V_{\ell-1} \stackrel{\varphi_\ell}{-} \succ V_\ell = X_2$$

Regular morphisms and qe schemes

Definition

A morphism of schemes $f : Y \to X$ is said to be **regular** if it is (1) flat and (2) all geometric fibers of $f : X \to Y$ are regular.

Definition

A locally noetherian scheme X is a **qe scheme** if:

- for any scheme Y of finite type over X, the regular locus Y_{reg} is open; and
- For any point $x \in X$, the completion morphism Spec $\hat{\mathcal{O}}_{X,x} \to$ Spec $\mathcal{O}_{X,x}$ is a regular morphism.

Qe schemes are the natural world for resolution of singularities.

< 回 ト < 三 ト < 三 ト

• A of finite type over a field or \mathbb{Z} , and localizations.

- A of finite type over a field or \mathbb{Z} , and localizations.
- A = the formal completion of the above.

- A of finite type over a field or \mathbb{Z} , and localizations.
- A = the formal completion of the above.
- A = O(X), where X is an affinoid germ¹ of a complex analytic space.

¹intersection with a small closed polydisc

- A of finite type over a field or \mathbb{Z} , and localizations.
- A = the formal completion of the above.
- A = O(X), where X is an affinoid germ¹ of a complex analytic space.
- A = O(X), where X is an affinoid Berkovich k-analytic space,

¹intersection with a small closed polydisc

- A of finite type over a field or \mathbb{Z} , and localizations.
- A = the formal completion of the above.
- A = O(X), where X is an affinoid germ¹ of a complex analytic space.
- A = O(X), where X is an affinoid Berkovich k-analytic space,
- A = O(X), where X is an affinoid rigid space over k.

¹intersection with a small closed polydisc

- A of finite type over a field or \mathbb{Z} , and localizations.
- A = the formal completion of the above.
- A = O(X), where X is an affinoid germ¹ of a complex analytic space.
- A = O(X), where X is an affinoid Berkovich k-analytic space,
- A = O(X), where X is an affinoid rigid space over k.

In all these geometries we deduce factorization in characteristic 0 from factorization over Spec *A*, which requires GAGA.

¹intersection with a small closed polydisc

We follow Włodarczyk's original ideas

• Given $X_1 = BI_I(X_2)$.

3

- Given $X_1 = BI_I(X_2)$.
- On $B_0 = \mathbb{P}^1 \times X_2$ consider $I' = I + I_0$, where I_0 is the defining ideal of $\{0\} \times X_2$.

- Given $X_1 = BI_I(X_2)$.
- On $B_0 = \mathbb{P}^1 \times X_2$ consider $I' = I + I_0$, where I_0 is the defining ideal of $\{0\} \times X_2$.
- Set $B_1 = BI_{l'}B_0$. It contains X_1 as the proper transform of $\{0\} \times X_2$, as well as X_2

- Given $X_1 = BI_I(X_2)$.
- On $B_0 = \mathbb{P}^1 \times X_2$ consider $I' = I + I_0$, where I_0 is the defining ideal of $\{0\} \times X_2$.
- Set $B_1 = BI_{I'}B_0$. It contains X_1 as the proper transform of $\{0\} \times X_2$, as well as X_2
- Apply canonical resolution of singularities to B_1 , resulting in a regular scheme B, projective over X_2 , with \mathbb{G}_m action.

We follow Włodarczyk's original ideas

- Given $X_1 = BI_I(X_2)$.
- On $B_0 = \mathbb{P}^1 \times X_2$ consider $I' = I + I_0$, where I_0 is the defining ideal of $\{0\} \times X_2$.
- Set $B_1 = BI_{I'}B_0$. It contains X_1 as the proper transform of $\{0\} \times X_2$, as well as X_2
- Apply canonical resolution of singularities to B_1 , resulting in a regular scheme B, projective over X_2 , with \mathbb{G}_m action.

So far, this works for schemes.

• Equivariant embedding $B \subset \mathbb{P}_{X_2}(E_{a_1} \oplus \cdots \oplus E_{a_k})$,

イロト イポト イヨト イヨト

• Equivariant embedding $B \subset \mathbb{P}_{X_2}(E_{a_1} \oplus \cdots \oplus E_{a_k})$, with $a_i < a_{i+1}$.

(日) (周) (三) (三)

- Equivariant embedding $B \subset \mathbb{P}_{X_2}(E_{a_1} \oplus \cdots \oplus E_{a_k})$, with $a_i < a_{i+1}$.
- $B /\!\!/_{a_1} \mathbb{G}_m = X_1$, $B /\!\!/_{a_k} \mathbb{G}_m = X_2$.

- Equivariant embedding $B \subset \mathbb{P}_{X_2}(E_{a_1} \oplus \cdots \oplus E_{a_k})$, with $a_i < a_{i+1}$.
- $B /\!\!/_{a_1} \mathbb{G}_m = X_1$, $B /\!\!/_{a_k} \mathbb{G}_m = X_2$.
- Denoting

$$W_{a_i} = B /\!\!/ a_i \mathbb{G}_m,$$

$$W_{a_i+} = B /\!\!/ a_i + \epsilon \mathbb{G}_m,$$

$$W_{a_i-} = B /\!\!/ a_i - \epsilon \mathbb{G}_m$$

- Equivariant embedding $B \subset \mathbb{P}_{X_2}(E_{a_1} \oplus \cdots \oplus E_{a_k})$, with $a_i < a_{i+1}$.
- $B \not|_{a_1} \mathbb{G}_m = X_1$, $B \not|_{a_k} \mathbb{G}_m = X_2$.
- Denoting

$$W_{a_i} = B /\!\!/_{a_i} \mathbb{G}_m,$$

$$W_{a_i+} = B /\!\!/_{a_i+\epsilon} \mathbb{G}_m,$$

$$W_{a_i-} = B /\!\!/_{a_i-\epsilon} \mathbb{G}_m$$

we have

$$W_{\mathsf{a}_i+} = W_{(\mathsf{a}_{i+1})-}$$

and a sequence

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

- Equivariant embedding $B \subset \mathbb{P}_{X_2}(E_{a_1} \oplus \cdots \oplus E_{a_k})$, with $a_i < a_{i+1}$.
- $B \not|_{a_1} \mathbb{G}_m = X_1$, $B \not|_{a_k} \mathbb{G}_m = X_2$.
- Denoting

$$W_{a_i} = B /\!\!/_{a_i} \mathbb{G}_m,$$

$$W_{a_i+} = B /\!\!/_{a_i+\epsilon} \mathbb{G}_m,$$

$$W_{a_i-} = B /\!\!/_{a_i-\epsilon} \mathbb{G}_m$$

we have

$$W_{a_i+}=W_{(a_{i+1})-}$$

and a sequence

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

• $B_{a_i}^{ss} \to W_{a_i}$ is affine.

- 4 同 6 4 日 6 4 日 6

- $B_{a_i}^{ss} \to W_{a_i}$ is affine.
- If $b \in B_{a_i}^{ss}$ is a fixed point, can diagonalize $T_{B_{a_i}^{ss},b}$.

- $B_{a_i}^{ss} \to W_{a_i}$ is affine.
- If $b \in B^{ss}_{a_i}$ is a fixed point, can diagonalize $T_{B^{ss}_{a_i},b}$.
- Tangent eigenvectors lift to eigenfunctions.

- $B_{a_i}^{ss} \to W_{a_i}$ is affine.
- If $b \in B_{a_i}^{ss}$ is a fixed point, can diagonalize $T_{B_{a_i}^{ss},b}$.
- Tangent eigenvectors lift to eigenfunctions.
- Locally on W_{a_i} get equivariant $B_{a_i}^{ss} \to \mathbb{A}^{\dim +1}$.

- $B_{a_i}^{ss} \to W_{a_i}$ is affine.
- If $b \in B_{a_i}^{ss}$ is a fixed point, can diagonalize $T_{B_{a_i}^{ss},b}$.
- Tangent eigenvectors lift to eigenfunctions.
- Locally on W_{a_i} get equivariant $B_{a_i}^{ss} \to \mathbb{A}^{\dim +1}$.
- This "chart" is regular and inert.

Factorization step 4: Luna's fundamental lemma

Definition (Special orbits)

An orbit $\mathbb{G}_m \cdot x \subset B^{ss}_{a_i}$ is *special* if it is closed in the fiber of $B^{ss}_{a_i} \to W_{a_i}$.

Factorization step 4: Luna's fundamental lemma

Definition (Special orbits)

An orbit $\mathbb{G}_m \cdot x \subset B^{ss}_{a_i}$ is *special* if it is closed in the fiber of $B^{ss}_{a_i} \to W_{a_i}$.

Definition (Inert morphisms)

The \mathbb{G}_m -equivariant $B_{a_i}^{ss} \to \mathbb{A}^{\dim +1}$ is *inert* if (1) it takes special orbits to special orbits and (2) it preserves inertia groups.

■ ▶ ★ 臣 ▶ ★ 臣 ▶ 二 臣

Factorization step 4: Luna's fundamental lemma

Definition (Special orbits)

An orbit $\mathbb{G}_m \cdot x \subset B^{ss}_{a_i}$ is *special* if it is closed in the fiber of $B^{ss}_{a_i} \to W_{a_i}$.

Definition (Inert morphisms)

The \mathbb{G}_m -equivariant $B_{a_i}^{ss} \to \mathbb{A}^{\dim +1}$ is *inert* if (1) it takes special orbits to special orbits and (2) it preserves inertia groups.

Theorem (Luna's fundamental lemma, [Luna,Alper,ℵ-Temkin])

The regular and inert \mathbb{G}_m -equivariant $B_{a_i}^{ss} \to \mathbb{A}^{\dim + 1}$ is strongly equivariant, namely

$$B^{ss}_{a_i} = \mathbb{A}^{\dim +1} imes_{\mathbb{A}^{\dim +1} /\!\!/ \mathbb{G}_m} W_{a_i}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

• This is compatible with $W_{a_i\pm} \rightarrow W_{a_i}$.

3

- ∢ ≣ →

< 🗇 🕨 🔸

- This is compatible with $W_{a_i\pm} \rightarrow W_{a_i}$.
- Locally on W_i the transformations $W_{a_i\pm} \rightarrow W_{a_i}$ have toric charts.

- This is compatible with $W_{a_i\pm} \rightarrow W_{a_i}$.
- Locally on W_i the transformations $W_{a_i\pm} \rightarrow W_{a_i}$ have toric charts.
- The process of *torification* allows us to assume they are *toroidal* transformations.

- This is compatible with $W_{a_i\pm} \rightarrow W_{a_i}$.
- Locally on W_i the transformations $W_{a_i\pm} \rightarrow W_{a_i}$ have toric charts.
- The process of *torification* allows us to assume they are *toroidal* transformations.
- Toroidal factorization is known [Włodarczyk, Morelli, ℵ-Matsuki-Rashid].

Factorization in terms of ideals

Recall that $X_1 = BI_I(X_2)$.

3

∃ → (∃ →

A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Factorization in terms of ideals

Recall that $X_1 = BI_I(X_2)$. Our factorization

$$X_1 = V_0 \stackrel{\varphi_1}{-} \succ V_1 \stackrel{\varphi_2}{-} \succ \dots \stackrel{\varphi_{\ell-1}}{-} V_{\ell-1} \stackrel{\varphi_{\ell}}{-} \succ V_{\ell} = X_2$$

gives a sequence of ideals J_i such that $V_k = BI_{J_i}(X_2)$, and smooth Z_i such that $\varphi_i^{\pm 1}$ is the blowing up of Z_i .
• Assume $X_1 \rightarrow X_2$ is a blowing up of an ideal in one of our categories: local, formal, complex, Berkovich, rigid.

- Assume $X_1 \rightarrow X_2$ is a blowing up of an ideal in one of our categories: local, formal, complex, Berkovich, rigid.
- Say we have a finite cover X'₂ = ⊔U_α → X₂ by patches such that O(U_α) is a qe ring which determines U_α: ideals correspond to closed sub-objects, coherent sheaves are acyclic, correspond to modules, etc.

- Assume X₁ → X₂ is a blowing up of an ideal in one of our categories: local, formal, complex, Berkovich, rigid.
- Say we have a finite cover $X'_2 = \sqcup U_{\alpha} \to X_2$ by patches such that $O(U_{\alpha})$ is a qe ring which determines U_{α} : ideals correspond to closed sub-objects, coherent sheaves are acyclic, correspond to modules, etc.
- In complex analysis, $U_{\alpha} = X_2 \cap \overline{D}$ with \overline{D} a closed polydisc with the restricted sheaf [Frisch, Bambozzi].

くほと くほと くほと

- Assume X₁ → X₂ is a blowing up of an ideal in one of our categories: local, formal, complex, Berkovich, rigid.
- Say we have a finite cover $X'_2 = \sqcup U_{\alpha} \to X_2$ by patches such that $O(U_{\alpha})$ is a qe ring which determines U_{α} : ideals correspond to closed sub-objects, coherent sheaves are acyclic, correspond to modules, etc.
- In complex analysis, $U_{\alpha} = X_2 \cap \overline{D}$ with \overline{D} a closed polydisc with the restricted sheaf [Frisch, Bambozzi].
- Write $\mathcal{X}'_2 = \sqcup \operatorname{Spec} O(U_\alpha)$, write \mathcal{I}' corresponding to I, and $\mathcal{X}'_1 = Bl_{\mathcal{I}'}\mathcal{X}'_2$, which is regular.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のの⊙

- Assume X₁ → X₂ is a blowing up of an ideal in one of our categories: local, formal, complex, Berkovich, rigid.
- Say we have a finite cover $X'_2 = \sqcup U_{\alpha} \to X_2$ by patches such that $O(U_{\alpha})$ is a qe ring which determines U_{α} : ideals correspond to closed sub-objects, coherent sheaves are acyclic, correspond to modules, etc.
- In complex analysis, $U_{\alpha} = X_2 \cap \overline{D}$ with \overline{D} a closed polydisc with the restricted sheaf [Frisch, Bambozzi].
- Write $\mathcal{X}'_2 = \sqcup \operatorname{Spec} O(U_\alpha)$, write \mathcal{I}' corresponding to I, and $\mathcal{X}'_1 = Bl_{\mathcal{I}'}\mathcal{X}'_2$, which is regular.
- Factorization of $\mathcal{X}'_1 \to \mathcal{X}'_2$ gives ideals \mathcal{J}'_i and smooth $\mathcal{Z}_i \subset \mathcal{V}'_k := Bl_{\mathcal{J}'_i}(\mathcal{X}'_2).$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のの⊙

Transporting to other categories 2: GAGA

Theorem (Serre's Théorème 3)

In each of these categories, the pullback functor

$$h^*: Coh(\mathbb{P}^r_{\mathcal{X}'_2}) o Coh(\mathbb{P}^r_{\mathcal{X}'_2})$$

is an equivalence which induces isomorphisms on cohomology groups and preserves regularity.

イロト イポト イヨト イヨト 二日

•
$$X_2 \xleftarrow{\text{cover}} X'_2 \xrightarrow{h} X'_2$$

• We had ideals $\mathcal{J}'_i \subset \mathcal{O}_{\mathcal{X}'_2}$ and smooth $\mathcal{Z}_i \subset \mathcal{V}'_k := Bl_{\mathcal{J}'_i}(\mathcal{X}'_2)$ factoring $\mathcal{X}'_1 \to \mathcal{X}'_2$.

- 4 個 ト 4 国 ト - 4 国 ト - 三日

•
$$X_2 \xleftarrow{\text{cover}} X'_2 \xrightarrow{h} X'_2$$

- We had ideals $\mathcal{J}'_i \subset \mathcal{O}_{\mathcal{X}'_2}$ and smooth $\mathcal{Z}_i \subset \mathcal{V}'_k := Bl_{\mathcal{J}'_i}(\mathcal{X}'_2)$ factoring $\mathcal{X}'_1 \to \mathcal{X}'_2$.
- We get ideals $J'_i \subset \mathcal{O}_{X'_2}$ and smooth $Z'_i \subset V'_k := Bl_{J'_i}(X'_2)$ factoring $X'_1 \to X'_2$.

•
$$X_2 \xleftarrow{\text{cover}} X'_2 \xrightarrow{h} X'_2$$

- We had ideals $\mathcal{J}'_i \subset \mathcal{O}_{\mathcal{X}'_2}$ and smooth $\mathcal{Z}_i \subset \mathcal{V}'_k := Bl_{\mathcal{J}'_i}(\mathcal{X}'_2)$ factoring $\mathcal{X}'_1 \to \mathcal{X}'_2$.
- We get ideals $J'_i \subset \mathcal{O}_{X'_2}$ and smooth $Z'_i \subset V'_k := Bl_{J'_i}(X'_2)$ factoring $X'_1 \to X'_2$.
- Functoriality and Temkin's trick ensure that these agree on $X'_2 \times_{X_2} X'_2$.

・ 同 ト ・ ヨ ト ・ ヨ ト … ヨ …

•
$$X_2 < \frac{\text{cover}}{X_2'} \xrightarrow{h} X_2'$$

- We had ideals $\mathcal{J}'_i \subset \mathcal{O}_{\mathcal{X}'_2}$ and smooth $\mathcal{Z}_i \subset \mathcal{V}'_k := Bl_{\mathcal{J}'_i}(\mathcal{X}'_2)$ factoring $\mathcal{X}'_1 \to \mathcal{X}'_2$.
- We get ideals $J'_i \subset \mathcal{O}_{X'_2}$ and smooth $Z'_i \subset V'_k := Bl_{J'_i}(X'_2)$ factoring $X'_1 \to X'_2$.
- Functoriality and Temkin's trick ensure that these agree on $X'_2 \times_{X_2} X'_2$.
- Descent gives ideals $J_i \subset \mathcal{O}_{X_2}$ and smooth $Z_i \subset V_k := Bl_{J_i}(X_2)$ factoring $X_1 \to X_2$, as needed.

An analytic GAGA: statement

Theorem (Serre's Théorème 3)

Let D be a closed polydisk, A = O(D). The pullback functor

$$h^*: Coh(\mathbb{P}^r_A) \to Coh(\mathbb{P}^r_D)$$

is an equivalence which induces isomorphisms on cohomology groups.

Lemma (Dimension Lemma)

We have $H^{i}(\mathbb{P}_{A}^{r},\mathcal{F}) = H^{i}(\mathbb{P}_{D}^{r},h^{*}\mathcal{F}) = 0$ for i > r and all \mathcal{F} .

★掃♪ ★注♪ ★注♪ ……注

Lemma (Dimension Lemma)

We have $H^{i}(\mathbb{P}^{r}_{A}, \mathcal{F}) = H^{i}(\mathbb{P}^{r}_{D}, h^{*}\mathcal{F}) = 0$ for i > r and all \mathcal{F} .

Proof.

Use Çech covers of \mathbb{P}_D^r by closed standard polydisks!

Lemma (Dimension Lemma)

We have $H^{i}(\mathbb{P}^{r}_{A},\mathcal{F}) = H^{i}(\mathbb{P}^{r}_{D},h^{*}\mathcal{F}) = 0$ for i > r and all \mathcal{F} .

Proof.

Use Çech covers of \mathbb{P}_D^r by closed standard polydisks!

Lemma (Structure Sheaf Lemma)

We have $H^{i}(\mathbb{P}^{r}_{A}, \mathcal{O}) = H^{i}(\mathbb{P}^{r}_{D}, \mathcal{O})$ for all *i*.

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

Lemma (Dimension Lemma)

We have $H^{i}(\mathbb{P}^{r}_{A},\mathcal{F}) = H^{i}(\mathbb{P}^{r}_{D},h^{*}\mathcal{F}) = 0$ for i > r and all \mathcal{F} .

Proof.

Use Çech covers of \mathbb{P}_D^r by closed standard polydisks!

Lemma (Structure Sheaf Lemma)

We have $H^{i}(\mathbb{P}^{r}_{\mathcal{A}}, \mathcal{O}) = H^{i}(\mathbb{P}^{r}_{\mathcal{D}}, \mathcal{O})$ for all i.

Proof.

Lemma (Twisting Sheaf Lemma) We have $H^{i}(\mathbb{P}^{r}_{A}, \mathcal{O}(n)) = H^{i}(\mathbb{P}^{r}_{D}, \mathcal{O}(n))$ for all i, r, n.

・ 何 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Lemma (Twisting Sheaf Lemma) We have $H^{i}(\mathbb{P}^{r}_{A}, \mathcal{O}(n)) = H^{i}(\mathbb{P}^{r}_{D}, \mathcal{O}(n))$ for all i, r, n.

Proof.

Induction on r and $0 \to \mathcal{O}_{\mathbb{P}_D^r}(n-1) \to \mathcal{O}_{\mathbb{P}_D^r}(n) \to \mathcal{O}_{\mathbb{P}_D^{r-1}}(n) \to 0$

・ 同 ト ・ ヨ ト ・ ヨ ト

Lemma (Twisting Sheaf Lemma) We have $H^{i}(\mathbb{P}^{r}_{A}, \mathcal{O}(n)) = H^{i}(\mathbb{P}^{r}_{D}, \mathcal{O}(n))$ for all i, r, n.

Proof.

Induction on r and $0 \to \mathcal{O}_{\mathbb{P}^r_D}(n-1) \to \mathcal{O}_{\mathbb{P}^r_D}(n) \to \mathcal{O}_{\mathbb{P}^{r-1}_D}(n) \to 0$

(本間) (本語) (本語) (語)

Lemma (Twisting Sheaf Lemma) We have $H^{i}(\mathbb{P}^{r}_{A}, \mathcal{O}(n)) = H^{i}(\mathbb{P}^{r}_{D}, \mathcal{O}(n))$ for all i, r, n.

Proof.

Induction on r and $0 \to \mathcal{O}_{\mathbb{P}^r_D}(n-1) \to \mathcal{O}_{\mathbb{P}^r_D}(n) \to \mathcal{O}_{\mathbb{P}^{r-1}_D}(n) \to 0$

So the result for *n* is equivalent to the result for n - 1.

(人間) トイヨト イヨト ニヨ

Lemma (Twisting Sheaf Lemma) We have $H^{i}(\mathbb{P}^{r}_{A}, \mathcal{O}(n)) = H^{i}(\mathbb{P}^{r}_{D}, \mathcal{O}(n))$ for all i, r, n.

Proof.

Induction on r and $0 \to \mathcal{O}_{\mathbb{P}^r_D}(n-1) \to \mathcal{O}_{\mathbb{P}^r_D}(n) \to \mathcal{O}_{\mathbb{P}^{r-1}_D}(n) \to 0$

So the result for *n* is equivalent to the result for n - 1. By the Structure Sheaf Lemma it holds for n = 0 so it holds for all *n*.

くほと くほと くほと

Proposition (Serre's Théorème 1)

Let \mathcal{F} be a coherent sheaf on \mathbb{P}_A^r . The homomorphism $h^*: H^i(\mathbb{P}_A^r, \mathcal{F}) \to H^i(\mathbb{P}_D^r, h^*\mathcal{F})$ is an isomorphism for all *i*.

・ 何 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Proposition (Serre's Théorème 1)

Let \mathcal{F} be a coherent sheaf on \mathbb{P}_A^r . The homomorphism $h^*: H^i(\mathbb{P}_A^r, \mathcal{F}) \to H^i(\mathbb{P}_D^r, h^*\mathcal{F})$ is an isomorphism for all *i*.

Proof.

Descending induction on *i* for all coherent \mathbb{P}_A^r modules, the case i > r given by the Dimension Lemma.

Proposition (Serre's Théorème 1)

Let \mathcal{F} be a coherent sheaf on \mathbb{P}_A^r . The homomorphism $h^*: H^i(\mathbb{P}_A^r, \mathcal{F}) \to H^i(\mathbb{P}_D^r, h^*\mathcal{F})$ is an isomorphism for all *i*.

Proof.

Descending induction on *i* for all coherent \mathbb{P}^r_A modules, the case i > r given by the Dimension Lemma. Choose a resolution $0 \to \mathcal{G} \to \mathcal{E} \to \mathcal{F} \to 0$ with \mathcal{E} a sum of twisting sheaves.

Proposition (Serre's Théorème 1)

Let \mathcal{F} be a coherent sheaf on \mathbb{P}_A^r . The homomorphism $h^*: H^i(\mathbb{P}_A^r, \mathcal{F}) \to H^i(\mathbb{P}_D^r, h^*\mathcal{F})$ is an isomorphism for all *i*.

Proof.

Descending induction on *i* for all coherent \mathbb{P}_A^r modules, the case i > r given by the Dimension Lemma.

Choose a resolution $0 \to \mathcal{G} \to \mathcal{E} \to \mathcal{F} \to 0$ with \mathcal{E} a sum of twisting sheaves. Flatness of h implies $0 \to h^*\mathcal{G} \to h^*\mathcal{E} \to h^*\mathcal{F} \to 0$ exact.

so the arrow $H^i(\mathbb{P}^r_A, \mathcal{F}) \to H^i(\mathbb{P}^r_D, h^*\mathcal{F})$ surjective, and so also for \mathcal{G} , and finish by the 5 lemma.

Abramovich (Brown)

An analytic GAGA: Serre's proof - Homomorphisms

Proposition (Serre's Théorème 2)

For any coherent $\mathbb{P}_A^r\text{-modules}\ \mathcal{F},\mathcal{G}$ the natural homomorphism

 $\underline{\operatorname{Hom}}_{\mathbb{P}_{A}^{r}}(\mathcal{F},\mathcal{G}) \to \underline{\operatorname{Hom}}_{\mathbb{P}_{D}^{r}}(h^{*}\mathcal{F},h^{*}\mathcal{G})$

is an isomorphism. In particular the functor h* is fully faithful.

An analytic GAGA: Serre's proof - Homomorphisms

Proposition (Serre's Théorème 2)

For any coherent $\mathbb{P}_{A}^{r}\text{-modules}\ \mathcal{F},\mathcal{G}$ the natural homomorphism

 $\underline{\operatorname{Hom}}_{\mathbb{P}_{A}^{r}}(\mathcal{F},\mathcal{G}) \to \underline{\operatorname{Hom}}_{\mathbb{P}_{D}^{r}}(h^{*}\mathcal{F},h^{*}\mathcal{G})$

is an isomorphism. In particular the functor h* is fully faithful.

Proof.

By Serre's Théorème 1, suffices to show that $h^*\mathcal{H}om_{\mathbb{P}_A^r}(\mathcal{F},\mathcal{G}) \to \mathcal{H}om_{\mathbb{P}_D^r}(h^*\mathcal{F},h^*\mathcal{G})$ is an isomorphism.

An analytic GAGA: Serre's proof - Homomorphisms

Proposition (Serre's Théorème 2)

For any coherent $\mathbb{P}_{A}^{r}\text{-modules}\ \mathcal{F},\mathcal{G}$ the natural homomorphism

 $\underline{\operatorname{Hom}}_{\mathbb{P}_{A}^{r}}(\mathcal{F},\mathcal{G}) \to \underline{\operatorname{Hom}}_{\mathbb{P}_{D}^{r}}(h^{*}\mathcal{F},h^{*}\mathcal{G})$

is an isomorphism. In particular the functor h* is fully faithful.

Proof.

By Serre's Théorème 1, suffices to show that $h^*\mathcal{H}om_{\mathbb{P}_A^r}(\mathcal{F},\mathcal{G}) \to \mathcal{H}om_{\mathbb{P}_D^r}(h^*\mathcal{F},h^*\mathcal{G})$ is an isomorphism.

$$\begin{split} \left(h^{*}\mathcal{H}om_{\mathbb{P}_{A}^{r}}(\mathcal{F},\mathcal{G})\right)_{x} &= Hom_{\mathcal{O}_{x^{\prime}}}(\mathcal{F}_{x^{\prime}},\mathcal{G}_{x^{\prime}})\otimes_{\mathcal{O}_{x^{\prime}}}\mathcal{O}_{x} \\ &= Hom_{\mathcal{O}_{x}}(\mathcal{F}_{x^{\prime}}\otimes_{\mathcal{O}_{x^{\prime}}}\mathcal{O}_{x},\mathcal{G}_{x^{\prime}}\otimes_{\mathcal{O}_{x^{\prime}}}\mathcal{O}_{x}) \\ &= \mathcal{H}om_{\mathbb{P}_{x}^{\prime}}(h^{*}\mathcal{F},h^{*}\mathcal{G})_{x}. \end{split}$$

by flatness.

Proposition (Cartan's Théorème A)

For any coherent sheaf \mathcal{F} on \mathbb{P}_D^r there is n_0 so that $\mathcal{F}(n)$ is globally generated whenever $n > n_0$.

Proposition (Cartan's Théorème A)

For any coherent sheaf \mathcal{F} on \mathbb{P}_D^r there is n_0 so that $\mathcal{F}(n)$ is globally generated whenever $n > n_0$.

Proof.

Induction on r.

< 47 ▶ <

Proposition (Cartan's Théorème A)

For any coherent sheaf \mathcal{F} on \mathbb{P}_D^r there is n_0 so that $\mathcal{F}(n)$ is globally generated whenever $n > n_0$.

Proof.

Induction on r.

Suffices to generate stalk at *x*. Choose $H \ni x$, and get an exact sequence $0 \to \mathcal{O}(-1) \to \mathcal{O} \to \mathcal{O}_H \to 0$.

< 回 ト < 三 ト < 三 ト

Proposition (Cartan's Théorème A)

For any coherent sheaf \mathcal{F} on \mathbb{P}_D^r there is n_0 so that $\mathcal{F}(n)$ is globally generated whenever $n > n_0$.

Proof.

Induction on r.

Suffices to generate stalk at *x*. Choose $H \ni x$, and get an exact sequence $0 \to \mathcal{O}(-1) \to \mathcal{O} \to \mathcal{O}_H \to 0$. This gives $\mathcal{F}(-1) \xrightarrow{\varphi_1} \mathcal{F} \xrightarrow{\varphi_0} \mathcal{F}_H \to 0$

- 4 回 ト - 4 回 ト

Proposition (Cartan's Théorème A)

For any coherent sheaf \mathcal{F} on \mathbb{P}_D^r there is n_0 so that $\mathcal{F}(n)$ is globally generated whenever $n > n_0$.

Proof.

Induction on r.

Suffices to generate stalk at x. Choose $H \ni x$, and get an exact sequence $0 \to \mathcal{O}(-1) \to \mathcal{O} \to \mathcal{O}_H \to 0$. This gives $\mathcal{F}(-1) \xrightarrow{\varphi_1} \mathcal{F} \xrightarrow{\varphi_0} \mathcal{F}_H \to 0$ which breaks into

$$0 o \mathcal{G} o \mathcal{F}(-1) o \mathcal{P} o 0$$
 and $0 o \mathcal{P} o \mathcal{F} o \mathcal{F}_H o 0_H$

3

イロト 不得下 イヨト イヨト

Proposition (Cartan's Théorème A)

For any coherent sheaf \mathcal{F} on \mathbb{P}_D^r there is n_0 so that $\mathcal{F}(n)$ is globally generated whenever $n > n_0$.

Proof.

Induction on r.

Suffices to generate stalk at x. Choose $H \ni x$, and get an exact sequence $0 \to \mathcal{O}(-1) \to \mathcal{O} \to \mathcal{O}_H \to 0$. This gives $\mathcal{F}(-1) \xrightarrow{\varphi_1} \mathcal{F} \xrightarrow{\varphi_0} \mathcal{F}_H \to 0$ which breaks into

$$0 o \mathcal{G} o \mathcal{F}(-1) o \mathcal{P} o 0 \qquad ext{and} \qquad 0 o \mathcal{P} o \mathcal{F} o \mathcal{F}_H o 0,$$

where \mathcal{G} and \mathcal{F}_H are coherent sheaves on H,

- 3

(日) (周) (三) (三)

Serre's proof - generation of twisted sheaves (continued) Proof of Cartan's Théorème A, continued.

 $0 o \mathcal{G} o \mathcal{F}(-1) o \mathcal{P} o 0$ and $0 o \mathcal{P} o \mathcal{F} o \mathcal{F}_H o 0$,

Serre's proof - generation of twisted sheaves (continued) Proof of Cartan's Théorème A, continued.

$$0 o \mathcal{G} o \mathcal{F}(-1) o \mathcal{P} o 0$$
 and $0 o \mathcal{P} o \mathcal{F} o \mathcal{F}_H o 0_H$

so right terms in

$$H^{1}(\mathbb{P}^{r}_{D},\mathcal{F}(n-1)) \rightarrow H^{1}(\mathbb{P}^{r}_{D},\mathcal{P}(n)) \rightarrow H^{2}(H,\mathcal{G}(n))$$

and

$$H^1(\mathbb{P}^r_D,\mathcal{P}(n)) \to H^1(\mathbb{P}^r_D,\mathcal{F}(n)) \to H^1(H,\mathcal{F}_H(n))$$

vanish for large n.
$0 \to \mathcal{G} \to \mathcal{F}(-1) \to \mathcal{P} \to 0 \qquad \text{and} \qquad 0 \to \mathcal{P} \to \mathcal{F} \to \mathcal{F}_H \to 0,$

so right terms in

$$H^1(\mathbb{P}^r_D,\mathcal{F}(n-1)) o H^1(\mathbb{P}^r_D,\mathcal{P}(n)) o H^2(H,\mathcal{G}(n))$$

and

$$H^1(\mathbb{P}^r_D,\mathcal{P}(n)) \to H^1(\mathbb{P}^r_D,\mathcal{F}(n)) \to H^1(H,\mathcal{F}_H(n))$$

vanish for large *n*. So $h^1(\mathbb{P}^r_D, \mathcal{F}(n))$ is descending,

 $0 \to \mathcal{G} \to \mathcal{F}(-1) \to \mathcal{P} \to 0 \qquad \text{and} \qquad 0 \to \mathcal{P} \to \mathcal{F} \to \mathcal{F}_H \to 0,$

so right terms in

$$H^1(\mathbb{P}^r_D,\mathcal{F}(n-1))
ightarrow H^1(\mathbb{P}^r_D,\mathcal{P}(n))
ightarrow H^2(H,\mathcal{G}(n))$$

and

$$H^{1}(\mathbb{P}^{r}_{D},\mathcal{P}(n)) \to H^{1}(\mathbb{P}^{r}_{D},\mathcal{F}(n)) \to H^{1}(H,\mathcal{F}_{H}(n))$$

vanish for large *n*. So $h^1(\mathbb{P}^r_D, \mathcal{F}(n))$ is descending, and when it stabilizes $H^1(\mathbb{P}^r_D, \mathcal{P}(n)) \to H^1(\mathbb{P}^r_D, \mathcal{F}(n))$ is bijective

 $0 \to \mathcal{G} \to \mathcal{F}(-1) \to \mathcal{P} \to 0 \qquad \text{and} \qquad 0 \to \mathcal{P} \to \mathcal{F} \to \mathcal{F}_H \to 0,$

so right terms in

$$H^1(\mathbb{P}^r_D,\mathcal{F}(n-1))
ightarrow H^1(\mathbb{P}^r_D,\mathcal{P}(n))
ightarrow H^2(H,\mathcal{G}(n))$$

and

$$H^{1}(\mathbb{P}^{r}_{D},\mathcal{P}(n)) \to H^{1}(\mathbb{P}^{r}_{D},\mathcal{F}(n)) \to H^{1}(H,\mathcal{F}_{H}(n))$$

vanish for large *n*. So $h^1(\mathbb{P}_D^r, \mathcal{F}(n))$ is descending, and when it stabilizes $H^1(\mathbb{P}_D^r, \mathcal{P}(n)) \to H^1(\mathbb{P}_D^r, \mathcal{F}(n))$ is bijective so $H^0(\mathbb{P}_X^r, \mathcal{F}(n)) \to H^0(\mathcal{H}, \mathcal{F}_\mathcal{H}(n))$ is surjective.

 $0 \to \mathcal{G} \to \mathcal{F}(-1) \to \mathcal{P} \to 0 \qquad \text{and} \qquad 0 \to \mathcal{P} \to \mathcal{F} \to \mathcal{F}_H \to 0,$

so right terms in

$$H^1(\mathbb{P}^r_D,\mathcal{F}(n-1))
ightarrow H^1(\mathbb{P}^r_D,\mathcal{P}(n))
ightarrow H^2(H,\mathcal{G}(n))$$

and

$$H^1(\mathbb{P}^r_D,\mathcal{P}(n)) \to H^1(\mathbb{P}^r_D,\mathcal{F}(n)) \to H^1(H,\mathcal{F}_H(n))$$

vanish for large *n*. So $h^1(\mathbb{P}_D^r, \mathcal{F}(n))$ is descending, and when it stabilizes $H^1(\mathbb{P}_D^r, \mathcal{P}(n)) \to H^1(\mathbb{P}_D^r, \mathcal{F}(n))$ is bijective so $H^0(\mathbb{P}_X^r, \mathcal{F}(n)) \to H^0(H, \mathcal{F}_H(n))$ is surjective. Sections in $H^0(H, \mathcal{F}_H(n))$ generate $\mathcal{F}_H(n)$ by dimension induction,

 $0 \to \mathcal{G} \to \mathcal{F}(-1) \to \mathcal{P} \to 0 \qquad \text{and} \qquad 0 \to \mathcal{P} \to \mathcal{F} \to \mathcal{F}_H \to 0,$

so right terms in

$$H^1(\mathbb{P}^r_D,\mathcal{F}(n-1))
ightarrow H^1(\mathbb{P}^r_D,\mathcal{P}(n))
ightarrow H^2(H,\mathcal{G}(n))$$

and

$$H^1(\mathbb{P}^r_D,\mathcal{P}(n)) \to H^1(\mathbb{P}^r_D,\mathcal{F}(n)) \to H^1(H,\mathcal{F}_H(n))$$

vanish for large *n*. So $h^1(\mathbb{P}_D^r, \mathcal{F}(n))$ is descending, and when it stabilizes $H^1(\mathbb{P}_D^r, \mathcal{P}(n)) \to H^1(\mathbb{P}_D^r, \mathcal{F}(n))$ is bijective so $H^0(\mathbb{P}_X^r, \mathcal{F}(n)) \to H^0(H, \mathcal{F}_H(n))$ is surjective. Sections in $H^0(H, \mathcal{F}_H(n))$ generate $\mathcal{F}_H(n)$ by dimension induction, and by Nakayama the result at $x \in H$ follows.

An analytic GAGA: Serre's proof - the equivalence

Peoof of Serre's Théorème 3.

Choose a resolution $\mathcal{O}(-n_1)^{k_1} \stackrel{\psi}{\to} \mathcal{O}(-n_0)^{k_0} \to \mathcal{F} \to 0.$

- 3

くほと くほと くほと

An analytic GAGA: Serre's proof - the equivalence

Peoof of Serre's Théorème 3.

Choose a resolution $\mathcal{O}(-n_1)^{k_1} \xrightarrow{\psi} \mathcal{O}(-n_0)^{k_0} \to \mathcal{F} \to 0$. By Serre's Théorème 2 the homomorphism ψ is the analytification of an algebraic sheaf homomorphism ψ' , so the cokernel \mathcal{F} of ψ is also the analytification of the cokernel of ψ' .