Factorization of birational maps for qe schemes in characteristic 0

AMS special session on Algebraic Geometry joint work with M. Temkin (Hebrew University)

Dan Abramovich

Brown University

October 24, 2014

Factorization of birational maps: varieties

Theorem (Włodarczyk, §-Karu-Matsuki-Włodarczyk (2002))
Let $\phi: X_{1} \rightarrow X_{2}$ be the blowing up of a coherent ideal sheaf I on a variety X_{2} over a field of characteristic 0 and let $U \subset X_{2}$ be the complement of the support of I. Assume X_{1}, X_{2} are regular. Then ϕ can be factored, functorially for smooth surjective morphisms on X_{2}, into a sequence of blowings up and down of smooth centers disjoint from U :

$$
x_{1}=V_{0}-\stackrel{\varphi_{1}}{-}>V_{1}-\stackrel{\varphi_{2}}{\sim}>\ldots-\stackrel{\varphi_{\ell-1}}{>} V_{\ell-1} \stackrel{\varphi_{\ell}}{-}>V_{\ell}=X_{2} .
$$

Factorization of birational maps: qe schemes

Theorem (\aleph-Temkin)

Let $\phi: X_{1} \rightarrow X_{2}$ be the blowing up of a coherent ideal sheaf I on a qe scheme X_{2} over a field of characteristic 0 and let $U \subset X_{2}$ be the complement of the support of I. Assume X_{1}, X_{2} are regular. Then ϕ can be factored, functorially for regular surjective morphisms on X_{2}, into a sequence of blowings up and down of regular centers disjoint from U :

$$
X_{1}=V_{0}-\stackrel{\varphi_{1}}{\rightarrow}>V_{1}-\stackrel{\varphi_{2}}{-}>\ldots \stackrel{\varphi_{\ell-1}}{>} V_{\ell-1} \stackrel{\varphi_{\ell}}{-}>V_{\ell}=X_{2} .
$$

Regular morphisms and qe schemes

Definition

A morphism of schemes $f: Y \rightarrow X$ is said to be regular if it is (1) flat and (2) all geometric fibers of $f: X \rightarrow Y$ are regular.

Definition

A locally noetherian scheme X is a qe scheme if:

- for any scheme Y of finite type over X, the regular locus $Y_{\text {reg }}$ is open; and
- For any point $x \in X$, the completion morphism $\operatorname{Spec} \hat{\mathcal{O}}_{X, x} \rightarrow \operatorname{Spec} \mathcal{O}_{X, x}$ is a regular morphism.

Qe schemes are the natural world for resolution of singularities.

Places where qe rings appear

- A of finite type over a field or \mathbb{Z}, and localizations.

Places where qe rings appear

- A of finite type over a field or \mathbb{Z}, and localizations.
- $A=$ the formal completion of the above.

Places where qe rings appear

- A of finite type over a field or \mathbb{Z}, and localizations.
- $A=$ the formal completion of the above.
- $A=O(X)$, where X is an affinoid germ ${ }^{1}$ of a complex analytic space.

Places where qe rings appear

- A of finite type over a field or \mathbb{Z}, and localizations.
- $A=$ the formal completion of the above.
- $A=O(X)$, where X is an affinoid germ ${ }^{1}$ of a complex analytic space.
- $A=O(X)$, where X is an affinoid Berkovich k-analytic space,

Places where qe rings appear

- A of finite type over a field or \mathbb{Z}, and localizations.
- $A=$ the formal completion of the above.
- $A=O(X)$, where X is an affinoid germ ${ }^{1}$ of a complex analytic space.
- $A=O(X)$, where X is an affinoid Berkovich k-analytic space,
- $A=O(X)$, where X is an affinoid rigid space over k.

Places where qe rings appear

- A of finite type over a field or \mathbb{Z}, and localizations.
- $A=$ the formal completion of the above.
- $A=O(X)$, where X is an affinoid germ ${ }^{1}$ of a complex analytic space.
- $A=O(X)$, where X is an affinoid Berkovich k-analytic space,
- $A=O(X)$, where X is an affinoid rigid space over k.

In all these geometries we deduce factorization in characteristic 0 from factorization over $\operatorname{Spec} A$, which requires GAGA.

Factorization step 1: birational cobordism

We follow Włodarczyk's original ideas

Factorization step 1: birational cobordism

We follow Włodarczyk's original ideas

- Given $X_{1}=B l_{l}\left(X_{2}\right)$.

Factorization step 1: birational cobordism

We follow Włodarczyk's original ideas

- Given $X_{1}=B l_{l}\left(X_{2}\right)$.
- On $B_{0}=\mathbb{P}^{1} \times X_{2}$ consider $I^{\prime}=I+I_{0}$, where I_{0} is the defining ideal of $\{0\} \times X_{2}$.

Factorization step 1: birational cobordism

We follow Włodarczyk's original ideas

- Given $X_{1}=B l_{l}\left(X_{2}\right)$.
- On $B_{0}=\mathbb{P}^{1} \times X_{2}$ consider $I^{\prime}=I+I_{0}$, where I_{0} is the defining ideal of $\{0\} \times X_{2}$.
- Set $B_{1}=B l_{1} B_{0}$. It contains X_{1} as the proper transform of $\{0\} \times X_{2}$, as well as X_{2}

Factorization step 1: birational cobordism

We follow Włodarczyk's original ideas

- Given $X_{1}=B l_{l}\left(X_{2}\right)$.
- On $B_{0}=\mathbb{P}^{1} \times X_{2}$ consider $I^{\prime}=I+I_{0}$, where I_{0} is the defining ideal of $\{0\} \times X_{2}$.
- Set $B_{1}=B l_{1} B_{0}$. It contains X_{1} as the proper transform of $\{0\} \times X_{2}$, as well as X_{2}
- Apply canonical resolution of singularities to B_{1}, resulting in a regular scheme B, projective over X_{2}, with \mathbb{G}_{m} action.

Factorization step 1: birational cobordism

We follow Włodarczyk's original ideas

- Given $X_{1}=B l_{l}\left(X_{2}\right)$.
- On $B_{0}=\mathbb{P}^{1} \times X_{2}$ consider $I^{\prime}=I+I_{0}$, where I_{0} is the defining ideal of $\{0\} \times X_{2}$.
- Set $B_{1}=B l^{\prime}, B_{0}$. It contains X_{1} as the proper transform of $\{0\} \times X_{2}$, as well as X_{2}
- Apply canonical resolution of singularities to B_{1}, resulting in a regular scheme B, projective over X_{2}, with \mathbb{G}_{m} action.
So far, this works for schemes.

Factorization step 2: GIT

- Equivariant embedding $B \subset \mathbb{P}_{X_{2}}\left(E_{a_{1}} \oplus \cdots \oplus E_{a_{k}}\right)$,

Factorization step 2: GIT

- Equivariant embedding $B \subset \mathbb{P}_{X_{2}}\left(E_{a_{1}} \oplus \cdots \oplus E_{a_{k}}\right)$, with $a_{i}<a_{i+1}$.

Factorization step 2: GIT

- Equivariant embedding $B \subset \mathbb{P}_{X_{2}}\left(E_{a_{1}} \oplus \cdots \oplus E_{a_{k}}\right)$, with $a_{i}<a_{i+1}$.
- $B / / a_{1} \mathbb{G}_{m}=X_{1}, \quad B / / a_{k} \mathbb{G}_{m}=X_{2}$.

Factorization step 2: GIT

- Equivariant embedding $B \subset \mathbb{P}_{X_{2}}\left(E_{a_{1}} \oplus \cdots \oplus E_{a_{k}}\right)$, with $a_{i}<a_{i+1}$.
- $B / / a_{1} \mathbb{G}_{m}=X_{1}, \quad B / / a_{k} \mathbb{G}_{m}=X_{2}$.
- Denoting

$$
\begin{aligned}
W_{a_{i}} & =B / / a_{i} \mathbb{G}_{m}, \\
W_{a_{i}+} & =B / / a_{i}+\epsilon \mathbb{G}_{m}, \\
W_{a_{i}-} & =B / / a_{i}-\epsilon \mathbb{G}_{m}
\end{aligned}
$$

Factorization step 2: GIT

- Equivariant embedding $B \subset \mathbb{P}_{X_{2}}\left(E_{a_{1}} \oplus \cdots \oplus E_{a_{k}}\right)$, with $a_{i}<a_{i+1}$.
- $B / / a_{1} \mathbb{G}_{m}=X_{1}, \quad B / / a_{k} \mathbb{G}_{m}=X_{2}$.
- Denoting

$$
\begin{aligned}
W_{a_{i}} & =B / / a_{i} \mathbb{G}_{m}, \\
W_{a_{i}+} & =B / / a_{i}+\epsilon \mathbb{G}_{m}, \\
W_{a_{i}-} & =B / / a_{i}-\epsilon \mathbb{G}_{m}
\end{aligned}
$$

we have

$$
W_{a_{i}+}=W_{\left(a_{i+1}\right)-}
$$

and a sequence

Factorization step 2: GIT

- Equivariant embedding $B \subset \mathbb{P}_{X_{2}}\left(E_{a_{1}} \oplus \cdots \oplus E_{a_{k}}\right)$, with $a_{i}<a_{i+1}$.
- $B / / a_{1} \mathbb{G}_{m}=X_{1}, \quad B / / a_{k} \mathbb{G}_{m}=X_{2}$.
- Denoting

$$
\begin{aligned}
W_{a_{i}} & =B / / a_{i} \mathbb{G}_{m}, \\
W_{a_{i}+} & =B / / a_{i}+\epsilon \mathbb{G}_{m}, \\
W_{a_{i}-} & =B / / a_{i}-\epsilon \mathbb{G}_{m}
\end{aligned}
$$

we have

$$
W_{a_{i}+}=W_{\left(a_{i+1}\right)-}
$$

and a sequence

$$
X_{1}=W_{a_{2}-}^{\varphi_{2-}}{ }_{W_{a_{2}}}^{\varphi_{2+}} W_{a_{3}-}^{\varphi_{3-}}{ }_{\varphi_{(1-1)+}}^{W_{a_{1}-}=X_{2}}
$$

Factorization step 3: local description

- $B_{a_{i}}^{\text {ss }} \rightarrow W_{a_{i}}$ is affine.

Factorization step 3: local description

- $B_{a_{i}}^{s s} \rightarrow W_{a_{i}}$ is affine.
- If $b \in B_{a_{i}}^{\text {ss }}$ is a fixed point, can diagonalize $T_{B_{a_{i}}^{s s}, b}$.

Factorization step 3: local description

- $B_{a_{i}}^{s s} \rightarrow W_{a_{i}}$ is affine.
- If $b \in B_{a_{i}}^{\text {ss }}$ is a fixed point, can diagonalize $T_{B_{a_{i}}^{s s}, b}$.
- Tangent eigenvectors lift to eigenfunctions.

Factorization step 3: local description

- $B_{a_{i}}^{s s} \rightarrow W_{a_{i}}$ is affine.
- If $b \in B_{a_{i}}^{\text {ss }}$ is a fixed point, can diagonalize $T_{B_{a_{i}} s, b}$.
- Tangent eigenvectors lift to eigenfunctions.
- Locally on $W_{a_{i}}$ get equivariant $B_{a_{i}}^{s s} \rightarrow \mathbb{A}^{\text {dim }+1}$.

Factorization step 3: local description

- $B_{a_{i}}^{s s} \rightarrow W_{a_{i}}$ is affine.
- If $b \in B_{a_{i}}^{\text {ss }}$ is a fixed point, can diagonalize $T_{B_{a_{i}} \text { ss }, b}$.
- Tangent eigenvectors lift to eigenfunctions.
- Locally on $W_{a_{i}}$ get equivariant $B_{a_{i}}^{s s} \rightarrow \mathbb{A}^{\text {dim }+1}$.
- This "chart" is regular and inert.

Factorization step 4: Luna's fundamental lemma

Definition (Special orbits)

An orbit $\mathbb{G}_{m} \cdot x \subset B_{a_{i}}^{s s}$ is special if it is closed in the fiber of $B_{a_{i}}^{s s} \rightarrow W_{a_{i}}$.

Factorization step 4: Luna's fundamental lemma

Definition (Special orbits)

An orbit $\mathbb{G}_{m} \cdot x \subset B_{a_{i}}^{s s}$ is special if it is closed in the fiber of $B_{a_{i}}^{s s} \rightarrow W_{a_{i}}$.

Definition (Inert morphisms)

The \mathbb{G}_{m}-equivariant $B_{a_{i}}^{s s} \rightarrow \mathbb{A}^{\operatorname{dim}+1}$ is inert if (1) it takes special orbits to special orbits and (2) it preserves inertia groups.

Factorization step 4: Luna's fundamental lemma

Definition (Special orbits)

An orbit $\mathbb{G}_{m} \cdot x \subset B_{a_{i}}^{s s}$ is special if it is closed in the fiber of $B_{a_{i}}^{s s} \rightarrow W_{a_{i}}$.

Definition (Inert morphisms)

The \mathbb{G}_{m}-equivariant $B_{a_{i}}^{s s} \rightarrow \mathbb{A}^{\operatorname{dim}+1}$ is inert if (1) it takes special orbits to special orbits and (2) it preserves inertia groups.

Theorem (Luna's fundamental lemma, [Luna,Alper, §-Temkin])
The regular and inert \mathbb{G}_{m}-equivariant $B_{a_{i}}^{s s} \rightarrow \mathbb{A}^{\text {dim }+1}$ is strongly equivariant, namely

$$
B_{a_{i}}^{s S}=\mathbb{A}^{\operatorname{dim}+1} \times \times_{\mathbb{A}^{\operatorname{dim}+1} / / \mathbb{G}_{m}} W_{a_{i}} .
$$

Factorization step 4: torification

- This is compatible with $W_{a_{i} \pm} \rightarrow W_{a_{i}}$.

Factorization step 4: torification

- This is compatible with $W_{a_{i} \pm} \rightarrow W_{a_{i}}$.
- Locally on W_{i} the transformations $W_{a_{i} \pm} \rightarrow W_{a_{i}}$ have toric charts.

Factorization step 4: torification

- This is compatible with $W_{a_{i} \pm} \rightarrow W_{a_{i}}$.
- Locally on W_{i} the transformations $W_{a_{i} \pm} \rightarrow W_{a_{i}}$ have toric charts.
- The process of torification allows us to assume they are toroidal transformations.

Factorization step 4: torification

- This is compatible with $W_{a_{i} \pm} \rightarrow W_{a_{i}}$.
- Locally on W_{i} the transformations $W_{a_{i} \pm} \rightarrow W_{a_{i}}$ have toric charts.
- The process of torification allows us to assume they are toroidal transformations.
- Toroidal factorization is known [Włodarczyk, Morelli, \aleph-Matsuki-Rashid].

Factorization in terms of ideals

Recall that $X_{1}=B I_{l}\left(X_{2}\right)$.

Factorization in terms of ideals

Recall that $X_{1}=B l_{l}\left(X_{2}\right)$.
Our factorization

$$
X_{1}=V_{0}-\stackrel{\varphi_{1}}{-}>V_{1}-\stackrel{\varphi_{2}}{-}>\ldots-\stackrel{\varphi_{\ell-1}}{>} V_{\ell-1}-\stackrel{\varphi_{\ell}}{>}>V_{\ell}=X_{2}
$$

gives a sequence of ideals J_{i} such that $V_{k}=B J_{J_{i}}\left(X_{2}\right)$, and smooth Z_{i} such that $\varphi_{i}^{ \pm 1}$ is the blowing up of Z_{i}.

Transporting to other categories 1: covering

- Assume $X_{1} \rightarrow X_{2}$ is a blowing up of an ideal in one of our categories: local, formal, complex, Berkovich, rigid.

Transporting to other categories 1: covering

- Assume $X_{1} \rightarrow X_{2}$ is a blowing up of an ideal in one of our categories: local, formal, complex, Berkovich, rigid.
- Say we have a finite cover $X_{2}^{\prime}=\sqcup U_{\alpha} \rightarrow X_{2}$ by patches such that $O\left(U_{\alpha}\right)$ is a qe ring which determines U_{α} : ideals correspond to closed sub-objects, coherent sheaves are acyclic, correspond to modules, etc.

Transporting to other categories 1: covering

- Assume $X_{1} \rightarrow X_{2}$ is a blowing up of an ideal in one of our categories: local, formal, complex, Berkovich, rigid.
- Say we have a finite cover $X_{2}^{\prime}=\sqcup U_{\alpha} \rightarrow X_{2}$ by patches such that $O\left(U_{\alpha}\right)$ is a qe ring which determines U_{α} : ideals correspond to closed sub-objects, coherent sheaves are acyclic, correspond to modules, etc.
- In complex analysis, $U_{\alpha}=X_{2} \cap \bar{D}$ with \bar{D} a closed polydisc with the restricted sheaf [Frisch, Bambozzi].

Transporting to other categories 1: covering

- Assume $X_{1} \rightarrow X_{2}$ is a blowing up of an ideal in one of our categories: local, formal, complex, Berkovich, rigid.
- Say we have a finite cover $X_{2}^{\prime}=\sqcup U_{\alpha} \rightarrow X_{2}$ by patches such that $O\left(U_{\alpha}\right)$ is a qe ring which determines U_{α} : ideals correspond to closed sub-objects, coherent sheaves are acyclic, correspond to modules, etc.
- In complex analysis, $U_{\alpha}=X_{2} \cap \bar{D}$ with \bar{D} a closed polydisc with the restricted sheaf [Frisch, Bambozzi].
- Write $\mathcal{X}_{2}^{\prime}=\sqcup \operatorname{Spec} O\left(U_{\alpha}\right)$, write \mathcal{I}^{\prime} corresponding to I, and $\mathcal{X}_{1}^{\prime}=B I_{\mathcal{I}^{\prime}} \mathcal{X}_{2}^{\prime}$, which is regular.

Transporting to other categories 1: covering

- Assume $X_{1} \rightarrow X_{2}$ is a blowing up of an ideal in one of our categories: local, formal, complex, Berkovich, rigid.
- Say we have a finite cover $X_{2}^{\prime}=\sqcup U_{\alpha} \rightarrow X_{2}$ by patches such that $O\left(U_{\alpha}\right)$ is a qe ring which determines U_{α} : ideals correspond to closed sub-objects, coherent sheaves are acyclic, correspond to modules, etc.
- In complex analysis, $U_{\alpha}=X_{2} \cap \bar{D}$ with \bar{D} a closed polydisc with the restricted sheaf [Frisch, Bambozzi].
- Write $\mathcal{X}_{2}^{\prime}=\sqcup \operatorname{Spec} O\left(U_{\alpha}\right)$, write \mathcal{I}^{\prime} corresponding to I, and $\mathcal{X}_{1}^{\prime}=B I_{\mathcal{I}^{\prime}} \mathcal{X}_{2}^{\prime}$, which is regular.
- Factorization of $\mathcal{X}_{1}^{\prime} \rightarrow \mathcal{X}_{2}^{\prime}$ gives ideals \mathcal{J}_{i}^{\prime} and smooth $\mathcal{Z}_{i} \subset \mathcal{V}_{k}^{\prime}:=B I_{\mathcal{J}_{i}^{\prime}}\left(\mathcal{X}_{2}^{\prime}\right)$.

Transporting to other categories 2: GAGA

Theorem (Serre's Théorème 3)
In each of these categories, the pullback functor

$$
h^{*}: \operatorname{Coh}\left(\mathbb{P}_{\mathcal{X}_{2}^{\prime}}^{r}\right) \rightarrow \operatorname{Coh}\left(\mathbb{P}_{X_{2}^{\prime}}^{r}\right)
$$

is an equivalence which induces isomorphisms on cohomology groups and preserves regularity.

Transporting to other categories 2: patching

Transporting to other categories 2: patching

- We had ideals $\mathcal{J}_{i}^{\prime} \subset \mathcal{O}_{\mathcal{X}_{2}^{\prime}}$ and smooth $\mathcal{Z}_{i} \subset \mathcal{V}_{k}^{\prime}:=\left.B\right|_{\mathcal{J}_{i}^{\prime}}\left(\mathcal{X}_{2}^{\prime}\right)$ factoring $\mathcal{X}_{1}^{\prime} \rightarrow \mathcal{X}_{2}^{\prime}$.

Transporting to other categories 2: patching

- We had ideals $\mathcal{J}_{i}^{\prime} \subset \mathcal{O}_{\mathcal{X}_{2}^{\prime}}$ and smooth $\mathcal{Z}_{i} \subset \mathcal{V}_{k}^{\prime}:=\operatorname{Bl}_{\mathcal{J}_{i}^{\prime}}\left(\mathcal{X}_{2}^{\prime}\right)$ factoring $\mathcal{X}_{1}^{\prime} \rightarrow \mathcal{X}_{2}^{\prime}$.
- We get ideals $J_{i}^{\prime} \subset \mathcal{O}_{X_{2}^{\prime}}$ and smooth $Z_{i}^{\prime} \subset V_{k}^{\prime}:=B I_{J_{i}^{\prime}}\left(X_{2}^{\prime}\right)$ factoring $X_{1}^{\prime} \rightarrow X_{2}^{\prime}$.

Transporting to other categories 2: patching

- We had ideals $\mathcal{J}_{i}^{\prime} \subset \mathcal{O}_{\mathcal{X}_{2}^{\prime}}$ and smooth $\mathcal{Z}_{i} \subset \mathcal{V}_{k}^{\prime}:=\left.B\right|_{\mathcal{J}_{i}^{\prime}}\left(\mathcal{X}_{2}^{\prime}\right)$ factoring $\mathcal{X}_{1}^{\prime} \rightarrow \mathcal{X}_{2}^{\prime}$.
- We get ideals $J_{i}^{\prime} \subset \mathcal{O}_{X_{2}^{\prime}}$ and smooth $Z_{i}^{\prime} \subset V_{k}^{\prime}:=B I_{J_{i}^{\prime}}\left(X_{2}^{\prime}\right)$ factoring $X_{1}^{\prime} \rightarrow X_{2}^{\prime}$.
- Functoriality and Temkin's trick ensure that these agree on $X_{2}^{\prime} \times{ }_{X_{2}} X_{2}^{\prime}$.

Transporting to other categories 2: patching

$$
X_{2} \leftarrow \text { cover } X_{2}^{\prime} \longrightarrow \mathcal{X}_{2}^{\prime}
$$

- We had ideals $\mathcal{J}_{i}^{\prime} \subset \mathcal{O}_{\mathcal{X}_{2}^{\prime}}$ and smooth $\mathcal{Z}_{i} \subset \mathcal{V}_{k}^{\prime}:=\operatorname{Bl}_{\mathcal{J}_{i}^{\prime}}\left(\mathcal{X}_{2}^{\prime}\right)$ factoring $\mathcal{X}_{1}^{\prime} \rightarrow \mathcal{X}_{2}^{\prime}$.
- We get ideals $J_{i}^{\prime} \subset \mathcal{O}_{X_{2}^{\prime}}$ and smooth $Z_{i}^{\prime} \subset V_{k}^{\prime}:=B I_{J_{i}^{\prime}}\left(X_{2}^{\prime}\right)$ factoring $X_{1}^{\prime} \rightarrow X_{2}^{\prime}$.
- Functoriality and Temkin's trick ensure that these agree on $X_{2}^{\prime} \times x_{2} X_{2}^{\prime}$.
- Descent gives ideals $J_{i} \subset \mathcal{O}_{X_{2}}$ and smooth $Z_{i} \subset V_{k}:=B I_{J_{i}}\left(X_{2}\right)$ factoring $X_{1} \rightarrow X_{2}$, as needed.

An analytic GAGA: statement

Theorem (Serre's Théorème 3)
Let D be a closed polydisk, $A=\mathcal{O}(D)$. The pullback functor

$$
h^{*}: \operatorname{Coh}\left(\mathbb{P}_{A}^{r}\right) \rightarrow \operatorname{Coh}\left(\mathbb{P}_{D}^{r}\right)
$$

is an equivalence which induces isomorphisms on cohomology groups.

An analytic GAGA: lemmas

Lemma (Dimension Lemma)
We have $H^{i}\left(\mathbb{P}_{A}^{r}, \mathcal{F}\right)=H^{i}\left(\mathbb{P}_{D}^{r}, h^{*} \mathcal{F}\right)=0$ for $i>r$ and all \mathcal{F}.

An analytic GAGA: lemmas

Lemma (Dimension Lemma)
We have $H^{i}\left(\mathbb{P}_{A}^{r}, \mathcal{F}\right)=H^{i}\left(\mathbb{P}_{D}^{r}, h^{*} \mathcal{F}\right)=0$ for $i>r$ and all \mathcal{F}.

Proof.

Use Çech covers of \mathbb{P}_{D}^{r} by closed standard polydisks!

An analytic GAGA: lemmas

Lemma (Dimension Lemma)
We have $H^{i}\left(\mathbb{P}_{A}^{r}, \mathcal{F}\right)=H^{i}\left(\mathbb{P}_{D}^{r}, h^{*} \mathcal{F}\right)=0$ for $i>r$ and all \mathcal{F}.

Proof.

Use Çech covers of \mathbb{P}_{D}^{r} by closed standard polydisks!
Lemma (Structure Sheaf Lemma)
We have $H^{i}\left(\mathbb{P}_{A}^{r}, \mathcal{O}\right)=H^{i}\left(\mathbb{P}_{D}^{r}, \mathcal{O}\right)$ for all i.

An analytic GAGA: lemmas

Lemma (Dimension Lemma)
We have $H^{i}\left(\mathbb{P}_{A}^{r}, \mathcal{F}\right)=H^{i}\left(\mathbb{P}_{D}^{r}, h^{*} \mathcal{F}\right)=0$ for $i>r$ and all \mathcal{F}.

Proof.

Use Çech covers of \mathbb{P}_{D}^{r} by closed standard polydisks!
Lemma (Structure Sheaf Lemma)
We have $H^{i}\left(\mathbb{P}_{A}^{r}, \mathcal{O}\right)=H^{i}\left(\mathbb{P}_{D}^{r}, \mathcal{O}\right)$ for all i.

Proof.

Use proper base change for $\mathbb{P}_{D}^{r} \longrightarrow \mathbb{P}_{\mathbb{C P}^{n}}^{r}$

An analytic GAGA: Serre's proof - cohomology

Lemma (Twisting Sheaf Lemma)
We have $H^{i}\left(\mathbb{P}_{A}^{r}, \mathcal{O}(n)\right)=H^{i}\left(\mathbb{P}_{D}^{r}, \mathcal{O}(n)\right)$ for all i, r, n.

An analytic GAGA: Serre's proof - cohomology

Lemma (Twisting Sheaf Lemma)
We have $H^{i}\left(\mathbb{P}_{A}^{r}, \mathcal{O}(n)\right)=H^{i}\left(\mathbb{P}_{D}^{r}, \mathcal{O}(n)\right)$ for all i, r, n.

Proof.

Induction on r and $0 \rightarrow \mathcal{O}_{\mathbb{P}_{D}^{r}}(n-1) \rightarrow \mathcal{O}_{\mathbb{P}_{D}^{r}}(n) \rightarrow \mathcal{O}_{\mathbb{P}_{D}^{r-1}}(n) \rightarrow 0$

An analytic GAGA: Serre's proof - cohomology

Lemma (Twisting Sheaf Lemma)

We have $H^{i}\left(\mathbb{P}_{A}^{r}, \mathcal{O}(n)\right)=H^{i}\left(\mathbb{P}_{D}^{r}, \mathcal{O}(n)\right)$ for all i, r, n.

Proof.

Induction on r and $0 \rightarrow \mathcal{O}_{\mathbb{P}_{D}^{r}}(n-1) \rightarrow \mathcal{O}_{\mathbb{P}_{D}^{r}}(n) \rightarrow \mathcal{O}_{\mathbb{P}_{D}^{r-1}}(n) \rightarrow 0$

An analytic GAGA: Serre's proof - cohomology

Lemma (Twisting Sheaf Lemma)

We have $H^{i}\left(\mathbb{P}_{A}^{r}, \mathcal{O}(n)\right)=H^{i}\left(\mathbb{P}_{D}^{r}, \mathcal{O}(n)\right)$ for all i, r, n.

Proof.

Induction on r and $0 \rightarrow \mathcal{O}_{\mathbb{P}_{D}^{r}}(n-1) \rightarrow \mathcal{O}_{\mathbb{P}_{D}^{r}}(n) \rightarrow \mathcal{O}_{\mathbb{P}_{D}^{r-1}}(n) \rightarrow 0$

So the result for n is equivalent to the result for $n-1$.

An analytic GAGA: Serre's proof - cohomology

Lemma (Twisting Sheaf Lemma)

We have $H^{i}\left(\mathbb{P}_{A}^{r}, \mathcal{O}(n)\right)=H^{i}\left(\mathbb{P}_{D}^{r}, \mathcal{O}(n)\right)$ for all i, r, n.

Proof.

Induction on r and $0 \rightarrow \mathcal{O}_{\mathbb{P}_{D}^{r}}(n-1) \rightarrow \mathcal{O}_{\mathbb{P}_{D}^{r}}(n) \rightarrow \mathcal{O}_{\mathbb{P}_{D}^{r-1}}(n) \rightarrow 0$

So the result for n is equivalent to the result for $n-1$.
By the Structure Sheaf Lemma it holds for $n=0$ so it holds for all n.

An analytic GAGA: Serre's proof - cohomology
Proposition (Serre's Théorème 1)
Let \mathcal{F} be a coherent sheaf on \mathbb{P}_{A}^{r}. The homomorphism $h^{*}: H^{i}\left(\mathbb{P}_{A}^{r}, \mathcal{F}\right) \rightarrow H^{i}\left(\mathbb{P}_{D}^{r}, h^{*} \mathcal{F}\right)$ is an isomorphism for all i.

An analytic GAGA: Serre's proof - cohomology
Proposition (Serre's Théorème 1)
Let \mathcal{F} be a coherent sheaf on \mathbb{P}_{A}^{r}. The homomorphism $h^{*}: H^{i}\left(\mathbb{P}_{A}^{r}, \mathcal{F}\right) \rightarrow H^{i}\left(\mathbb{P}_{D}^{r}, h^{*} \mathcal{F}\right)$ is an isomorphism for all i.

Proof.

Descending induction on i for all coherent \mathbb{P}_{A}^{r} modules, the case $i>r$ given by the Dimension Lemma.

An analytic GAGA: Serre's proof - cohomology
Proposition (Serre's Théorème 1)
Let \mathcal{F} be a coherent sheaf on \mathbb{P}_{A}^{r}. The homomorphism $h^{*}: H^{i}\left(\mathbb{P}_{A}^{r}, \mathcal{F}\right) \rightarrow H^{i}\left(\mathbb{P}_{D}^{r}, h^{*} \mathcal{F}\right)$ is an isomorphism for all i.

Proof.

Descending induction on i for all coherent \mathbb{P}_{A}^{r} modules, the case $i>r$ given by the Dimension Lemma.
Choose a resolution $0 \rightarrow \mathcal{G} \rightarrow \mathcal{E} \rightarrow \mathcal{F} \rightarrow 0$ with \mathcal{E} a sum of twisting sheaves.

An analytic GAGA: Serre's proof - cohomology

Proposition (Serre's Théorème 1)

Let \mathcal{F} be a coherent sheaf on \mathbb{P}_{A}^{r}. The homomorphism $h^{*}: H^{i}\left(\mathbb{P}_{A}^{r}, \mathcal{F}\right) \rightarrow H^{i}\left(\mathbb{P}_{D}^{r}, h^{*} \mathcal{F}\right)$ is an isomorphism for all i.

Proof.

Descending induction on i for all coherent \mathbb{P}_{A}^{r} modules, the case $i>r$ given by the Dimension Lemma.
Choose a resolution $0 \rightarrow \mathcal{G} \rightarrow \mathcal{E} \rightarrow \mathcal{F} \rightarrow 0$ with \mathcal{E} a sum of twisting sheaves. Flatness of h implies $0 \rightarrow h^{*} \mathcal{G} \rightarrow h^{*} \mathcal{E} \rightarrow h^{*} \mathcal{F} \rightarrow 0$ exact.

so the arrow $H^{i}\left(\mathbb{P}_{A}^{r}, \mathcal{F}\right) \rightarrow H^{i}\left(\mathbb{P}_{D}^{r}, h^{*} \mathcal{F}\right)$ surjective, and so also for \mathcal{G}, and finish by the 5 lemma.

An analytic GAGA: Serre's proof - Homomorphisms

Proposition (Serre's Théorème 2)
For any coherent \mathbb{P}_{A}^{r}-modules \mathcal{F}, \mathcal{G} the natural homomorphism

$$
\underline{\operatorname{Hom}}_{\mathbb{P}_{A}^{r}}(\mathcal{F}, \mathcal{G}) \rightarrow \underline{\operatorname{Hom}}_{\mathbb{P}_{D}^{r}}\left(h^{*} \mathcal{F}, h^{*} \mathcal{G}\right)
$$

is an isomorphism. In particular the functor h^{*} is fully faithful.

An analytic GAGA: Serre's proof - Homomorphisms

Proposition (Serre's Théorème 2)
For any coherent $\mathbb{P}_{A^{r}}^{r}$-modules \mathcal{F}, \mathcal{G} the natural homomorphism

$$
\underline{\operatorname{Hom}}_{\mathbb{P}_{A}^{r}}(\mathcal{F}, \mathcal{G}) \rightarrow \underline{\operatorname{Hom}}_{\mathbb{P}_{D}^{r}}\left(h^{*} \mathcal{F}, h^{*} \mathcal{G}\right)
$$

is an isomorphism. In particular the functor h^{*} is fully faithful.

Proof.

By Serre's Théorème 1, suffices to show that $h^{*} \mathcal{H o m} \mathbb{P}_{A}^{r}(\mathcal{F}, \mathcal{G}) \rightarrow \mathcal{H o m}_{\mathbb{P}_{D}^{r}}\left(h^{*} \mathcal{F}, h^{*} \mathcal{G}\right)$ is an isomorphism.

An analytic GAGA: Serre's proof - Homomorphisms

Proposition (Serre's Théorème 2)

For any coherent $\mathbb{P}_{A^{r}}^{r}$-modules \mathcal{F}, \mathcal{G} the natural homomorphism

$$
\underline{\operatorname{Hom}}_{\mathbb{P}_{A}^{r}}(\mathcal{F}, \mathcal{G}) \rightarrow \underline{\operatorname{Hom}}_{\mathbb{P}_{D}^{r}}\left(h^{*} \mathcal{F}, h^{*} \mathcal{G}\right)
$$

is an isomorphism. In particular the functor h^{*} is fully faithful.

Proof.

By Serre's Théorème 1, suffices to show that $h^{*} \mathcal{H o m} \mathbb{P}_{A}^{r}(\mathcal{F}, \mathcal{G}) \rightarrow \mathcal{H o m}_{\mathbb{P}_{D}^{r}}\left(h^{*} \mathcal{F}, h^{*} \mathcal{G}\right)$ is an isomorphism.

$$
\begin{aligned}
\left(h^{*} \mathcal{H o m} \mathbb{P}_{\mathbb{P}_{A}^{r}}(\mathcal{F}, \mathcal{G})\right)_{x} & =\operatorname{Hom}_{\mathcal{O}_{x^{\prime}}}\left(\mathcal{F}_{x^{\prime}}, \mathcal{G}_{x^{\prime}}\right) \otimes_{\mathcal{O}_{x^{\prime}}} \mathcal{O}_{x} \\
& =\operatorname{Hom}_{\mathcal{O}_{x}}\left(\mathcal{F}_{x^{\prime}} \otimes_{\mathcal{O}_{x^{\prime}}} \mathcal{O}_{x}, \mathcal{G}_{x^{\prime}} \otimes_{\mathcal{O}_{x^{\prime}}} \mathcal{O}_{x}\right) \\
& =\mathcal{H o m}_{\mathbb{P}_{x}^{r}}\left(h^{*} \mathcal{F}, h^{*} \mathcal{G}\right)_{x} .
\end{aligned}
$$

by flatness.

An analytic GAGA: Serre's proof - generation of twisted sheaves

Proposition (Cartan's Théorème A)

For any coherent sheaf \mathcal{F} on \mathbb{P}_{D}^{r} there is n_{0} so that $\mathcal{F}(n)$ is globally generated whenever $n>n_{0}$.

An analytic GAGA: Serre's proof - generation of twisted sheaves

Proposition (Cartan's Théorème A)

For any coherent sheaf \mathcal{F} on \mathbb{P}_{D}^{r} there is n_{0} so that $\mathcal{F}(n)$ is globally generated whenever $n>n_{0}$.

Proof.

Induction on r.

An analytic GAGA: Serre's proof - generation of twisted sheaves

Proposition (Cartan's Théorème A)

For any coherent sheaf \mathcal{F} on \mathbb{P}_{D}^{r} there is n_{0} so that $\mathcal{F}(n)$ is globally generated whenever $n>n_{0}$.

Proof.

Induction on r.
Suffices to generate stalk at x. Choose $H \ni x$, and get an exact sequence $0 \rightarrow \mathcal{O}(-1) \rightarrow \mathcal{O} \rightarrow \mathcal{O}_{H} \rightarrow 0$.

An analytic GAGA: Serre's proof - generation of twisted sheaves

Proposition (Cartan's Théorème A)

For any coherent sheaf \mathcal{F} on \mathbb{P}_{D}^{r} there is n_{0} so that $\mathcal{F}(n)$ is globally generated whenever $n>n_{0}$.

Proof.

Induction on r.
Suffices to generate stalk at x. Choose $H \ni x$, and get an exact sequence $0 \rightarrow \mathcal{O}(-1) \rightarrow \mathcal{O} \rightarrow \mathcal{O}_{H} \rightarrow 0$. This gives $\mathcal{F}(-1) \xrightarrow{\varphi_{1}} \mathcal{F} \xrightarrow{\varphi \ell} \mathcal{F}_{H} \rightarrow 0$

An analytic GAGA: Serre's proof - generation of twisted sheaves

Proposition (Cartan's Théorème A)

For any coherent sheaf \mathcal{F} on \mathbb{P}_{D}^{r} there is n_{0} so that $\mathcal{F}(n)$ is globally generated whenever $n>n_{0}$.

Proof.

Induction on r.
Suffices to generate stalk at x. Choose $H \ni x$, and get an exact sequence $0 \rightarrow \mathcal{O}(-1) \rightarrow \mathcal{O} \rightarrow \mathcal{O}_{H} \rightarrow 0$. This gives $\mathcal{F}(-1) \xrightarrow{\varphi_{1}} \mathcal{F} \xrightarrow{\varphi \rho} \mathcal{F}_{H} \rightarrow 0$ which breaks into

$$
0 \rightarrow \mathcal{G} \rightarrow \mathcal{F}(-1) \rightarrow \mathcal{P} \rightarrow 0 \quad \text { and } \quad 0 \rightarrow \mathcal{P} \rightarrow \mathcal{F} \rightarrow \mathcal{F}_{H} \rightarrow 0
$$

An analytic GAGA: Serre's proof - generation of twisted sheaves

Proposition (Cartan's Théorème A)

For any coherent sheaf \mathcal{F} on \mathbb{P}_{D}^{r} there is n_{0} so that $\mathcal{F}(n)$ is globally generated whenever $n>n_{0}$.

Proof.

Induction on r.
Suffices to generate stalk at x. Choose $H \ni x$, and get an exact sequence $0 \rightarrow \mathcal{O}(-1) \rightarrow \mathcal{O} \rightarrow \mathcal{O}_{H} \rightarrow 0$. This gives $\mathcal{F}(-1) \xrightarrow{\varphi_{1}} \mathcal{F} \xrightarrow{\varphi \rho} \mathcal{F}_{H} \rightarrow 0$ which breaks into

$$
0 \rightarrow \mathcal{G} \rightarrow \mathcal{F}(-1) \rightarrow \mathcal{P} \rightarrow 0 \quad \text { and } \quad 0 \rightarrow \mathcal{P} \rightarrow \mathcal{F} \rightarrow \mathcal{F}_{H} \rightarrow 0
$$

where \mathcal{G} and \mathcal{F}_{H} are coherent sheaves on H,

Serre's proof - generation of twisted sheaves (continued)

Proof of Cartan's Théorème A, continued.

$$
0 \rightarrow \mathcal{G} \rightarrow \mathcal{F}(-1) \rightarrow \mathcal{P} \rightarrow 0 \quad \text { and } \quad 0 \rightarrow \mathcal{P} \rightarrow \mathcal{F} \rightarrow \mathcal{F}_{H} \rightarrow 0,
$$

Serre's proof - generation of twisted sheaves (continued)

Proof of Cartan's Théorème A, continued.

$$
0 \rightarrow \mathcal{G} \rightarrow \mathcal{F}(-1) \rightarrow \mathcal{P} \rightarrow 0 \quad \text { and } \quad 0 \rightarrow \mathcal{P} \rightarrow \mathcal{F} \rightarrow \mathcal{F}_{H} \rightarrow 0,
$$

so right terms in

$$
H^{1}\left(\mathbb{P}_{D}^{r}, \mathcal{F}(n-1)\right) \rightarrow H^{1}\left(\mathbb{P}_{D}^{r}, \mathcal{P}(n)\right) \rightarrow H^{2}(H, \mathcal{G}(n))
$$

and

$$
H^{1}\left(\mathbb{P}_{D}^{r}, \mathcal{P}(n)\right) \rightarrow H^{1}\left(\mathbb{P}_{D}^{r}, \mathcal{F}(n)\right) \rightarrow H^{1}\left(H, \mathcal{F}_{H}(n)\right)
$$

vanish for large n.

Serre's proof - generation of twisted sheaves (continued)

Proof of Cartan's Théorème A, continued.

$$
0 \rightarrow \mathcal{G} \rightarrow \mathcal{F}(-1) \rightarrow \mathcal{P} \rightarrow 0 \quad \text { and } \quad 0 \rightarrow \mathcal{P} \rightarrow \mathcal{F} \rightarrow \mathcal{F}_{H} \rightarrow 0,
$$

so right terms in

$$
H^{1}\left(\mathbb{P}_{D}^{r}, \mathcal{F}(n-1)\right) \rightarrow H^{1}\left(\mathbb{P}_{D}^{r}, \mathcal{P}(n)\right) \rightarrow H^{2}(H, \mathcal{G}(n))
$$

and

$$
H^{1}\left(\mathbb{P}_{D}^{r}, \mathcal{P}(n)\right) \rightarrow H^{1}\left(\mathbb{P}_{D}^{r}, \mathcal{F}(n)\right) \rightarrow H^{1}\left(H, \mathcal{F}_{H}(n)\right)
$$

vanish for large n. So $h^{1}\left(\mathbb{P}_{D}^{r}, \mathcal{F}(n)\right)$ is descending,

Serre's proof - generation of twisted sheaves (continued)

Proof of Cartan's Théorème A , continued.

$$
0 \rightarrow \mathcal{G} \rightarrow \mathcal{F}(-1) \rightarrow \mathcal{P} \rightarrow 0 \quad \text { and } \quad 0 \rightarrow \mathcal{P} \rightarrow \mathcal{F} \rightarrow \mathcal{F}_{H} \rightarrow 0,
$$

so right terms in

$$
H^{1}\left(\mathbb{P}_{D}^{r}, \mathcal{F}(n-1)\right) \rightarrow H^{1}\left(\mathbb{P}_{D}^{r}, \mathcal{P}(n)\right) \rightarrow H^{2}(H, \mathcal{G}(n))
$$

and

$$
H^{1}\left(\mathbb{P}_{D}^{r}, \mathcal{P}(n)\right) \rightarrow H^{1}\left(\mathbb{P}_{D}^{r}, \mathcal{F}(n)\right) \rightarrow H^{1}\left(H, \mathcal{F}_{H}(n)\right)
$$

vanish for large n. So $h^{1}\left(\mathbb{P}_{D}^{r}, \mathcal{F}(n)\right)$ is descending, and when it stabilizes $H^{1}\left(\mathbb{P}_{D}^{r}, \mathcal{P}(n)\right) \rightarrow H^{1}\left(\mathbb{P}_{D}^{r}, \mathcal{F}(n)\right)$ is bijective

Serre's proof - generation of twisted sheaves (continued)

Proof of Cartan's Théorème A, continued.

$$
0 \rightarrow \mathcal{G} \rightarrow \mathcal{F}(-1) \rightarrow \mathcal{P} \rightarrow 0 \quad \text { and } \quad 0 \rightarrow \mathcal{P} \rightarrow \mathcal{F} \rightarrow \mathcal{F}_{H} \rightarrow 0,
$$

so right terms in

$$
H^{1}\left(\mathbb{P}_{D}^{r}, \mathcal{F}(n-1)\right) \rightarrow H^{1}\left(\mathbb{P}_{D}^{r}, \mathcal{P}(n)\right) \rightarrow H^{2}(H, \mathcal{G}(n))
$$

and

$$
H^{1}\left(\mathbb{P}_{D}^{r}, \mathcal{P}(n)\right) \rightarrow H^{1}\left(\mathbb{P}_{D}^{r}, \mathcal{F}(n)\right) \rightarrow H^{1}\left(H, \mathcal{F}_{H}(n)\right)
$$

vanish for large n. So $h^{1}\left(\mathbb{P}_{D}^{r}, \mathcal{F}(n)\right)$ is descending, and when it stabilizes $H^{1}\left(\mathbb{P}_{D}^{r}, \mathcal{P}(n)\right) \rightarrow H^{1}\left(\mathbb{P}_{D}^{r}, \mathcal{F}(n)\right)$ is bijective so $H^{0}\left(\mathbb{P}_{X}^{r}, \mathcal{F}(n)\right) \rightarrow H^{0}\left(H, \mathcal{F}_{H}(n)\right)$ is surjective.

Serre's proof - generation of twisted sheaves (continued)

Proof of Cartan's Théorème A, continued.

$$
0 \rightarrow \mathcal{G} \rightarrow \mathcal{F}(-1) \rightarrow \mathcal{P} \rightarrow 0 \quad \text { and } \quad 0 \rightarrow \mathcal{P} \rightarrow \mathcal{F} \rightarrow \mathcal{F}_{H} \rightarrow 0,
$$

so right terms in

$$
H^{1}\left(\mathbb{P}_{D}^{r}, \mathcal{F}(n-1)\right) \rightarrow H^{1}\left(\mathbb{P}_{D}^{r}, \mathcal{P}(n)\right) \rightarrow H^{2}(H, \mathcal{G}(n))
$$

and

$$
H^{1}\left(\mathbb{P}_{D}^{r}, \mathcal{P}(n)\right) \rightarrow H^{1}\left(\mathbb{P}_{D}^{r}, \mathcal{F}(n)\right) \rightarrow H^{1}\left(H, \mathcal{F}_{H}(n)\right)
$$

vanish for large n. So $h^{1}\left(\mathbb{P}_{D}^{r}, \mathcal{F}(n)\right)$ is descending, and when it stabilizes $H^{1}\left(\mathbb{P}_{D}^{r}, \mathcal{P}(n)\right) \rightarrow H^{1}\left(\mathbb{P}_{D}^{r}, \mathcal{F}(n)\right)$ is bijective so $H^{0}\left(\mathbb{P}_{X}^{r}, \mathcal{F}(n)\right) \rightarrow H^{0}\left(H, \mathcal{F}_{H}(n)\right)$ is surjective. Sections in $H^{0}\left(H, \mathcal{F}_{H}(n)\right)$ generate $\mathcal{F}_{H}(n)$ by dimension induction,

Serre's proof - generation of twisted sheaves (continued)

Proof of Cartan's Théorème A, continued.

$$
0 \rightarrow \mathcal{G} \rightarrow \mathcal{F}(-1) \rightarrow \mathcal{P} \rightarrow 0 \quad \text { and } \quad 0 \rightarrow \mathcal{P} \rightarrow \mathcal{F} \rightarrow \mathcal{F}_{H} \rightarrow 0
$$

so right terms in

$$
H^{1}\left(\mathbb{P}_{D}^{r}, \mathcal{F}(n-1)\right) \rightarrow H^{1}\left(\mathbb{P}_{D}^{r}, \mathcal{P}(n)\right) \rightarrow H^{2}(H, \mathcal{G}(n))
$$

and

$$
H^{1}\left(\mathbb{P}_{D}^{r}, \mathcal{P}(n)\right) \rightarrow H^{1}\left(\mathbb{P}_{D}^{r}, \mathcal{F}(n)\right) \rightarrow H^{1}\left(H, \mathcal{F}_{H}(n)\right)
$$

vanish for large n. So $h^{1}\left(\mathbb{P}_{D}^{r}, \mathcal{F}(n)\right)$ is descending, and when it stabilizes $H^{1}\left(\mathbb{P}_{D}^{r}, \mathcal{P}(n)\right) \rightarrow H^{1}\left(\mathbb{P}_{D}^{r}, \mathcal{F}(n)\right)$ is bijective so $H^{0}\left(\mathbb{P}_{X}^{r}, \mathcal{F}(n)\right) \rightarrow H^{0}\left(H, \mathcal{F}_{H}(n)\right)$ is surjective.
Sections in $H^{0}\left(H, \mathcal{F}_{H}(n)\right)$ generate $\mathcal{F}_{H}(n)$ by dimension induction, and by Nakayama the result at $x \in H$ follows.

An analytic GAGA: Serre's proof - the equivalence

Peoof of Serre's Théorème 3.

Choose a resolution $\mathcal{O}\left(-n_{1}\right)^{k_{1}} \xrightarrow{\psi} \mathcal{O}\left(-n_{0}\right)^{k_{0}} \rightarrow \mathcal{F} \rightarrow 0$.

An analytic GAGA: Serre's proof - the equivalence

Peoof of Serre's Théorème 3.

Choose a resolution $\mathcal{O}\left(-n_{1}\right)^{k_{1}} \xrightarrow{\psi} \mathcal{O}\left(-n_{0}\right)^{k_{0}} \rightarrow \mathcal{F} \rightarrow 0$. By Serre's Théorème 2 the homomorphism ψ is the analytification of an algebraic sheaf homomorphism ψ^{\prime}, so the cokernel \mathcal{F} of ψ is also the analytification of the cokernel of ψ^{\prime}.

