
Factorization of birational maps for qe schemes
in characteristic 0

AMS special session on Algebraic Geometry
joint work with M. Temkin (Hebrew University)

Dan Abramovich

Brown University

October 24, 2014

Abramovich (Brown) Factorization of birational maps October 24, 2014 1 / 22



Factorization of birational maps: varieties

Theorem (W lodarczyk, ℵ-Karu-Matsuki-W lodarczyk (2002))

Let φ : X1 → X2 be the blowing up of a coherent ideal sheaf I on a
variety X2 over a field of characteristic 0 and let U ⊂ X2 be the
complement of the support of I . Assume X1,X2 are regular. Then φ can
be factored, functorially for smooth surjective morphisms on X2, into a
sequence of blowings up and down of smooth centers disjoint from U:

X1 = V0
ϕ1 // V1

ϕ2 // . . .
ϕ`−1 // V`−1

ϕ` // V` = X2 .
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Factorization of birational maps: qe schemes

Theorem (ℵ-Temkin)

Let φ : X1 → X2 be the blowing up of a coherent ideal sheaf I on a qe
scheme X2 over a field of characteristic 0 and let U ⊂ X2 be the
complement of the support of I . Assume X1,X2 are regular. Then φ can
be factored, functorially for regular surjective morphisms on X2, into a
sequence of blowings up and down of regular centers disjoint from U:

X1 = V0
ϕ1 // V1

ϕ2 // . . .
ϕ`−1 // V`−1

ϕ` // V` = X2 .
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Regular morphisms and qe schemes

Definition

A morphism of schemes f : Y → X is said to be regular if it is (1) flat
and (2) all geometric fibers of f : X → Y are regular.

Definition

A locally noetherian scheme X is a qe scheme if:

for any scheme Y of finite type over X , the regular locus Yreg is
open; and

For any point x ∈ X , the completion morphism
Spec ÔX ,x → SpecOX ,x is a regular morphism.

Qe schemes are the natural world for resolution of singularities.
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Places where qe rings appear

A of finite type over a field or Z, and localizations.

A = the formal completion of the above.

A = O(X ), where X is an affinoid germ1 of a complex analytic space.

A = O(X ), where X is an affinoid Berkovich k-analytic space,

A = O(X ), where X is an affinoid rigid space over k .

In all these geometries we deduce factorization in characteristic 0 from
factorization over Spec A, which requires GAGA.

1

intersection with a small closed polydisc
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Factorization step 1: birational cobordism

We follow W lodarczyk’s original ideas

Given X1 = BlI (X2).

On B0 = P1 ×X2 consider I ′ = I + I0, where I0 is the defining ideal of
{0} × X2.

Set B1 = BlI ′B0. It contains X1 as the proper transform of {0} × X2,
as well as X2

Apply canonical resolution of singularities to B1, resulting in a regular
scheme B, projective over X2, with Gm action.

So far, this works for schemes.
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Factorization step 2: GIT

Equivariant embedding B ⊂ PX2(Ea1 ⊕ · · · ⊕ Eak ),

with ai < ai+1.

B �a1 Gm = X1, B �ak Gm = X2.

Denoting

Wai = B �ai Gm,

Wai+ = B �ai+ε Gm,

Wai− = B �ai−ε Gm

we have
Wai+ = W(ai+1)−

and a sequence

X1 Wa2− ϕ2−
$$

Wa3−ϕ2+

zz
ϕ3−

  

Wal−ϕ(l−1)+

~~

X2

Wa2 . . .
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Factorization step 3: local description

Bss
ai
→Wai is affine.

If b ∈ Bss
ai

is a fixed point, can diagonalize TBss
ai
,b.

Tangent eigenvectors lift to eigenfunctions.

Locally on Wai get equivariant Bss
ai
→ Adim+1.

This “chart” is regular and inert.
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Factorization step 4: Luna’s fundamental lemma

Definition (Special orbits)

An orbit Gm · x ⊂ Bss
ai

is special if it is closed in the fiber of Bss
ai
→Wai .

Definition (Inert morphisms)

The Gm-equivariant Bss
ai
→ Adim+1 is inert if (1) it takes special orbits to

special orbits and (2) it preserves inertia groups.

Theorem (Luna’s fundamental lemma, [Luna,Alper,ℵ-Temkin])

The regular and inert Gm-equivariant Bss
ai
→ Adim+1 is strongly

equivariant, namely

Bss
ai

= Adim+1 ×Adim+1�Gm
Wai .
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Factorization step 4: torification

This is compatible with Wai± →Wai .

Locally on Wi the transformations Wai± →Wai have toric charts.

The process of torification allows us to assume they are toroidal
transformations.

Toroidal factorization is known [W lodarczyk, Morelli,
ℵ-Matsuki-Rashid].
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Factorization in terms of ideals

Recall that X1 = BlI (X2).

Our factorization

X1 = V0
ϕ1 // V1

ϕ2 // . . .
ϕ`−1 // V`−1

ϕ` // V` = X2

gives a sequence of ideals Ji such that Vk = BlJi (X2), and smooth Zi such
that ϕ±1i is the blowing up of Zi .
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Transporting to other categories 1: covering

Assume X1 → X2 is a blowing up of an ideal in one of our categories:
local, formal, complex, Berkovich, rigid.

Say we have a finite cover X ′2 = tUα → X2 by patches such that
O(Uα) is a qe ring which determines Uα: ideals correspond to closed
sub-objects, coherent sheaves are acyclic, correspond to modules, etc.

In complex analysis, Uα = X2 ∩ D with D a closed polydisc with the
restricted sheaf [Frisch, Bambozzi].

Write X ′2 = tSpec O(Uα), write I ′ corresponding to I , and
X ′1 = BlI′X ′2, which is regular.

Factorization of X ′1 → X ′2 gives ideals J ′i and smooth
Zi ⊂ V ′k := BlJ ′i (X ′2).
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Transporting to other categories 2: GAGA

Theorem (Serre’s Théorème 3)

In each of these categories, the pullback functor

h∗ : Coh(Pr
X ′2

)→ Coh(Pr
X ′2

)

is an equivalence which induces isomorphisms on cohomology groups and
preserves regularity.
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Transporting to other categories 2: patching

X2 X ′2
h //coveroo X ′2

We had ideals J ′i ⊂ OX ′2 and smooth Zi ⊂ V ′k := BlJ ′i (X ′2) factoring
X ′1 → X ′2.

We get ideals J ′i ⊂ OX ′2
and smooth Z ′i ⊂ V ′k := BlJ′i (X ′2) factoring

X ′1 → X ′2.

Functoriality and Temkin’s trick ensure that these agree on X ′2×X2 X ′2.

Descent gives ideals Ji ⊂ OX2 and smooth Zi ⊂ Vk := BlJi (X2)
factoring X1 → X2, as needed.
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We had ideals J ′i ⊂ OX ′2 and smooth Zi ⊂ V ′k := BlJ ′i (X ′2) factoring
X ′1 → X ′2.

We get ideals J ′i ⊂ OX ′2
and smooth Z ′i ⊂ V ′k := BlJ′i (X ′2) factoring

X ′1 → X ′2.

Functoriality and Temkin’s trick ensure that these agree on X ′2×X2 X ′2.
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An analytic GAGA: statement

Theorem (Serre’s Théorème 3)

Let D be a closed polydisk, A = O(D). The pullback functor

h∗ : Coh(Pr
A)→ Coh(Pr

D)

is an equivalence which induces isomorphisms on cohomology groups.
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An analytic GAGA: lemmas

Lemma (Dimension Lemma)

We have H i (Pr
A,F) = H i (Pr

D , h
∗F) = 0 for i > r and all F .

Proof.

Use Çech covers of Pr
D by closed standard polydisks! ♠

Lemma (Structure Sheaf Lemma)

We have H i (Pr
A,O) = H i (Pr

D ,O) for all i .

Proof.

Use proper base change for Pr
D

π

��

// Pr
CPn

$

��
D // CPn.

♠
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An analytic GAGA: Serre’s proof - cohomology

Lemma (Twisting Sheaf Lemma)

We have H i (Pr
A,O(n)) = H i (Pr

D ,O(n)) for all i , r , n.

Proof.

Induction on r and 0→ OPr
D

(n − 1)→ OPr
D

(n)→ OPr−1
D

(n)→ 0

H i−1(Pr−1
A

,O(n)) //

��

H i (PrA,O(n − 1)) //

��

H i (PrA,O(n)) //

��

H i (Pr−1
A

,O(n))

��
H i−1(Pr−1

D
,O(n)) // H i (PrD ,O(n − 1)) // H i (PrD ,O(n)) // H i (Pr−1

D
,O(n)).

So the result for n is equivalent to the result for n − 1.
By the Structure Sheaf Lemma it holds for n = 0 so it holds for all n. ♠
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An analytic GAGA: Serre’s proof - cohomology

Proposition (Serre’s Théorème 1)

Let F be a coherent sheaf on Pr
A. The homomorphism

h∗ : H i (Pr
A,F)→ H i (Pr

D , h
∗F) is an isomorphism for all i .

Proof.

Descending induction on i for all coherent Pr
A modules, the case i > r

given by the Dimension Lemma.
Choose a resolution 0→ G → E → F → 0 with E a sum of twisting
sheaves. Flatness of h implies 0→ h∗G → h∗E → h∗F → 0 exact.

H i (PrA,G)
//

��

H i (PrA, E)
//

=

��

H i (PrA,F) //

��

H i+1(PrA,G)
//

=

��

H i+1(PrA, E)

=

��
H i (PrD ,G) // H i (PrD , E) // H i (PrD ,F) // H i+1(PrD ,G) // H i+1(PrD , E)

so the arrow H i (Pr
A,F)→ H i (Pr

D , h
∗F) surjective, and so also for G, and

finish by the 5 lemma. ♠
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Let F be a coherent sheaf on Pr
A. The homomorphism

h∗ : H i (Pr
A,F)→ H i (Pr

D , h
∗F) is an isomorphism for all i .

Proof.

Descending induction on i for all coherent Pr
A modules, the case i > r

given by the Dimension Lemma.
Choose a resolution 0→ G → E → F → 0 with E a sum of twisting
sheaves.

Flatness of h implies 0→ h∗G → h∗E → h∗F → 0 exact.

H i (PrA,G)
//

��

H i (PrA, E)
//

=

��

H i (PrA,F) //

��

H i+1(PrA,G)
//

=

��

H i+1(PrA, E)

=

��
H i (PrD ,G) // H i (PrD , E) // H i (PrD ,F) // H i+1(PrD ,G) // H i+1(PrD , E)

so the arrow H i (Pr
A,F)→ H i (Pr

D , h
∗F) surjective, and so also for G, and

finish by the 5 lemma. ♠

Abramovich (Brown) Factorization of birational maps October 24, 2014 18 / 22



An analytic GAGA: Serre’s proof - cohomology

Proposition (Serre’s Théorème 1)
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An analytic GAGA: Serre’s proof - Homomorphisms

Proposition (Serre’s Théorème 2)

For any coherent Pr
A-modules F ,G the natural homomorphism

HomPr
A

(F ,G)→ HomPr
D

(h∗F , h∗G)

is an isomorphism. In particular the functor h∗ is fully faithful.

Proof.

By Serre’s Théorème 1, suffices to show that
h∗HomPr

A
(F ,G)→ HomPr

D
(h∗F , h∗G) is an isomorphism.(

h∗HomPr
A

(F ,G)
)
x

= HomOx′ (Fx ′ ,Gx ′)⊗Ox′ Ox

= HomOx (Fx ′ ⊗Ox′ Ox ,Gx ′ ⊗Ox′ Ox)

= HomPr
X

(h∗F , h∗G)x .

by flatness. ♠
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An analytic GAGA: Serre’s proof - generation of twisted
sheaves

Proposition (Cartan’s Théorème A)

For any coherent sheaf F on Pr
D there is n0 so that F(n) is globally

generated whenever n > n0.

Proof.

Induction on r .
Suffices to generate stalk at x . Choose H 3 x , and get an exact sequence
0→ O(−1)→ O → OH → 0. This gives F(−1)

ϕ1→ F ϕ0→ FH → 0 which
breaks into

0→ G → F(−1)→ P → 0 and 0→ P → F → FH → 0,

where G and FH are coherent sheaves on H,
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Serre’s proof - generation of twisted sheaves (continued)

Proof of Cartan’s Théorème A, continued.

0→ G → F(−1)→ P → 0 and 0→ P → F → FH → 0,

so right terms in

H1(Pr
D ,F(n − 1))→ H1(Pr

D ,P(n))→ H2(H,G(n))

and
H1(Pr

D ,P(n))→ H1(Pr
D ,F(n))→ H1(H,FH(n))

vanish for large n. So h1(Pr
D ,F(n)) is descending, and when it stabilizes

H1(Pr
D ,P(n))→ H1(Pr

D ,F(n)) is bijective so
H0(Pr

X ,F(n))→ H0(H,FH(n)) is surjective.
Sections in H0(H,FH(n)) generate FH(n) by dimension induction,
and by Nakayama the result at x ∈ H follows.

♠
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An analytic GAGA: Serre’s proof - the equivalence

Peoof of Serre’s Théorème 3.

Choose a resolution O(−n1)k1
ψ→ O(−n0)k0 → F → 0.

By Serre’s Théorème 2 the homomorphism ψ is the analytification of an
algebraic sheaf homomorphism ψ′, so the cokernel F of ψ is also the
analytification of the cokernel of ψ′. ♠
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