Vojta's conjecture and level structures on abelian varieties

Dan Abramovich, Brown University
Joint work with Anthony Várilly-Alvarado and Keerthi Padapusi Pera

ICERM workshop on Birational Geometry and Arithmetic May 17, 2018

Torsion on elliptic curves

Following [Mazur 1977]. . .
Theorem (Merel, 1996)
Fix $d \in \mathbb{Z}_{>0}$. There is an integer $c=c(d)$ such that:
For all number fields k with $[k: \mathbb{Q}]=d$ and all elliptic curves E / k,

$$
\# E(k)_{\mathrm{tors}}<c .
$$

Mazur: $d=1$

Torsion on elliptic curves

Following [Mazur 1977]. . .
Theorem (Merel, 1996)
Fix $d \in \mathbb{Z}_{>0}$. There is an integer $c=c(d)$ such that:
For all number fields k with $[k: \mathbb{Q}]=d$ and all elliptic curves E / k,

$$
\# E(k)_{\mathrm{tors}}<c
$$

Mazur: $d=1$.

Torsion on elliptic curves

Following [Mazur 1977]...
Theorem (Merel, 1996)
Fix $d \in \mathbb{Z}_{>0}$. There is an integer $c=c(d)$ such that:
For all number fields k with $[k: \mathbb{Q}]=d$ and all elliptic curves E / k,

$$
\# E(k)_{\text {tors }}<c .
$$

Mazur: $d=1$.
What about higher dimension?
(Jump to theorem)

Torsion on abelian varieties

Theorem (Cadoret, Tamagawa 2012)
Let k be a field, finitely generated over \mathbb{Q}; let p be a prime.
Let $A \rightarrow S$ be an abelian scheme over a k-curve S.
There is an integer $c=c(A, S, k, p)$ such that

$$
\# A_{s}(k)\left[p^{\infty}\right] \leq c
$$

for all $s \in S(k)$.

Torsion on abelian varieties

Theorem (Cadoret, Tamagawa 2012)
Let k be a field, finitely generated over \mathbb{Q}; let p be a prime.
Let $A \rightarrow S$ be an abelian scheme over a k-curve S.
There is an integer $c=c(A, S, k, p)$ such that

$$
\# A_{s}(k)\left[p^{\infty}\right] \leq c
$$

for all $s \in S(k)$.
What about all torsion?

Torsion on abelian varieties

Theorem (Cadoret, Tamagawa 2012)
Let k be a field, finitely generated over \mathbb{Q}; let p be a prime.
Let $A \rightarrow S$ be an abelian scheme over a k-curve S.
There is an integer $c=c(A, S, k, p)$ such that

$$
\# A_{s}(k)\left[p^{\infty}\right] \leq c
$$

for all $s \in S(k)$.
What about all torsion?
What about all abelian varieties of fixed dimension together?

Main Theorem

Let A be a g-dimensional abelian variety over a number field k.

```
A full-level m structure on A is an isomorphism of k-group schemes
A[m]\stackrel{~}{->}(\mathbb{Z}/m\mathbb{Z}\mp@subsup{)}{}{g}\times(\mp@subsup{\mu}{m}{}\mp@subsup{)}{}{g}
Theorem (\aleph, V.-A., M. P. 2017)
Assume Vojta's conjecture.
Fix }g\in\mp@subsup{\mathbb{Z}}{>0}{}\mathrm{ and a number field }k\mathrm{ .
There is an integer mo = mo(k,g) such that:
For any m> mo there is no principally polarized abelian variety A/k of
dimension g}\mathrm{ with full-level m structure.
```


Main Theorem

Let A be a g-dimensional abelian variety over a number field k.
A full-level m structure on A is an isomorphism of k-group schemes

$$
A[m] \stackrel{\sim}{\rightarrow}(\mathbb{Z} / m \mathbb{Z})^{g} \times\left(\mu_{m}\right)^{g}
$$

Theorem (※, V.-A., M. P. 2017)
Assume $1 / o j t a ' s ~ c o n j e c t u r e . ~$
Fix $g \in \mathbb{Z}>0$ and a number field k.
There is an integer $m_{0}=m_{0}(k, g)$ such that:
For any $m>m_{0}$ there is no principally polarized abelian variety A / k of
dimension g with full-level m structure.

Main Theorem

Let A be a g-dimensional abelian variety over a number field k.
A full-level m structure on A is an isomorphism of k-group schemes

$$
A[m] \stackrel{\sim}{\rightarrow}(\mathbb{Z} / m \mathbb{Z})^{g} \times\left(\mu_{m}\right)^{g}
$$

Theorem (※, V.-A., M. P. 2017)

Assume Vojta's conjecture.
Fix $g \in \mathbb{Z}_{>0}$ and a number field k.
There is an integer $m_{0}=m_{0}(k, g)$ such that:
For any $m>m_{0}$ there is no principally polarized abelian variety A / k of dimension g with full-level m structure.

Main Theorem

Let A be a g-dimensional abelian variety over a number field k.
A full-level m structure on A is an isomorphism of k-group schemes

$$
A[m] \stackrel{\sim}{\rightarrow}(\mathbb{Z} / m \mathbb{Z})^{g} \times\left(\mu_{m}\right)^{g}
$$

Theorem (※, V.-A., M. P. 2017)

Assume Vojta's conjecture.
Fix $g \in \mathbb{Z}_{>0}$ and a number field k.
There is an integer $m_{0}=m_{0}(k, g)$ such that:
For any $m>m_{0}$ there is no principally polarized abelian variety A / k of dimension g with full-level m structure.

Why not torsion?

Main Theorem

Let A be a g-dimensional abelian variety over a number field k.
A full-level m structure on A is an isomorphism of k-group schemes

$$
A[m] \stackrel{\sim}{\rightarrow}(\mathbb{Z} / m \mathbb{Z})^{g} \times\left(\mu_{m}\right)^{g}
$$

Theorem (※, V.-A., M. P. 2017)

Assume Vojta's conjecture.
Fix $g \in \mathbb{Z}_{>0}$ and a number field k.
There is an integer $m_{0}=m_{0}(k, g)$ such that:
For any $m>m_{0}$ there is no principally polarized abelian variety A / k of dimension g with full-level m structure.

Why not torsion?
What's with Vojta?

Mazur's theorem revisited

- Consider the curves $\pi_{m}: X_{1}(m) \rightarrow X(1)$.
- $X_{1}(m)$ parametrizes elliptic curves with m-torsion.
- Observation: $g\left(X_{1}(m)\right) \xrightarrow[m \rightarrow \infty]{ }$ (quadratically)
- Faltings $(1983) \Longrightarrow X_{1}(m)(\mathbb{Q})$ finite for large m.
- Manin $(19691) \cdot{ }^{1} \Longrightarrow X_{1}\left(n^{k}\right)(\mathbb{D})$ finite for some k,
- and by Mordell-Weil $X_{1}\left(p^{k}\right)(\mathbb{Q})=\varnothing$ for large k
(Jump to Flexor-Oesterlé)

Mazur's theorem revisited

- Consider the curves $\pi_{m}: X_{1}(m) \rightarrow X(1)$.
- $X_{1}(m)$ parametrizes elliptic curves with m-torsion.
- Observation: $g\left(X_{1}(m)\right) \xrightarrow[m \rightarrow \infty]{\longrightarrow}$ (quadratically)
- Faltings $(1983) \Longrightarrow X_{1}(m)(\mathbb{Q})$ finite for large m.
- Manin (1969!): ${ }^{1} \Longrightarrow X_{1}\left(p^{k}\right)(\mathbb{Q})$ finite for some k,
- and by Mordell-Weil $X_{1}\left(p^{k}\right)(\mathbb{Q})=\varnothing$ for large k
(Jump to Flexor-Oesterlé)

Mazur's theorem revisited

- Consider the curves $\pi_{m}: X_{1}(m) \rightarrow X(1)$.
- $X_{1}(m)$ parametrizes elliptic curves with m-torsion.
- Observation: $g\left(X_{1}(m)\right) \xrightarrow[m \rightarrow \infty]{\longrightarrow}$ (quadratically)
- Faltings (1983) $\Longrightarrow X_{1}(m)(\mathbb{Q})$ finite for large m.
- Manin (1969!): ${ }^{1} \Longrightarrow X_{1}\left(p^{k}\right)(\mathbb{Q})$ finite for some k,
- and by Mordell-Weil $X_{1}\left(p^{k}\right)(\mathbb{Q})=\varnothing$ for large k
(Jump to Flexor-Oesterlé)

Mazur's theorem revisited

- Consider the curves $\pi_{m}: X_{1}(m) \rightarrow X(1)$.
- $X_{1}(m)$ parametrizes elliptic curves with m-torsion.
- Observation: $g\left(X_{1}(m)\right) \xrightarrow[m \rightarrow \infty]{\longrightarrow}$ (quadratically)
- Faltings $(1983) \Longrightarrow X_{1}(m)(\mathbb{Q})$ finite for large m.
- Manin (1969!): ${ }^{1} \Longrightarrow X_{1}\left(p^{k}\right)(\mathbb{Q})$ finite for some k,
- and by Mordell-Weil $X_{1}\left(p^{k}\right)(\mathbb{Q})=\varnothing$ for large k
(Jump to Flexor-Oesterlé)

Mazur's theorem revisited

- Consider the curves $\pi_{m}: X_{1}(m) \rightarrow X(1)$.
- $X_{1}(m)$ parametrizes elliptic curves with m-torsion.
- Observation: $g\left(X_{1}(m)\right) \xrightarrow[m \rightarrow \infty]{\longrightarrow}$ (quadratically)
- Faltings $(1983) \Longrightarrow X_{1}(m)(\mathbb{Q})$ finite for large m.
- Manin (1969!): ${ }^{1} \Longrightarrow X_{1}\left(p^{k}\right)(\mathbb{Q})$ finite for some k,
- and by Mordell-Weil $X_{1}\left(p^{k}\right)(\mathbb{Q})=\varnothing$ for large k

Mazur's theorem revisited

- Consider the curves $\pi_{m}: X_{1}(m) \rightarrow X(1)$.
- $X_{1}(m)$ parametrizes elliptic curves with m-torsion.
- Observation: $g\left(X_{1}(m)\right) \xrightarrow[m \rightarrow \infty]{\longrightarrow}$ (quadratically)
- Faltings $(1983) \Longrightarrow X_{1}(m)(\mathbb{Q})$ finite for large m.
- Manin (1969!): ${ }^{1} \Longrightarrow X_{1}\left(p^{k}\right)(\mathbb{Q})$ finite for some k,
- and by Mordell-Weil $X_{1}\left(p^{k}\right)(\mathbb{Q})=\varnothing$ for large k.

Mazur's theorem revisited

- Consider the curves $\pi_{m}: X_{1}(m) \rightarrow X(1)$.
- $X_{1}(m)$ parametrizes elliptic curves with m-torsion.
- Observation: $g\left(X_{1}(m)\right) \xrightarrow[m \rightarrow \infty]{\longrightarrow}$ (quadratically)
- Faltings $(1983) \Longrightarrow X_{1}(m)(\mathbb{Q})$ finite for large m.
- Manin (1969!): ${ }^{1} \Longrightarrow X_{1}\left(p^{k}\right)(\mathbb{Q})$ finite for some k,
- and by Mordell-Weil $X_{1}\left(p^{k}\right)(\mathbb{Q})=\varnothing$ for large k.

But there are infinitely many primes $>m_{0}$!
(Jump to Flexor-Oesterlé)

Aside: Cadoret-Tamagawa

- Cadoret-Tamagawa consider similarly $S_{1}(m) \rightarrow S$, with components $S_{1}(m)^{j}$.
- They show $g\left(S_{1}^{j}\left(p^{k}\right)\right) \longrightarrow \infty$
- unless they correspond to torsion on an isotrivial factor of A / S. - Again this suffices by Faltings and Mordell-Weil for their p^{k} theorem.

Aside: Cadoret-Tamagawa

- Cadoret-Tamagawa consider similarly $S_{1}(m) \rightarrow S$, with components $S_{1}(m)^{j}$.
- They show $g\left(S_{1}^{j}\left(p^{k}\right)\right) \longrightarrow \infty, \ldots$
- unless they correspond to torsion on an isotrivial factor of A / S.
- Again this suffices by Faltings and Mordell-Weil for their p^{k} theorem.

Aside: Cadoret-Tamagawa

- Cadoret-Tamagawa consider similarly $S_{1}(m) \rightarrow S$, with components $S_{1}(m)^{j}$.
- They show $g\left(S_{1}^{j}\left(p^{k}\right)\right) \longrightarrow \infty, \ldots$
- unless they correspond to torsion on an isotrivial factor of A / S.
- Again this suffices by Faltings and Mordell-Weil for their p^{k} theorem.

Aside: Cadoret-Tamagawa

- Cadoret-Tamagawa consider similarly $S_{1}(m) \rightarrow S$, with components $S_{1}(m)^{j}$.
- They show $g\left(S_{1}^{j}\left(p^{k}\right)\right) \longrightarrow \infty, \ldots$
- unless they correspond to torsion on an isotrivial factor of A / S.
- Again this suffices by Faltings and Mordell-Weil for their p^{k} theorem.

Is there an analogue for higher dimensional base?

Mazur's theorem revisited: Flexor-Oesterlé, Silverberg Proposition (Flexor-Oesterlé 1988, Silverberg 1992)

There is an integer $M=M(g)$ so that: Suppose $A(\mathbb{Q})[p] \neq\{0\}$, suppose q is a prime, and suppose $p>\left(1+\sqrt{q}^{M}\right)^{2 g}$. Then the reduction of A at q is "not even potentially good".

- p torsion reduced injectively moduo q.
- The reduction is not good because of Lang-Weil: there are just too many points!
- For potentially good reduction, there is good reduction after an extension of degree $<M$, so that follows too.

Remark:

- Flexor and Oesterlé proceed to show that $A B C$ implies uniform boundedness for elliptic curves.
- This is what we follow: Vojta gives a higher dimensional ABC
- Mazur proceeds in another way

Mazur's theorem revisited: Flexor-Oesterlé, Silverberg Proposition (Flexor-Oesterlé 1988, Silverberg 1992)

There is an integer $M=M(g)$ so that: Suppose $A(\mathbb{Q})[p] \neq\{0\}$, suppose q is a prime, and suppose $p>\left(1+\sqrt{q}^{M}\right)^{2 g}$. Then the reduction of A at q is

- p torsion reduced injectively moduo q.
- The reduction is not good because of Lang-Weil: there are just too many points!
- For potentially good reduction, there is good reduction after an extension of degree $<M$, so that follows too.
- Flexor and Oesterlé proceed to show that $A B C$ implies uniform boundedness for elliptic curves.
- This is what we follow: Vojta gives a higher dimensional ABC.
- Mazur proceeds in another way

Mazur's theorem revisited: Flexor-Oesterlé, Silverberg Proposition (Flexor-Oesterlé 1988, Silverberg 1992)

There is an integer $M=M(g)$ so that: Suppose $A(\mathbb{Q})[p] \neq\{0\}$, suppose q is a prime, and suppose $p>\left(1+\sqrt{q}^{M}\right)^{2 g}$. Then the reduction of A at q is "not even potentially good".

- p torsion reduced injectively moduo q.
- The reduction is not good because of Lang-Weil: there are just too many points!
- For potentially good reduction, there is good reduction after an extension of degree $<M$, so that follows too.
- Flexor and Oesterlé proceed to show that $A B C$ implies uniform boundedness for elliptic curves.
- This is what we follow: Vojta gives a higher dimensional ABC.
- Mazur proceeds in another way

Mazur's theorem revisited: Flexor-Oesterlé, Silverberg

Proposition (Flexor-Oesterlé 1988, Silverberg 1992)

There is an integer $M=M(g)$ so that: Suppose $A(\mathbb{Q})[p] \neq\{0\}$, suppose q is a prime, and suppose $p>\left(1+\sqrt{q}^{M}\right)^{2 g}$. Then the reduction of A at q is "not even potentially good".

- p torsion reduced injectively moduo q.
- The reduction is not good because of Lang-Weil: there are just too many points!
- For potentially good reduction, there is good reduction after an extension of degree $<M$, so that follows too.
- Flexor and Oesterlé proceed to show that $A B C$ implies uniform boundedness for elliptic curves.
- This is what we follow: Vojta gives a higher dimensional ABC
- Mazur proceeds in another way

Mazur's theorem revisited: Flexor-Oesterlé, Silverberg

Proposition (Flexor-Oesterlé 1988, Silverberg 1992)

There is an integer $M=M(g)$ so that: Suppose $A(\mathbb{Q})[p] \neq\{0\}$, suppose q is a prime, and suppose $p>\left(1+\sqrt{q}^{M}\right)^{2 g}$. Then the reduction of A at q is "not even potentially good".

- p torsion reduced injectively moduo q.
- The reduction is not good because of Lang-Weil: there are just too many points!
- For potentially good reduction, there is good reduction after an extension of degree $<M$, so that follows too.

Remark:

- Flexor and Oesterlé proceed to show that $A B C$ implies uniform boundedness for elliptic curves.

Mazur's theorem revisited: Flexor-Oesterlé, Silverberg

Proposition (Flexor-Oesterlé 1988, Silverberg 1992)

There is an integer $M=M(g)$ so that: Suppose $A(\mathbb{Q})[p] \neq\{0\}$, suppose q is a prime, and suppose $p>\left(1+\sqrt{q}^{M}\right)^{2 g}$. Then the reduction of A at q is "not even potentially good".

- p torsion reduced injectively moduo q.
- The reduction is not good because of Lang-Weil: there are just too many points!
- For potentially good reduction, there is good reduction after an extension of degree $<M$, so that follows too.

Remark:

- Flexor and Oesterlé proceed to show that $A B C$ implies uniform boundedness for elliptic curves.
- This is what we follow: Vojta gives a higher dimensional ABC.

Mazur's theorem revisited: Flexor-Oesterlé, Silverberg

Proposition (Flexor-Oesterlé 1988, Silverberg 1992)

There is an integer $M=M(g)$ so that: Suppose $A(\mathbb{Q})[p] \neq\{0\}$, suppose q is a prime, and suppose $p>\left(1+\sqrt{q}^{M}\right)^{2 g}$. Then the reduction of A at q is "not even potentially good".

- p torsion reduced injectively moduo q.
- The reduction is not good because of Lang-Weil: there are just too many points!
- For potentially good reduction, there is good reduction after an extension of degree $<M$, so that follows too.

Remark:

- Flexor and Oesterlé proceed to show that $A B C$ implies uniform boundedness for elliptic curves.
- This is what we follow: Vojta gives a higher dimensional ABC.
- Mazur proceeds in another way

Mazur's theorem revisited after Merel: Kolyvagin-Logachev, Bump-Friedberg-Hoffstein, Kamienny

The following suffices for Mazur's theorem:
Theorem
For all large $p, X_{1}(p)(\mathbb{Q})$ consists of cusps.

- [Merel] There are many weight-2 cusp forms f on $\Gamma_{0}(p)$ with analytic rank ord ${ }_{s=1} L(f, s)=0$.
- [KL, BFH 1990] The corresponding factor $J_{0}(p)_{f}$ has rank 0 .
- [Mazur, Kamienny 1982] The composite map $X_{1}(p) \rightarrow J_{0}(p)_{f}$ sending cusp to 0 is immersive at the cusp, even modulo small q.
- But reduction of torsion of $J_{0}(p)_{f}$ modulo q is injective.
- Combining with Flexor-Oesterlé we get the result.

Mazur's theorem revisited after Merel: Kolyvagin-Logachev, Bump-Friedberg-Hoffstein, Kamienny

The following suffices for Mazur's theorem:
Theorem
For all large $p, X_{1}(p)(\mathbb{Q})$ consists of cusps.

- [Merel] There are many weight-2 cusp forms f on $\Gamma_{0}(p)$ with analytic rank $\operatorname{ord}_{s=1} L(f, s)=0$.
- [KL, BFH 1990] The corresponding factor $J_{0}(p)_{f}$ has rank 0 .
- [Mazur, Kamienny 1982] The composite map $X_{1}(p) \rightarrow J_{0}(p)_{f}$ sending cusp to 0 is immersive at the cusp, even modulo small q.
- But reduction of torsion of $J_{0}(p)_{f}$ modulo q is injective.
- Combining with Flexor-Oesterlé we get the result.

Mazur's theorem revisited after Merel: Kolyvagin-Logachev, Bump-Friedberg-Hoffstein, Kamienny

The following suffices for Mazur's theorem:

Theorem

For all large $p, X_{1}(p)(\mathbb{Q})$ consists of cusps.

- [Merel] There are many weight-2 cusp forms f on $\Gamma_{0}(p)$ with analytic rank $\operatorname{ord}_{s=1} L(f, s)=0$.
- [KL, BFH 1990] The corresponding factor $J_{0}(p)_{f}$ has rank 0 .
- [Mazur, Kamienny 1982] The composite map $X_{1}(p) \rightarrow J_{0}(p)_{f}$ sending cusp to 0 is immersive at the cusp, even modulo small q.
- But reduction of torsion of $J_{0}(p)_{f}$ modulo q is injective.
- Combining with Flexor-Oesterlé we get the result.

Mazur's theorem revisited after Merel: Kolyvagin-Logachev, Bump-Friedberg-Hoffstein, Kamienny

The following suffices for Mazur's theorem:

Theorem

For all large $p, X_{1}(p)(\mathbb{Q})$ consists of cusps.

- [Merel] There are many weight-2 cusp forms f on $\Gamma_{0}(p)$ with analytic rank $\operatorname{ord}_{s=1} L(f, s)=0$.
- [KL, BFH 1990] The corresponding factor $J_{0}(p)_{f}$ has rank 0 .
- [Mazur, Kamienny 1982] The composite map $X_{1}(p) \rightarrow J_{0}(p)_{f}$ sending cusp to 0 is immersive at the cusp, even modulo small q.
- But reduction of torsion of $J_{0}(p)_{f}$ modulo q is injective.
- Combining with Flexor-Oesterlé we get the result.

Is there a replacement for $g>1$?

Mazur's theorem revisited after Merel: Kolyvagin-Logachev, Bump-Friedberg-Hoffstein, Kamienny

The following suffices for Mazur's theorem:

Theorem

For all large $p, X_{1}(p)(\mathbb{Q})$ consists of cusps.

- [Merel] There are many weight- 2 cusp forms f on $\Gamma_{0}(p)$ with analytic rank $\operatorname{ord}_{s=1} L(f, s)=0$.
- [KL, BFH 1990] The corresponding factor $J_{0}(p)_{f}$ has rank 0 .
- [Mazur, Kamienny 1982] The composite map $X_{1}(p) \rightarrow J_{0}(p)_{f}$ sending cusp to 0 is immersive at the cusp, even modulo small q.
- But reduction of torsion of $J_{0}(p)_{f}$ modulo q is injective.
- Combining with Flexor-Oesterlé we get the result.

Is there a replacement for $g>1$???

Mazur's theorem revisited after Merel: Kolyvagin-Logachev, Bump-Friedberg-Hoffstein, Kamienny

The following suffices for Mazur's theorem:

Theorem

For all large $p, X_{1}(p)(\mathbb{Q})$ consists of cusps.

- [Merel] There are many weight-2 cusp forms f on $\Gamma_{0}(p)$ with analytic rank $\operatorname{ord}_{s=1} L(f, s)=0$.
- [KL, BFH 1990] The corresponding factor $J_{0}(p)_{f}$ has rank 0 .
- [Mazur, Kamienny 1982] The composite map $X_{1}(p) \rightarrow J_{0}(p)_{f}$ sending cusp to 0 is immersive at the cusp, even modulo small q.
- But reduction of torsion of $J_{0}(p)_{f}$ modulo q is injective.
- Combining with Flexor-Oesterlé we get the result.

Is there a replacement for $g>1$???????

Main Theorem

Let A be a g-dimensional abelian variety over a number field k.
A full-level m structure on A is an isomorphism of k-group schemes

$$
A[m] \stackrel{\sim}{\rightarrow}(\mathbb{Z} / m \mathbb{Z})^{g} \times\left(\mu_{m}\right)^{g}
$$

Theorem (※, V.-A., M. P. 2017)
Assume Vojta's conjecture.
Fix $g \in \mathbb{Z}_{>0}$ and a number field k.
There is an integer $m_{0}=m_{0}(k, g)$ such that:
For any prime $p>m_{0}$ there is no (pp) abelian variety A / k of dimension g with full-level p structure.

Strategy

- $\widetilde{\mathscr{A}}_{g} \rightarrow \operatorname{Spec} \mathbb{Z}:=$ moduli stack of ppav's of dimension g.
- $\mathscr{A}_{g}(k)_{[m]}:=k$-rational points of \mathscr{A}_{g} corresponding to ppav's A / k admitting a full-level m structure.
- $\widetilde{\mathscr{A}}_{g}(k)_{[m]}=\pi_{m}\left(\widetilde{\mathscr{A}}_{g}{ }^{[m]}(k)\right)$,
where $\widetilde{\mathscr{A}}_{g}{ }^{[m]}$ is the space of ppav with full level.
- $W_{i}:=\bigcup_{p \geq i} \widetilde{\mathscr{A}}_{g}(k)_{[p]}$
- W_{i} is closed in $\widetilde{\mathscr{A}}_{r}$ and $W_{i} \supseteq W_{i+1}$.
- $\widetilde{\mathscr{A}}$ is Noetherian, so $W_{n}=W_{n+1}=\cdots$ for some $n>0$.
- Vojta for stacks $\Rightarrow W_{n}$ has dimension ≤ 0.
(Jump to Vojta)

Strategy

- $\widetilde{\mathscr{A}}_{g} \rightarrow \operatorname{Spec} \mathbb{Z}:=$ moduli stack of ppav's of dimension g.
- $\widetilde{\mathscr{A}}_{g}(k)_{[m]}:=k$-rational points of $\widetilde{\mathscr{A}}_{g}$ corresponding to ppav's A / k admitting a full-level m structure.
- $\widetilde{\mathscr{A}}_{g}(k)_{[m]}=\pi_{m}\left(\widetilde{\mathscr{A}}_{g}{ }^{[m]}(k)\right)$,
where $\widetilde{\mathscr{A}}_{g}{ }^{[m]}$ is the space of ppav with full level.
- $W_{i}:=\bigcup_{p \geq i} \widetilde{\mathscr{A}}_{g}(k)_{[p]}$
- W_{i} is closed in $\widetilde{\mathscr{A}}_{g}$ and $W_{i} \supseteq W_{i+1}$
- $\widetilde{\mathscr{A}}_{g}$ is Noetherian, so $W_{n}=W_{n+1}=\cdots$ for some $n>0$.
- Vojta for stacks $\Rightarrow W_{n}$ has dimension ≤ 0.
(Jump to Vojta)

Strategy

- $\widetilde{\mathscr{A}}_{g} \rightarrow \operatorname{Spec} \mathbb{Z}:=$ moduli stack of ppav's of dimension g.
- $\widetilde{\mathscr{A}}_{g}(k)_{[m]}:=k$-rational points of $\widetilde{\mathscr{A}}_{g}$ corresponding to ppav's A / k admitting a full-level m structure.
- $\widetilde{\mathscr{A}}_{g}(k)_{[m]}=\pi_{m}\left(\widetilde{\mathscr{A}}_{g}{ }^{[m]}(k)\right)$,
where $\widetilde{\mathscr{A}}_{g}{ }^{[m]}$ is the space of ppav with full level.
- $W_{i}:=\overline{\bigcup_{p \geq i} \widetilde{\mathscr{A}}_{g}(k)_{[p]}}$
- W_{i} is closed in $\widetilde{\mathscr{A}}_{g}$ and $W_{i} \supseteq W_{i+1}$
- $\widetilde{\mathscr{A}}_{g}$ is Noetherian, so $W_{n}=W_{n+1}=\cdots$ for some $n>0$.
- Vojta for stacks $\Rightarrow W_{n}$ has dimension ≤ 0.

Strategy

- $\widetilde{\mathscr{A}}_{g} \rightarrow \operatorname{Spec} \mathbb{Z}:=$ moduli stack of ppav's of dimension g.
- $\widetilde{\mathscr{A}}_{g}(k)_{[m]}:=k$-rational points of $\widetilde{\mathscr{A}}_{g}$ corresponding to ppav's A / k admitting a full-level m structure.
- $\widetilde{\mathscr{A}}_{g}(k)_{[m]}=\pi_{m}\left(\widetilde{\mathscr{A}}_{g}{ }^{[m]}(k)\right)$,
where $\widetilde{\mathscr{A}}_{g}{ }^{[m]}$ is the space of ppav with full level.
- $W_{i}:=\overline{\bigcup_{p \geq i} \widetilde{\mathscr{A}}_{g}(k)_{[p]}}$
- W_{i} is closed in $\widetilde{\mathscr{A}}_{g}$ and $W_{i} \supseteq W_{i+1}$.
- $\widetilde{\mathscr{A}}_{\mathrm{g}}$ is Noetherian, so $W_{n}=W_{n+1}=\cdots$ for some $n>0$.
- Vojta for stacks $\Rightarrow W_{n}$ has dimension ≤ 0.

Strategy

- $\widetilde{\mathscr{A}}_{g} \rightarrow \operatorname{Spec} \mathbb{Z}:=$ moduli stack of ppav's of dimension g.
- $\widetilde{\mathscr{A}}_{g}(k)_{[m]}:=k$-rational points of $\widetilde{\mathscr{A}}_{g}$ corresponding to ppav's A / k admitting a full-level m structure.
- $\widetilde{\mathscr{A}}_{g}(k)_{[m]}=\pi_{m}\left(\widetilde{\mathscr{A}}_{g}{ }^{[m]}(k)\right)$,
where $\widetilde{\mathscr{A}}_{g}{ }^{[m]}$ is the space of ppav with full level.
- $W_{i}:=\overline{\bigcup_{p \geq i} \widetilde{\mathscr{A}}_{g}(k)_{[p]}}$
- W_{i} is closed in $\widetilde{\mathscr{A}_{g}}$ and $W_{i} \supseteq W_{i+1}$.
- $\widetilde{\mathscr{A}}_{g}$ is Noetherian, so $W_{n}=W_{n+1}=\cdots$ for some $n>0$.

Strategy

- $\widetilde{\mathscr{A}}_{g} \rightarrow \operatorname{Spec} \mathbb{Z}:=$ moduli stack of ppav's of dimension g.
- $\widetilde{\mathscr{A}}_{g}(k)_{[m]}:=k$-rational points of $\widetilde{\mathscr{A}}_{g}$ corresponding to ppav's A / k admitting a full-level m structure.
- $\widetilde{\mathscr{A}}_{g}(k)_{[m]}=\pi_{m}\left(\widetilde{\mathscr{A}}_{g}{ }^{[m]}(k)\right)$,
where $\widetilde{\mathscr{A}}_{g}{ }^{[m]}$ is the space of ppav with full level.
- $W_{i}:=\overline{\bigcup_{p \geq i} \widetilde{\mathscr{A}}_{g}(k)_{[p]}}$
- W_{i} is closed in $\widetilde{\mathscr{A}_{g}}$ and $W_{i} \supseteq W_{i+1}$.
- $\widetilde{\mathscr{A}}_{g}$ is Noetherian, so $W_{n}=W_{n+1}=\cdots$ for some $n>0$.
- Vojta for stacks $\Rightarrow W_{n}$ has dimension ≤ 0.
(Jump to Vojta)

Dimension 0 case (with Flexor-Oesterlé)

- Suppose that $W_{n}=\overline{\bigcup_{p \geq n} \widetilde{\mathscr{A}}_{g}(k)_{[p]}}$ has dimension 0 .
- representing finitely many geometric isomorphism classes of ppav's.
- Fix a point in W_{n} that comes from some A / k.
- Pick a prime $\mathfrak{q} \in \operatorname{Spec} \mathscr{O}_{k}$ of potentially good reduction for A.
- Twists of A with full-level p structure ($p>2 ; \mathfrak{q} \nmid p$) have good reduction at q.
- p-torsion injects modulo $\mathfrak{q} \Longrightarrow p \leq\left(1+N \mathfrak{q}^{1 / 2}\right)^{2}$.

Dimension 0 case (with Flexor-Oesterlé)

- Suppose that $W_{n}=\overline{\bigcup_{p \geq n} \widetilde{\mathscr{A}}_{g}(k)_{[p]}}$ has dimension 0 .
- representing finitely many geometric isomorphism classes of ppav's.
- Fix a point in W_{n} that comes from some A / k.
- Pick a prime $\mathfrak{q} \in \operatorname{Spec} \mathscr{O}_{k}$ of potentially good reduction for A.
- Twists of A with full-level p structure ($p>2 ; \mathfrak{q} \nmid p$) have good reduction at \mathfrak{q}.

Dimension 0 case (with Flexor-Oesterlé)

- Suppose that $W_{n}=\overline{\bigcup_{p \geq n} \widetilde{\mathscr{A}}_{g}(k)_{[p]}}$ has dimension 0 .
- representing finitely many geometric isomorphism classes of ppav's.
- Fix a point in W_{n} that comes from some A / k.
- Pick a prime $\mathfrak{q} \in \operatorname{Spec} \mathscr{O}_{k}$ of potentially good reduction for A.
- Twists of A with full-level p structure ($p>2 ; \mathfrak{q} \nmid p$) have good reduction at \mathfrak{q}.
- p-torsion injects modulo $\mathfrak{q} \Longrightarrow p \leq\left(1+N \mathfrak{q}^{1 / 2}\right)^{2}$.

Dimension 0 case (with Flexor-Oesterlé)

- Suppose that $W_{n}=\overline{\bigcup_{p \geq n} \widetilde{\mathscr{A}}_{g}(k)_{[p]}}$ has dimension 0 .
- representing finitely many geometric isomorphism classes of ppav's.
- Fix a point in W_{n} that comes from some A / k.
- Pick a prime $\mathfrak{q} \in \operatorname{Spec} \mathscr{O}_{k}$ of potentially good reduction for A.
- Twists of A with full-level p structure $(p>2 ; \mathfrak{q} \nmid p)$ have good reduction at \mathfrak{q}.
- p-torsion injects modulo $\mathfrak{q} \Longrightarrow p \leq\left(1+N \mathfrak{q}^{1 / 2}\right)^{2}$.

There are other approaches!

Towards Vojta's conjecture

- k a number field; S a finite set of places containing infinite places.
- $(\mathscr{X}, \mathscr{D})$ a pair with:
- $\mathscr{X} \rightarrow \operatorname{Spec} \mathscr{O}_{k, S}$ a smooth proper morphism of schemes;
- \mathscr{D} a fiber-wise normal crossings divisor on \mathscr{X}
$(X, D):=$ the generic fiber of $(\mathscr{X}, \mathscr{D}) ; \mathscr{D}=\sum_{i} \mathscr{D}_{i}$.
- We view $x \in \mathscr{X}(\bar{k})$ as a point of $\mathscr{X}\left(\mathscr{O}_{k(x)}\right)$, or a scheme $\mathscr{T}_{x}:=\operatorname{Spec} \mathscr{O}_{k(x)} \rightarrow \mathscr{X}$

Towards Vojta's conjecture

- k a number field; S a finite set of places containing infinite places.
- $(\mathscr{X}, \mathscr{D})$ a pair with:
- $\mathscr{X} \rightarrow \operatorname{Spec} \mathscr{O}_{k, S}$ a smooth proper morphism of schemes;
- \mathscr{D} a fiber-wise normal crossings divisor on \mathscr{X}.
$(X, D):=$ the generic fiber of $(\mathscr{X}, \mathscr{D}) ; \mathscr{D}=\sum_{i} \mathscr{D}_{i}$.

Towards Vojta's conjecture

- k a number field; S a finite set of places containing infinite places.
- $(\mathscr{X}, \mathscr{D})$ a pair with:
- $\mathscr{X} \rightarrow \operatorname{Spec} \mathscr{O}_{k, S}$ a smooth proper morphism of schemes;
- \mathscr{D} a fiber-wise normal crossings divisor on \mathscr{X}.
$(X, D):=$ the generic fiber of $(\mathscr{X}, \mathscr{D}) ; \mathscr{D}=\sum_{i} \mathscr{D}_{i}$.
- We view $x \in \mathscr{X}(\bar{k})$ as a point of $\mathscr{X}\left(\mathscr{O}_{k(x)}\right)$,

Towards Vojta's conjecture

- k a number field; S a finite set of places containing infinite places.
- $(\mathscr{X}, \mathscr{D})$ a pair with:
- $\mathscr{X} \rightarrow \operatorname{Spec} \mathscr{O}_{k, S}$ a smooth proper morphism of schemes;
- \mathscr{D} a fiber-wise normal crossings divisor on \mathscr{X}.
$(X, D):=$ the generic fiber of $(\mathscr{X}, \mathscr{D}) ; \mathscr{D}=\sum_{i} \mathscr{D}_{i}$.
- We view $x \in \mathscr{X}(\bar{k})$ as a point of $\mathscr{X}\left(\mathscr{O}_{k(x)}\right)$, or a scheme $\mathscr{T}_{x}:=\operatorname{Spec} \mathscr{O}_{k(x)} \rightarrow \mathscr{X}$.

Towards Vojta: counting functions and discriminants

Definition

For $x \in \mathscr{X}(\bar{k})$ with residue field $k(x)$ define the truncated counting function

$$
N_{k}^{(1)}(D, x)=\frac{1}{[k(x): k]} \sum_{\substack{q \in S p e c o O_{k, S} \\
\left(\mathscr{O} \mid ⿹_{X}\right)_{9} \neq \mathscr{D}}} \log \underbrace{|\kappa(\mathfrak{q})|}_{\begin{array}{c}
\text { size of } \\
\text { residue field }
\end{array}} .
$$

and the relative logarithmic discriminant

Towards Vojta: counting functions and discriminants

Definition

For $x \in \mathscr{X}(\bar{k})$ with residue field $k(x)$ define the truncated counting function

$$
N_{k}^{(1)}(D, x)=\frac{1}{[k(x): k]} \sum_{\substack{q \in S p e c \\
O_{k}, S \\
\left(\mathscr{D} \mid \sigma_{x}\right)_{\mathfrak{q}} \neq \varnothing}} \log \underbrace{|\kappa(\mathfrak{q})|}_{\begin{array}{c}
\text { size of } \\
\text { residue field }
\end{array}} .
$$

and the relative logarithmic discriminant

$$
\begin{aligned}
d_{k}(k(x)) & =\frac{1}{[k(x): k]} \log \left|\operatorname{Disc} \mathscr{O}_{k(x)}\right|-\log \left|\operatorname{Disc} \mathscr{O}_{k}\right| \\
& =\frac{1}{[k(x): k]} \operatorname{deg} \Omega_{\mathscr{O}_{k(x)} / \mathscr{O}_{k}} .
\end{aligned}
$$

Vojta's conjecture

Conjecture (Vojta c. 1984; 1998)
X a smooth projective variety over a number field k.
D a normal crossings divisor on $X ; H$ a big line bundle on X.
Fix a positive integer r and $\delta>0$.
There is a proper Zariski closed $Z \subset X$ containing D such that

$$
N_{X}^{(1)}(D, x)+d_{k}(k(x)) \geq h_{K_{X}+D}(x)-\delta h_{H}(x)-O_{r}(1)
$$

for all $x \in X(\bar{k})-Z(\bar{k})$ with $[k(x): k] \leq r$.

Vojta's conjecture

Conjecture (Vojta c. 1984; 1998)
X a smooth projective variety over a number field k.
D a normal crossings divisor on $X ; H$ a big line bundle on X.
Fix a positive integer r and $\delta>0$.
There is a proper Zariski closed $Z \subset X$ containing D such that

$$
N_{X}^{(1)}(D, x)+d_{k}(k(x)) \geq h_{K_{x}+D}(x)-\delta h_{H}(x)-O_{r}(1)
$$

for all $x \in X(\bar{k})-Z(\bar{k})$ with $[k(x): k] \leq r$.

Vojta's conjecture

Conjecture (Vojta c. 1984; 1998)
X a smooth projective variety over a number field k.
D a normal crossings divisor on $X ; H$ a big line bundle on X.
Fix a positive integer r and $\delta>0$.
There is a proper Zariski closed $Z \subset X$ containing D such that

$$
N_{X}^{(1)}(D, x)+d_{k}(k(x)) \geq h_{K_{x}+D}(x)-\delta h_{H}(x)-O_{r}(1)
$$

for all $x \in X(\bar{k}) \backslash Z(\bar{k})$ with $[k(x): k] \leq r$.
$d_{k}(k(x))$ measure failure of being in $\mathscr{X}(k)$

Vojta's conjecture

Conjecture (Vojta c. 1984; 1998)
X a smooth projective variety over a number field k.
D a normal crossings divisor on $X ; H$ a big line bundle on X.
Fix a positive integer r and $\delta>0$.
There is a proper Zariski closed $Z \subset X$ containing D such that

$$
N_{X}^{(1)}(D, x)+d_{k}(k(x)) \geq h_{K_{X}+D}(x)-\delta h_{H}(x)-O_{r}(1)
$$

for all $x \in X(\bar{k}) \backslash Z(\bar{k})$ with $[k(x): k] \leq r$.
$d_{k}(k(x))$ measure failure of being in $\mathscr{X}(k)$
$N_{X}^{(1)}(D, x)$ measure failure of being in $\mathscr{X}^{0}\left(\mathscr{O}_{k}\right)=(\mathscr{X} \backslash \mathscr{D})\left(\mathscr{O}_{k}\right)$

Vojta's conjecture: special cases

- $D=\varnothing ; H=K X ; r=1 ; X$ of general type:

Lang's conjecture: $X(k)$ not Zariski dense.

- $H=K_{X}(D) ; r=1 ; S$ a finite set of places ; (X, D) of log general type: Lang-Vojta conjecture: $\mathscr{X}^{0}\left(\mathscr{O}_{k, S}\right)$ not Zariski dense.
- $X=\mathbb{P}^{1} ; r=1 ; D=\{0,1, \infty\}$: Masser-Oesterlé's $A B C$ conjecture.

Vojta's conjecture: special cases

- $D=\varnothing ; H=K_{X} ; r=1 ; X$ of general type: Lang's conjecture: $X(k)$ not Zariski dense.
- $H=K_{X}(D) ; r=1 ; S$ a finite set of places ; (X, D) of log general type: Lang-Vojta conjecture: $\mathscr{X}^{0}\left(\mathscr{O}_{k, S}\right)$ not Zariski dense. - $X=\mathbb{P}^{1} ; r=1 ; D=\{0,1, \infty\}$: Masser-Oesterlé's $A B C$ conjecture.

Vojta's conjecture: special cases

- $D=\varnothing ; H=K_{X} ; r=1 ; X$ of general type:

Lang's conjecture: $X(k)$ not Zariski dense.

- $H=K_{X}(D) ; r=1 ; S$ a finite set of places ; (X, D) of log general type: Lang-Vojta conjecture: $\mathscr{X}^{0}\left(\mathscr{O}_{k, S}\right)$ not Zariski dense.

Vojta's conjecture: special cases

- $D=\varnothing ; H=K_{X} ; r=1 ; X$ of general type:

Lang's conjecture: $X(k)$ not Zariski dense.

- $H=K_{X}(D) ; r=1 ; S$ a finite set of places ; (X, D) of log general type: Lang-Vojta conjecture: $\mathscr{X}^{0}\left(\mathscr{O}_{k, S}\right)$ not Zariski dense.
- $X=\mathbb{P}^{1} ; r=1 ; D=\{0,1, \infty\}$: Masser-Oesterlé's $A B C$ conjecture.

Extending Vojta to DM stacks

- Recall: Vojta \Rightarrow Lang.
- Example: $X=\mathbb{P}^{2}(\sqrt{C})$, where C a smooth curve of degree >6.
- Then $K_{X} \sim \mathscr{O}(d / 2-3)$ is big, so X of general type, but $X(k)$ is dense.
- The point is that a rational point might still fail to be integral: it may have "potentially good reduction" but not "good reduction"!
- The correct form of Lang's conjecture is: if X is of general type then $\mathscr{X}\left(\mathscr{O}_{k, S}\right)$ is not Zariski-dense.

We need to account that even rational
points may be ramified.

- Heights and intersection numbers are defined as usual.
- We must define the discriminant of a point $x \in X(k)$.

Extending Vojta to DM stacks

- Recall: Vojta \Rightarrow Lang.
- Example: $X=\mathbb{P}^{2}(\sqrt{C})$, where C a smooth curve of degree >6.
- Then $K_{X} \sim \mathscr{O}(d / 2-3)$ is big, so X of general type, but $X(k)$ is dense.
- The point is that a rational point might still fail to be integral: it may have "potentially good reduction" but not "good reduction"!
- The correct form of Lang's conjecture is: if X is of general type then $\mathscr{X}\left(\mathscr{O}_{k, S}\right)$ is not Zariski-dense.

We need to account that even rational points may be ramified.

- Heights and intersection numbers are defined as usual.
- We must define the discriminant of a point $x \in X(k)$.

Extending Vojta to DM stacks

- Recall: Vojta \Rightarrow Lang.
- Example: $X=\mathbb{P}^{2}(\sqrt{C})$, where C a smooth curve of degree >6.
- Then $K_{X} \sim \mathscr{O}(d / 2-3)$ is big, so X of general type, but $X(k)$ is dense.
- The point is that a rational point might still fail to be integral: it may have "potentially good reduction" but not "good reduction"! $\mathscr{X}\left(\mathscr{O}_{k, S}\right)$ is not Zariski-dense.

We need to account that even rational

Extending Vojta to DM stacks

- Recall: Vojta \Rightarrow Lang.
- Example: $X=\mathbb{P}^{2}(\sqrt{C})$, where C a smooth curve of degree >6.
- Then $K_{X} \sim \mathscr{O}(d / 2-3)$ is big, so X of general type, but $X(k)$ is dense.
- The point is that a rational point might still fail to be integral: it may have "potentially good reduction" but not "good reduction"!
- The correct form of Lang's conjecture is: if X is of general type then $\mathscr{X}\left(\mathscr{O}_{k, S}\right)$ is not Zariski-dense.
What about a quantitative version? We need to account that even rational points may be ramified.
- Heights and intersection numbers are defined as usual.
- We must define the discriminant of a point $x \in X(k)$.

Extending Vojta to DM stacks

- Recall: Vojta \Rightarrow Lang.
- Example: $X=\mathbb{P}^{2}(\sqrt{C})$, where C a smooth curve of degree >6.
- Then $K_{X} \sim \mathscr{O}(d / 2-3)$ is big, so X of general type, but $X(k)$ is dense.
- The point is that a rational point might still fail to be integral: it may have "potentially good reduction" but not "good reduction"!
- The correct form of Lang's conjecture is: if X is of general type then $\mathscr{X}\left(\mathscr{O}_{k, S}\right)$ is not Zariski-dense.
What about a quantitative version? We need to account that even rational points may be ramified.
- Heights and intersection numbers are defined as usual.
- We must define the discriminant of a point $x \in X(k)$.

Discriminant of a rational point

- $\mathscr{X} \rightarrow \operatorname{Spec} \mathscr{O}_{k, S}$ smooth proper, \mathscr{X} a DM stack.
- For $x \in \mathscr{X}(\bar{k})$ with residue field $k(x)$, take Zariski closure and normalization of its image.
- Get a morphism $\mathscr{T}_{x} \rightarrow \mathscr{X}$, with \mathscr{T}_{x} a normal stack with coarse moduli scheme Spec $_{6} \mathscr{O}_{k}(x), S$.
- The relative logarithmic discriminant is

$$
d_{k}\left(\mathscr{T}_{x}\right)=\frac{1}{\operatorname{deg} \mathscr{T}_{x} / \sigma_{k}} \operatorname{deg} \Omega_{\mathscr{T}_{x} / \sigma_{k}}
$$

Discriminant of a rational point

- $\mathscr{X} \rightarrow \operatorname{Spec} \mathscr{O}_{k, S}$ smooth proper, \mathscr{X} a DM stack.
- For $x \in \mathscr{X}(\bar{k})$ with residue field $k(x)$, take Zariski closure and normalization of its image.
- Get a morphism $\mathscr{T}_{x} \rightarrow \mathscr{X}$, with \mathscr{T}_{x} a normal stack with coarse moduli scheme Spec $\mathscr{O}_{k(x), s}$.

Discriminant of a rational point

- $\mathscr{X} \rightarrow \operatorname{Spec} \mathscr{O}_{k, S}$ smooth proper, \mathscr{X} a DM stack.
- For $x \in \mathscr{X}(\bar{k})$ with residue field $k(x)$, take Zariski closure and normalization of its image.
- Get a morphism $\mathscr{T}_{x} \rightarrow \mathscr{X}$, with \mathscr{T}_{x} a normal stack with coarse moduli scheme $\operatorname{Spec}^{\mathscr{O}_{k(x), s}}$. $^{\text {. }}$
- The relative logarithmic discriminant is

$$
d_{k}\left(\mathscr{T}_{x}\right)=\frac{1}{\operatorname{deg} \mathscr{T}_{x} / \mathscr{O}_{k}} \operatorname{deg} \Omega_{\mathscr{T}_{x} / \mathscr{O}_{k}} .
$$

Vojta's conjecture for stacks

Conjecture

k number field; S a finite set of places (including infinite ones).
$\mathscr{X} \rightarrow \operatorname{Spec} \mathscr{O}_{k, S}$ a smooth proper DM stack.
$X=\mathscr{X}_{k}$ generic fiber (assume irreducible)
\underline{X} coarse moduli of X; assume projective with big line bundle H.
$\mathscr{D} \subseteq \mathscr{X}$ NC divisor with generic fiber D.
Fix a positive integer r and $\delta>0$.
There is a proper Zariski closed $Z \subset X$ containing D such that

$$
n_{1}(1)(0,)^{2}+d(\sigma) \geq 1 K_{K x+D}(x)-\delta h_{H}(x)-O(1)
$$

Vojta's conjecture for stacks

Conjecture

k number field; S a finite set of places (including infinite ones).
$\mathscr{X} \rightarrow \operatorname{Spec} \mathscr{O}_{k, S}$ a smooth proper DM stack.
$X=\mathscr{X}_{k}$ generic fiber (assume irreducible)
\underline{X} coarse moduli of X; assume projective with big line bundle H.
$\mathscr{D} \subseteq \mathscr{X}$ NC divisor with generic fiber D.
Fix a positive integer r and $\delta>0$.
There is a proper Zariski closed $Z \subset X$ containing D such that

$$
N_{x}^{(1)}(D, x)+d_{k}\left(\mathscr{T}_{x}\right) \geq h_{K_{x}+D}(x)-\delta h_{H}(x)-O(1)
$$

for all $x \in X(\bar{k})-Z(\bar{k})$ with $[k(x): k] \leq r$.

Vojta is flexible

Proposition (※, V.-A. 2017)

Vojta for DM stacks follows from Vojta for schemes.
Key: Vojta showed that Vojta's conjecture is compatible with taking branched covers.

Droposition (Kresch-Vistoli)

- There is a finite flat surjective morphism $\pi: Y \rightarrow \mathscr{X}$
- with Y a smooth projective irreducible scheme
- and $D_{Y}:=\pi^{*} \mathscr{D}$ a $N C$ divisor.

Vojta for $Y \Longrightarrow$ Vojta for X.

Vojta is flexible

Proposition (※, V.-A. 2017)

Vojta for DM stacks follows from Vojta for schemes.
Key: Vojta showed that Vojta's conjecture is compatible with taking branched covers.

Proposition (Kresch-Vistoli)

- There is a finite flat surjective morphism $\pi: Y \rightarrow \mathscr{X}$
- with Y a smooth projective irreducible scheme
- and $D_{Y}:=\pi^{*} \mathscr{D}$ a $N C$ divisor.

Vojta for $Y \Longrightarrow$ Vojta for X.

Completing the proof of the Main Theorem

Recall:

$$
W_{i}:=\overline{\bigcup_{p \geq i} \widetilde{\mathscr{A}}_{g}(k)_{[p]}}
$$

- and $W_{n}=W_{n+1}=\cdots$ for some $n>0$.
- Want to show: $\operatorname{dim} W_{n} \leq 0$. Proceed by contradiction.
- Let X is an irreducible positive dimensional component of W_{n}
- $X^{\prime} \rightarrow X$ a resolution of singularities.
- $X^{\prime} \subseteq \bar{X}^{\prime}$ smooth compactification with $D:=\bar{X}^{\prime}-X$ NC divisor.
- Pick model $(\mathscr{X}, \mathscr{D})$ of $\left(\bar{X}^{\prime}, D\right)$ over Spec $\mathscr{O}_{k, S}$ (Olsson)

Completing the proof of the Main Theorem

Recall:

$$
W_{i}:=\overline{\bigcup_{p \geq i} \widetilde{\mathscr{A}}_{g}(k)_{[p]}}
$$

- and $W_{n}=W_{n+1}=\cdots$ for some $n>0$.
- Want to show: $\operatorname{dim} W_{n} \leq 0$. Proceed by contradiction.
- Let X is an irreducible positive dimensional component of W_{n}
- $X^{\prime} \rightarrow X$ a resolution of singularities.
- $X^{\prime} \subset \bar{X}^{\prime}$ smonth comnactification with $D:=\bar{X}^{\prime} \times X$ NC divisor.
- Pick model $(\mathscr{X}, \mathscr{D})$ of $\left(\bar{X}^{\prime}, D\right)$ over Spec $\mathscr{O}_{k, S}$ (Olsson)

Completing the proof of the Main Theorem

Recall:

$$
W_{i}:=\overline{\bigcup_{p \geq i} \widetilde{\mathscr{A}}_{g}(k)_{[p]}}
$$

- and $W_{n}=W_{n+1}=\cdots$ for some $n>0$.
- Want to show: $\operatorname{dim} W_{n} \leq 0$. Proceed by contradiction.
- Let X is an irreducible positive dimensional component of W_{n}.
- $X^{\prime} \rightarrow X$ a resolution of singularities.
- $X^{\prime} \subseteq \bar{X}^{\prime}$ smooth compactification with $D:=\bar{X}^{\prime}-X$ NC divisor.
- Pick model $(\mathscr{X}, \mathscr{D})$ of $\left(\bar{X}^{\prime}, D\right)$ over $\operatorname{Spec} \mathscr{O}_{k, S}$ (Olsson)

Completing the proof of the Main Theorem

Recall:

$$
W_{i}:=\overline{\bigcup_{p \geq i} \widetilde{\mathscr{A}}_{g}(k)_{[p]}}
$$

- and $W_{n}=W_{n+1}=\cdots$ for some $n>0$.
- Want to show: $\operatorname{dim} W_{n} \leq 0$. Proceed by contradiction.
- Let X is an irreducible positive dimensional component of W_{n}.
- $X^{\prime} \rightarrow X$ a resolution of singularities.
- $X^{\prime} \subseteq \bar{X}^{\prime}$ smooth compactification with $D:=\bar{X}^{\prime}-X$ NC divisor.
- Pick model $(\mathscr{X}, \mathscr{D})$ of $\left(\bar{X}^{\prime}, D\right)$ over $\operatorname{Spec} \mathscr{O}_{k, S}$ (Olsson)

Birational geometry

- [Zuo 2000] $K_{\bar{X}^{\prime}}+D$ is big.
- Remark [Brunebarbe 2017]:

As soon as $m>12 g$, every subvariety of $\mathscr{A}_{g}^{[m]}$ is of general type. Uses the fact that $\mathscr{A}_{g}^{[m]} \rightarrow \mathscr{A}_{g}$ is highly ramified along the boundary. Implies a Manin-type result for full [p^{r}]-levels.

- Taking $H=K_{\bar{x}^{\prime}}+D$ get by Northcott an observation on the right hand side of Vojta's conjecture

$$
N_{X}^{(1)}(D, x)+d_{k}\left(\mathscr{T}_{x}\right) \geq
$$

Birational geometry

- [Zuo 2000] $K_{\bar{X}^{\prime}}+D$ is big.
- Remark [Brunebarbe 2017]:

As soon as $m>12 g$, every subvariety of $\mathscr{A}_{g}^{[m]}$ is of general type. Uses the fact that $\mathscr{A}_{g}^{[m]} \rightarrow \mathscr{A}_{g}$ is highly ramified along the boundary. Implies a Manin-type result for full [p^{r}]-levels.

- Can one prove a result for torsion rather than full level?
- Taking $H=K_{\bar{x}^{\prime}}+D$ get by Northcott an observation on the right hand side of Vojta's conjecture

$$
\begin{equation*}
N_{X}^{(1)}(D, x)+d_{k}\left(\mathscr{T}_{x}\right) \geq \tag{1}
\end{equation*}
$$

Birational geometry

- [Zuo 2000] $K_{\bar{X}^{\prime}}+D$ is big.
- Remark [Brunebarbe 2017]:

As soon as $m>12 g$, every subvariety of $\mathscr{A}_{g}^{[m]}$ is of general type. Uses the fact that $\mathscr{A}_{g}^{[m]} \rightarrow \mathscr{A}_{g}$ is highly ramified along the boundary. Implies a Manin-type result for full [p^{r}]-levels.

- Can one prove a result for torsion rather than full level?
- Taking $H=K_{\bar{x}^{\prime}}+D$ get by Northcott an observation on the right hand side of Vojta's conjecture

$$
N_{X}^{(1)}(D, x)+d_{k}\left(\mathscr{T}_{x}\right) \geq \underbrace{h_{K_{\bar{x}^{\prime}+D}}(x)-\delta h_{H}(x)}_{\text {large for small } \delta \text { away from some } Z}-O(1)
$$

Key Lemma

$X(k)_{[p]}=k$-rational points of X corresponding to ppav's A / k admitting a full-level p structure.

$$
d_{k}\left(\mathscr{T}_{x}\right) \leq \epsilon_{2} h_{D}(x)+O(1) .
$$

Note: $h_{D} \ll h_{H}$ outside some Z.

 Vojta gives, outside some Z,

Key Lemma

$X(k)_{[p]}=k$-rational points of X corresponding to ppav's A / k admitting a full-level p structure.

Lemma

Fix $\epsilon_{1}, \epsilon_{2}>0$. For all $p \gg 0$ and $x \in X(k)_{[p]}$, we have
(1)

$$
N_{X}^{(1)}(D, x) \leq \epsilon_{1} h_{D}(x)+O(1)
$$

and
(1)

$$
d_{k}\left(\mathscr{T}_{x}\right) \leq \epsilon_{2} h_{D}(x)+O(1) .
$$

\square

Key Lemma

$X(k)_{[p]}=k$-rational points of X corresponding to ppav's A / k admitting a full-level p structure.

Lemma

Fix $\epsilon_{1}, \epsilon_{2}>0$. For all $p \gg 0$ and $x \in X(k)_{[p]}$, we have
(1)

$$
N_{X}^{(1)}(D, x) \leq \epsilon_{1} h_{D}(x)+O(1)
$$

and
(1)

$$
d_{k}\left(\mathscr{T}_{x}\right) \leq \epsilon_{2} h_{D}(x)+O(1) .
$$

Note: $h_{D} \ll h_{H}$ outside some Z.
Vojta gives, outside some Z,
giving finiteness outside this Z by Northcott.

Key Lemma

$X(k)_{[p]}=k$-rational points of X corresponding to ppav's A / k admitting a full-level p structure.

Lemma

Fix $\epsilon_{1}, \epsilon_{2}>0$. For all $p \gg 0$ and $x \in X(k)_{[p]}$, we have
(1)

$$
N_{X}^{(1)}(D, x) \leq \epsilon_{1} h_{D}(x)+O(1)
$$

and
(1)

$$
d_{k}\left(\mathscr{T}_{x}\right) \leq \epsilon_{2} h_{D}(x)+O(1) .
$$

Note: $h_{D} \ll h_{H}$ outside some Z.
Vojta gives, outside some Z,
$h_{H}(x) \ll N_{X}^{(1)}(D, x)+d_{k}\left(\mathscr{T}_{X}\right) \ll \epsilon h_{H}(x)$, giving finiteness outside this Z by Northcott.
(1) $N^{(1)}(D, x) \ll \epsilon_{1} h_{D}(x)$

- x is the image of a rational point on $\mathscr{A}_{g}^{[p]}$
- $\pi_{p}: \mathscr{A}_{g}^{[p]} \rightarrow \mathscr{A}_{g}$ is highly ramified along D (Mumford / Madapusi Pera).
- So whenever $\left(D \mid \mathscr{g}_{x}\right)_{q} \neq \varnothing$ its multiplicity is $\gg p$.
- so

(1) $N^{(1)}(D, x) \ll \epsilon_{1} h_{D}(x)$
- x is the image of a rational point on $\mathscr{A}_{g}^{[p]}$
- $\pi_{p}: \mathscr{A}_{g}^{[p]} \rightarrow \mathscr{A}_{g}$ is highly ramified along D (Mumford / Madapusi Pera).
- So whenever $\left(\left.D\right|_{T_{x}}\right)_{q} \neq \varnothing$ its multiplicity is $\gg p$.

(1) $N^{(1)}(D, x) \ll \epsilon_{1} h_{D}(x)$

- x is the image of a rational point on $\mathscr{A}_{g}^{[p]}$
- $\pi_{p}: \mathscr{A}_{g}^{[p]} \rightarrow \mathscr{A}_{g}$ is highly ramified along D (Mumford / Madapusi Pera).
- So whenever $\left(\left.D\right|_{\mathscr{T}_{x}}\right)_{\mathfrak{q}} \neq \varnothing$ its multiplicity is $\gg p$.

(1) $N^{(1)}(D, x) \ll \epsilon_{1} h_{D}(x)$

- x is the image of a rational point on $\mathscr{A}_{g}^{[p]}$
- $\pi_{p}: \mathscr{A}_{g}^{[p]} \rightarrow \mathscr{A}_{g}$ is highly ramified along D (Mumford / Madapusi Pera).
- So whenever $\left(\left.D\right|_{\mathscr{T}_{x}}\right)_{\mathfrak{q}} \neq \varnothing$ its multiplicity is $\gg p$.
- so $N^{(1)}(D, x) \ll h_{D}(x) \underbrace{\frac{1}{p}}_{\sim \epsilon_{1}}$.
(2) $d_{k}\left(\mathscr{T}_{x}\right) \leq \epsilon_{2} h_{D}(x)$
- x corresponds to an abelian variety with many p-torsion points.
- Flexor-Oesterlé at any small prime $\Rightarrow h_{D}(x) \gg p^{5}$.
- x has semistable reduction outside $p \Rightarrow d_{k}\left(\mathscr{T}_{x}\right) \ll \log p$

(2) $d_{k}\left(\mathscr{T}_{x}\right) \leq \epsilon_{2} h_{D}(x)$

- x corresponds to an abelian variety with many p-torsion points.
- Flexor-Oesterlé at any small prime $\Rightarrow h_{D}(x) \gg p^{s}$.
- x has semistable reduction outside $p \Rightarrow d_{k}\left(\mathscr{T}_{x}\right) \ll \log p$

(2) $d_{k}\left(\mathscr{T}_{x}\right) \leq \epsilon_{2} h_{D}(x)$

- x corresponds to an abelian variety with many p-torsion points.
- Flexor-Oesterlé at any small prime $\Rightarrow h_{D}(x) \gg p^{s}$.
- x has semistable reduction outside $p \Rightarrow d_{k}\left(\mathscr{T}_{x}\right) \ll \log p$

(2) $d_{k}\left(\mathscr{T}_{x}\right) \leq \epsilon_{2} h_{D}(x)$

- x corresponds to an abelian variety with many p-torsion points.
- Flexor-Oesterlé at any small prime $\Rightarrow h_{D}(x) \gg p^{s}$.
- x has semistable reduction outside $p \Rightarrow d_{k}\left(\mathscr{T}_{x}\right) \ll \log p$
- so $d_{k}\left(\mathscr{T}_{x}\right) \ll h_{D}(x) \underbrace{\frac{\log p}{p^{s}}}_{\sim \varepsilon_{2}}$.

