Vojta's conjecture and level structures on abelian varieties

Dan Abramovich, Brown University Joint work with Anthony Várilly-Alvarado and Keerthi Padapusi Pera

ICERM workshop on Birational Geometry and Arithmetic May 17, 2018

Torsion on elliptic curves

Following [Mazur 1977]...

Theorem (Merel, 1996)

Fix $d \in \mathbb{Z}_{>0}$. There is an integer c = c(d) such that: For all number fields k with $[k : \mathbb{Q}] = d$ and all elliptic curves E/k,

$$\#E(k)_{tors} < c.$$

Mazur: d = 1. What about higher dimension?

(Jump to theorem)

◄□▶
◄□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶

Torsion on elliptic curves

Following [Mazur 1977]...

Theorem (Merel, 1996)

Fix $d \in \mathbb{Z}_{>0}$. There is an integer c = c(d) such that: For all number fields k with $[k : \mathbb{Q}] = d$ and all elliptic curves E/k,

$$\#E(k)_{tors} < c.$$

Mazur: d = 1.

What about higher dimension?

(Jump to theorem)

Torsion on elliptic curves

Following [Mazur 1977]...

Theorem (Merel, 1996)

Fix $d \in \mathbb{Z}_{>0}$. There is an integer c = c(d) such that: For all number fields k with $[k : \mathbb{Q}] = d$ and all elliptic curves E/k,

$$\#E(k)_{tors} < c.$$

Mazur: d = 1.

What about higher dimension?

(Jump to theorem)

Torsion on abelian varieties

Theorem (Cadoret, Tamagawa 2012)

Let k be a field, finitely generated over \mathbb{Q} ; let p be a prime.

Let $A \rightarrow S$ be an abelian scheme over a k-curve S.

There is an integer c = c(A, S, k, p) such that

$$\#A_s(k)[p^{\infty}] \le c$$

for all $s \in S(k)$.

What about all torsion?

What about all abelian varieties of fixed dimension together?

Torsion on abelian varieties

Theorem (Cadoret, Tamagawa 2012)

Let k be a field, finitely generated over \mathbb{Q} ; let p be a prime.

Let $A \rightarrow S$ be an abelian scheme over a k-curve S.

There is an integer c = c(A, S, k, p) such that

$$\#A_s(k)[p^{\infty}] \le c$$

for all $s \in S(k)$.

What about all torsion?

What about all abelian varieties of fixed dimension together?

- 4 ロト 4 個 ト 4 差 ト 4 差 ト - 差 - 釣り(で

Torsion on abelian varieties

Theorem (Cadoret, Tamagawa 2012)

Let k be a field, finitely generated over \mathbb{Q} ; let p be a prime.

Let $A \rightarrow S$ be an abelian scheme over a k-curve S.

There is an integer c = c(A, S, k, p) such that

$$\#A_s(k)[p^{\infty}] \leq c$$

for all $s \in S(k)$.

What about all torsion?

What about all abelian varieties of fixed dimension together?

◄□▶
◄□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶

Let A be a g-dimensional abelian variety over a number field k.

A full-level \emph{m} structure on \emph{A} is an isomorphism of \emph{k} -group schemes

$$A[m] \xrightarrow{\sim} (\mathbb{Z}/m\mathbb{Z})^g \times (\mu_m)^g$$

Theorem (ℵ, V.-A., M. P. 2017)

Assume Vojta's conjecture

Fix $g \in \mathbb{Z}_{>0}$ and a number field k.

There is an integer $m_0 = m_0(k,g)$ such that.

For any $m > m_0$ there is no principally polarized abelian variety A/k of dimension g with full-level m structure.

Why not torsion?

4 / 24

Dan Abramovich Vojta and levels May 17, 2018

Let A be a g-dimensional abelian variety over a number field k.

A full-level m structure on A is an isomorphism of k-group schemes

$$A[m] \xrightarrow{\sim} (\mathbb{Z}/m\mathbb{Z})^g \times (\mu_m)^g$$

Theorem (ℵ, V.-A., M. P. 2017)

Assume Vojta's conjecture

Fix $g \in \mathbb{Z}_{>0}$ and a number field k

There is an integer $m_0 = m_0(k,g)$ such that:

For any $m > m_0$ there is no principally polarized abelian variety A/k of dimension g with full-level m structure.

Why not torsion? What's with Vojta´

Let A be a g-dimensional abelian variety over a number field k.

A full-level m structure on A is an isomorphism of k-group schemes

$$A[m] \xrightarrow{\sim} (\mathbb{Z}/m\mathbb{Z})^g \times (\mu_m)^g$$

Theorem (ℵ, V.-A., M. P. 2017)

Assume Vojta's conjecture.

Fix $g \in \mathbb{Z}_{>0}$ and a number field k.

There is an integer $m_0 = m_0(k,g)$ such that:

For any $m > m_0$ there is no principally polarized abelian variety A/k of dimension g with full-level m structure.

Why not torsion? What's with Vojta

Let A be a g-dimensional abelian variety over a number field k.

A full-level m structure on A is an isomorphism of k-group schemes

$$A[m] \xrightarrow{\sim} (\mathbb{Z}/m\mathbb{Z})^g \times (\mu_m)^g$$

Theorem (ℵ, V.-A., M. P. 2017)

Assume Vojta's conjecture.

Fix $g \in \mathbb{Z}_{>0}$ and a number field k.

There is an integer $m_0 = m_0(k,g)$ such that:

For any $m > m_0$ there is no principally polarized abelian variety A/k of dimension g with full-level m structure.

Why not torsion?

Dan Abramovich Vojta and levels

Let A be a g-dimensional abelian variety over a number field k.

A full-level m structure on A is an isomorphism of k-group schemes

$$A[m] \xrightarrow{\sim} (\mathbb{Z}/m\mathbb{Z})^g \times (\mu_m)^g$$

Theorem (ℵ, V.-A., M. P. 2017)

Assume Vojta's conjecture.

Fix $g \in \mathbb{Z}_{>0}$ and a number field k.

There is an integer $m_0 = m_0(k,g)$ such that:

For any $m > m_0$ there is no principally polarized abelian variety A/k of dimension g with full-level m structure.

Why not torsion? What's with Vojta?

- Consider the curves $\pi_m: X_1(m) \to X(1)$.
- $X_1(m)$ parametrizes elliptic curves with m-torsion.
- Observation: $g(X_1(m)) \xrightarrow{m \to \infty} \infty$ (quadratically)
- Faltings (1983) $\Longrightarrow X_1(m)(\mathbb{Q})$ finite for large m.
- Manin $(1969!)^{1} \Longrightarrow X_1(p^k)(\mathbb{Q})$ finite for some k,
- and by Mordell-Weil $X_1(p^k)(\mathbb{Q}) = \emptyset$ for large k.

But there are infinitely many primes $> m_0$!

- Consider the curves $\pi_m: X_1(m) \to X(1)$.
- $X_1(m)$ parametrizes elliptic curves with m-torsion.
- Observation: $g(X_1(m)) \xrightarrow{m \to \infty} \infty$ (quadratically)
- Faltings (1983) $\Longrightarrow X_1(m)(\mathbb{Q})$ finite for large m.
- Manin $(1969!)^{1} \Longrightarrow X_1(p^k)(\mathbb{Q})$ finite for some k,
- and by Mordell-Weil $X_1(p^k)(\mathbb{Q}) = \emptyset$ for large k.

But there are infinitely many primes $> m_0$!

- Consider the curves $\pi_m: X_1(m) \to X(1)$.
- $X_1(m)$ parametrizes elliptic curves with m-torsion.
- Observation: $g(X_1(m)) \xrightarrow{m \to \infty} \infty$ (quadratically)
- Faltings (1983) $\Longrightarrow X_1(m)(\mathbb{Q})$ finite for large m.
- Manin $(1969!)^{1} \Longrightarrow X_1(p^k)(\mathbb{Q})$ finite for some k,
- and by Mordell-Weil $X_1(p^k)(\mathbb{Q}) = \emptyset$ for large k.

But there are infinitely many primes $> m_0$!

- Consider the curves $\pi_m: X_1(m) \to X(1)$.
- $X_1(m)$ parametrizes elliptic curves with *m*-torsion.
- Observation: $g(X_1(m)) \xrightarrow{m \to \infty} \infty$ (quadratically)
- Faltings (1983) $\Longrightarrow X_1(m)(\mathbb{Q})$ finite for large m.
- Manin $(1969!)^{1} \Longrightarrow X_1(p^k)(\mathbb{Q})$ finite for some k,
- and by Mordell-Weil $X_1(p^k)(\mathbb{Q}) = \emptyset$ for large k.

But there are infinitely many primes $> m_0$!

- Consider the curves $\pi_m: X_1(m) \to X(1)$.
- $X_1(m)$ parametrizes elliptic curves with m-torsion.
- Observation: $g(X_1(m)) \xrightarrow{m \to \infty} \infty$ (quadratically)
- Faltings (1983) $\Longrightarrow X_1(m)(\mathbb{Q})$ finite for large m.
- Manin $(1969!)^{1} \Longrightarrow X_1(p^k)(\mathbb{Q})$ finite for some k,
- and by Mordell-Weil $X_1(p^k)(\mathbb{Q}) = \emptyset$ for large k.

But there are infinitely many primes $> m_0$

- Consider the curves $\pi_m: X_1(m) \to X(1)$.
- $X_1(m)$ parametrizes elliptic curves with m-torsion.
- Observation: $g(X_1(m)) \xrightarrow{m \to \infty} \infty$ (quadratically)
- Faltings (1983) $\Longrightarrow X_1(m)(\mathbb{Q})$ finite for large m.
- Manin $(1969!)^{1} \Longrightarrow X_1(p^k)(\mathbb{Q})$ finite for some k,
- and by Mordell–Weil $X_1(p^k)(\mathbb{Q}) = \emptyset$ for large k.

But there are infinitely many primes $> m_0$

- Consider the curves $\pi_m: X_1(m) \to X(1)$.
- $X_1(m)$ parametrizes elliptic curves with m-torsion.
- Observation: $g(X_1(m)) \xrightarrow{m \to \infty} \infty$ (quadratically)
- Faltings (1983) $\Longrightarrow X_1(m)(\mathbb{Q})$ finite for large m.
- Manin $(1969!)^{1} \Longrightarrow X_1(p^k)(\mathbb{Q})$ finite for some k,
- and by Mordell–Weil $X_1(p^k)(\mathbb{Q}) = \emptyset$ for large k.

But there are infinitely many primes $> m_0$!

- Cadoret-Tamagawa consider similarly $S_1(m) \rightarrow S$, with components $S_1(m)^j$.
- They show $g(S_1^j(p^k)) \longrightarrow \infty$,...
- unless they correspond to torsion on an isotrivial factor of A/S.
- ullet Again this suffices by Faltings and Mordell–Weil for their p^k theorem.

Is there an analogue for higher dimensional base?

- Cadoret-Tamagawa consider similarly $S_1(m) \rightarrow S$, with components $S_1(m)^j$.
- They show $g(S_1^j(p^k)) \longrightarrow \infty$,...
- unless they correspond to torsion on an isotrivial factor of A/S.
- ullet Again this suffices by Faltings and Mordell–Weil for their p^k theorem.

Is there an analogue for higher dimensional base?

Dan Abramovich Vojta

- Cadoret-Tamagawa consider similarly $S_1(m) \rightarrow S$, with components $S_1(m)^j$.
- They show $g(S_1^j(p^k)) \longrightarrow \infty$,...
- unless they correspond to torsion on an isotrivial factor of A/S.
- Again this suffices by Faltings and Mordell–Weil for their p^k theorem.

Is there an analogue for higher dimensional base?

- Cadoret-Tamagawa consider similarly $S_1(m) \rightarrow S$, with components $S_1(m)^j$.
- They show $g(S_1^j(p^k)) \longrightarrow \infty$,...
- unless they correspond to torsion on an isotrivial factor of A/S.
- ullet Again this suffices by Faltings and Mordell–Weil for their p^k theorem.

Is there an analogue for higher dimensional base?

6 / 24

Dan Abramovich Vojta and levels May 17, 2018

Proposition (Flexor-Oesterlé 1988, Silverberg 1992)

There is an integer M = M(g) so that: Suppose $A(\mathbb{Q})[p] \neq \{0\}$, suppose q is a prime, and suppose $p > (1 + \sqrt{q}^M)^{2g}$. Then the reduction of A at q is "not even potentially good".

- p torsion reduced injectively moduo q.
- The reduction is not good because of Lang-Weil: there are just too many points!
- For potentially good reduction, there is good reduction after an extension of degree < M, so that follows too.

Remark

- Flexor and Oesterlé proceed to show that ABC implies uniform boundedness for elliptic curves.
- This is what we follow: Vojta gives a higher dimensional ABC.
- Mazur proceeds in another way

Proposition (Flexor-Oesterlé 1988, Silverberg 1992)

There is an integer M=M(g) so that: Suppose $A(\mathbb{Q})[p] \neq \{0\}$, suppose q is a prime, and suppose $p > (1+\sqrt{q}^M)^{2g}$. Then the reduction of A at q is "not even potentially good".

- p torsion reduced injectively moduo q.
- The reduction is not good because of Lang-Weil: there are just too many points!
- For potentially good reduction, there is good reduction after an extension of degree < M, so that follows too.

Remark

- Flexor and Oesterlé proceed to show that ABC implies uniform boundedness for elliptic curves.
- This is what we follow: Vojta gives a higher dimensional ABC.
- Mazur proceeds in another way

4□ > 4□ > 4□ > 4 = > 4 = > = 90

Proposition (Flexor-Oesterlé 1988, Silverberg 1992)

There is an integer M=M(g) so that: Suppose $A(\mathbb{Q})[p] \neq \{0\}$, suppose q is a prime, and suppose $p > (1+\sqrt{q}^M)^{2g}$. Then the reduction of A at q is "not even potentially good".

- p torsion reduced injectively moduo q.
- The reduction is not good because of Lang-Weil: there are just too many points!
- For potentially good reduction, there is good reduction after an extension of degree < M, so that follows too.

Remark

- Flexor and Oesterlé proceed to show that ABC implies uniform boundedness for elliptic curves.
- This is what we follow: Vojta gives a higher dimensional ABC.
- Mazur proceeds in another way

- 4 □ ト 4 圖 ト 4 필 ト - 夏 - かくで

Proposition (Flexor-Oesterlé 1988, Silverberg 1992)

There is an integer M=M(g) so that: Suppose $A(\mathbb{Q})[p] \neq \{0\}$, suppose q is a prime, and suppose $p > (1+\sqrt{q}^M)^{2g}$. Then the reduction of A at q is "not even potentially good".

- p torsion reduced injectively moduo q.
- The reduction is not good because of Lang-Weil: there are just too many points!
- For potentially good reduction, there is good reduction after an extension of degree < M, so that follows too.

Remark

- Flexor and Oesterlé proceed to show that ABC implies uniform boundedness for elliptic curves.
- This is what we follow: Vojta gives a higher dimensional ABC.
- Mazur proceeds in another way

Proposition (Flexor-Oesterlé 1988, Silverberg 1992)

There is an integer M=M(g) so that: Suppose $A(\mathbb{Q})[p] \neq \{0\}$, suppose q is a prime, and suppose $p > (1+\sqrt{q}^M)^{2g}$. Then the reduction of A at q is "not even potentially good".

- p torsion reduced injectively moduo q.
- The reduction is not good because of Lang-Weil: there are just too many points!
- For potentially good reduction, there is good reduction after an extension of degree < M, so that follows too.

Remark:

- Flexor and Oesterlé proceed to show that ABC implies uniform boundedness for elliptic curves.
- This is what we follow: Vojta gives a higher dimensional ABC.
- Mazur proceeds in another way

Proposition (Flexor-Oesterlé 1988, Silverberg 1992)

There is an integer M = M(g) so that: Suppose $A(\mathbb{Q})[p] \neq \{0\}$, suppose q is a prime, and suppose $p > (1 + \sqrt{q}^M)^{2g}$. Then the reduction of A at q is "not even potentially good".

- p torsion reduced injectively moduo q.
- The reduction is not good because of Lang-Weil: there are just too many points!
- For potentially good reduction, there is good reduction after an extension of degree < M, so that follows too.

Remark:

- Flexor and Oesterlé proceed to show that ABC implies uniform boundedness for elliptic curves.
- This is what we follow: Vojta gives a higher dimensional ABC.
- Mazur proceeds in another way

Dan Abramovich Vojta and levels May 17, 2018 7 / 24

Proposition (Flexor-Oesterlé 1988, Silverberg 1992)

There is an integer M = M(g) so that: Suppose $A(\mathbb{Q})[p] \neq \{0\}$, suppose q is a prime, and suppose $p > (1 + \sqrt{q}^M)^{2g}$. Then the reduction of A at q is "not even potentially good".

- p torsion reduced injectively moduo q.
- The reduction is not good because of Lang-Weil: there are just too many points!
- For potentially good reduction, there is good reduction after an extension of degree < M, so that follows too.

Remark:

- Flexor and Oesterlé proceed to show that ABC implies uniform boundedness for elliptic curves.
- This is what we follow: Vojta gives a higher dimensional ABC.
- Mazur proceeds in another way

Dan Abramovich Voita and levels May 17, 2018 7 / 24

The following suffices for Mazur's theorem:

Theorem

For all large p, $X_1(p)(\mathbb{Q})$ consists of cusps.

- [Merel] There are many weight-2 cusp forms f on $\Gamma_0(p)$ with analytic rank $\operatorname{ord}_{s=1} L(f,s) = 0$.
- [KL, BFH 1990] The corresponding factor $J_0(p)_f$ has rank 0.
- [Mazur, Kamienny 1982] The composite map $X_1(p) \rightarrow J_0(p)_f$ sending cusp to 0 is immersive at the cusp, even modulo small q.
- But reduction of torsion of $J_0(p)_f$ modulo q is injective.
- Combining with Flexor-Oesterlé we get the result.

Is there a replacement for g > 1???????

The following suffices for Mazur's theorem:

Theorem

For all large p, $X_1(p)(\mathbb{Q})$ consists of cusps.

- [Merel] There are many weight-2 cusp forms f on $\Gamma_0(p)$ with analytic rank $\operatorname{ord}_{s=1} L(f,s) = 0$.
- [KL, BFH 1990] The corresponding factor $J_0(p)_f$ has rank 0.
- [Mazur, Kamienny 1982] The composite map $X_1(p) \rightarrow J_0(p)_f$ sending cusp to 0 is immersive at the cusp, even modulo small q.
- But reduction of torsion of $J_0(p)_f$ modulo q is injective.
- Combining with Flexor-Oesterlé we get the result.

Is there a replacement for g > 1???????

The following suffices for Mazur's theorem:

Theorem

For all large p, $X_1(p)(\mathbb{Q})$ consists of cusps.

- [Merel] There are many weight-2 cusp forms f on $\Gamma_0(p)$ with analytic rank $\operatorname{ord}_{s=1} L(f,s) = 0$.
- [KL, BFH 1990] The corresponding factor $J_0(p)_f$ has rank 0.
- [Mazur, Kamienny 1982] The composite map $X_1(p) \rightarrow J_0(p)_f$ sending cusp to 0 is immersive at the cusp, even modulo small q.
- But reduction of torsion of $J_0(p)_f$ modulo q is injective.
- Combining with Flexor-Oesterlé we get the result.

Is there a replacement for g > 1???????

→ロト ◆個ト ◆恵ト ◆恵ト 恵 めらで

The following suffices for Mazur's theorem:

Theorem

For all large p, $X_1(p)(\mathbb{Q})$ consists of cusps.

- [Merel] There are many weight-2 cusp forms f on $\Gamma_0(p)$ with analytic rank $\operatorname{ord}_{s=1} L(f,s) = 0$.
- [KL, BFH 1990] The corresponding factor $J_0(p)_f$ has rank 0.
- [Mazur, Kamienny 1982] The composite map $X_1(p) \rightarrow J_0(p)_f$ sending cusp to 0 is immersive at the cusp, even modulo small q.
- But reduction of torsion of $J_0(p)_f$ modulo q is injective.
- Combining with Flexor-Oesterlé we get the result.

Is there a replacement for g > 1???????

4□ → 4□ → 4□ → □ → □ ◆ 900

The following suffices for Mazur's theorem:

Theorem

For all large p, $X_1(p)(\mathbb{Q})$ consists of cusps.

- [Merel] There are many weight-2 cusp forms f on $\Gamma_0(p)$ with analytic rank $\operatorname{ord}_{s=1} L(f,s) = 0$.
- [KL, BFH 1990] The corresponding factor $J_0(p)_f$ has rank 0.
- [Mazur, Kamienny 1982] The composite map $X_1(p) \rightarrow J_0(p)_f$ sending cusp to 0 is immersive at the cusp, even modulo small q.
- But reduction of torsion of $J_0(p)_f$ modulo q is injective.
- Combining with Flexor-Oesterlé we get the result.

Is there a replacement for g > 1???????

4 D > 4 A > 4 B > 4 B > B = 900

The following suffices for Mazur's theorem:

Theorem

For all large p, $X_1(p)(\mathbb{Q})$ consists of cusps.

- [Merel] There are many weight-2 cusp forms f on $\Gamma_0(p)$ with analytic rank $\operatorname{ord}_{s=1} L(f,s) = 0$.
- [KL, BFH 1990] The corresponding factor $J_0(p)_f$ has rank 0.
- [Mazur, Kamienny 1982] The composite map $X_1(p) \rightarrow J_0(p)_f$ sending cusp to 0 is immersive at the cusp, even modulo small q.
- But reduction of torsion of $J_0(p)_f$ modulo q is injective.
- Combining with Flexor-Oesterlé we get the result.

Is there a replacement for g > 1???????

4 D > 4 B > 4 B > 4 B > 9 Q P

Main Theorem

Let A be a g-dimensional abelian variety over a number field k.

A full-level m structure on A is an isomorphism of k-group schemes

$$A[m] \xrightarrow{\sim} (\mathbb{Z}/m\mathbb{Z})^g \times (\mu_m)^g$$

Theorem (ℵ, V.-A., M. P. 2017)

Assume Vojta's conjecture.

Fix $g \in \mathbb{Z}_{>0}$ and a number field k.

There is an integer $m_0 = m_0(k,g)$ such that:

For any prime $p > m_0$ there is no (pp) abelian variety A/k of dimension g with full-level p structure.

◆ロト ◆個ト ◆差ト ◆差ト 差 めなべ

May 17, 2018

9 / 24

- $\widetilde{\mathscr{A}}_g \to \operatorname{Spec} \mathbb{Z} := \operatorname{moduli} \operatorname{stack}$ of ppav's of dimension g.
- $\widetilde{\mathscr{A}}_g(k)_{[m]} := k$ -rational points of $\widetilde{\mathscr{A}}_g$ corresponding to ppav's A/k admitting a full-level m structure.
- $\widetilde{\mathcal{A}}_g(k)_{[m]} = \pi_m(\widetilde{\mathcal{A}}_g^{[m]}(k)),$ where $\widetilde{\mathcal{A}}_g^{[m]}$ is the space of ppav with full level
- $W_i := \overline{\bigcup_{p \geq i} \widetilde{\mathcal{A}}_g(k)_{[p]}}$
- W_i is closed in $\widetilde{\mathcal{A}}_g$ and $W_i \supseteq W_{i+1}$.
- \mathcal{A}_g is Noetherian, so $W_n = W_{n+1} = \cdots$ for some n > 0.
- Vojta for stacks $\Rightarrow W_n$ has dimension ≤ 0 .

(Jump to Vojta)

4□ > 4□ > 4□ > 4□ > 4□ > 1□

- $\widetilde{\mathscr{A}}_g \to \operatorname{Spec} \mathbb{Z} := \operatorname{moduli} \operatorname{stack}$ of ppav's of dimension g.
- $\widetilde{\mathscr{A}}_g(k)_{[m]} := k$ -rational points of $\widetilde{\mathscr{A}}_g$ corresponding to ppav's A/k admitting a full-level m structure.
- $\widetilde{\mathscr{A}}_g(k)_{[m]} = \pi_m(\widetilde{\mathscr{A}}_g^{[m]}(k)),$ where $\widetilde{\mathscr{A}}_g^{[m]}$ is the space of ppav with full level.
- $W_i := \overline{\bigcup_{p \geq i} \widetilde{\mathscr{A}}_g(k)_{[p]}}$
- W_i is closed in $\widetilde{\mathcal{A}}_g$ and $W_i \supseteq W_{i+1}$.
- $\widetilde{\mathcal{A}}_g$ is Noetherian, so $W_n = W_{n+1} = \cdots$ for some n > 0.
- Vojta for stacks $\Rightarrow W_n$ has dimension ≤ 0 .

(Jump to Vojta)

4□ → 4回 → 4 = → 4 = → 9 < 0</p>

- $\widetilde{\mathcal{A}}_g \to \operatorname{Spec} \mathbb{Z} := \operatorname{moduli} \operatorname{stack}$ of ppav's of dimension g.
- $\widetilde{\mathscr{A}}_g(k)_{[m]} := k$ -rational points of $\widetilde{\mathscr{A}}_g$ corresponding to ppav's A/k admitting a full-level m structure.
- $\widetilde{\mathcal{A}}_g(k)_{[m]} = \pi_m(\widetilde{\mathcal{A}}_g^{[m]}(k)),$ where $\widetilde{\mathcal{A}}_g^{[m]}$ is the space of ppav with full level.
- $W_i := \overline{\bigcup_{p \geq i} \widetilde{\mathscr{A}}_g(k)_{[p]}}$
- W_i is closed in $\widetilde{\mathcal{A}}_g$ and $W_i \supseteq W_{i+1}$.
- $\widetilde{\mathcal{A}}_g$ is Noetherian, so $W_n = W_{n+1} = \cdots$ for some n > 0.
- Vojta for stacks $\Rightarrow W_n$ has dimension ≤ 0 .

(Jump to Vojta)

4□ > 4□ > 4□ > 4□ > 4□ > 4□ > 9

- $\widetilde{\mathscr{A}}_g \to \operatorname{Spec} \mathbb{Z} := \operatorname{moduli} \operatorname{stack}$ of ppav's of dimension g.
- $\widetilde{\mathcal{A}}_g(k)_{[m]} := k$ -rational points of $\widetilde{\mathcal{A}}_g$ corresponding to ppav's A/k admitting a full-level m structure.
- $\widetilde{\mathscr{A}}_g(k)_{[m]} = \pi_m(\widetilde{\mathscr{A}}_g^{[m]}(k)),$ where $\widetilde{\mathscr{A}}_g^{[m]}$ is the space of ppav with full level.
- $W_i := \overline{\bigcup_{p \ge i} \widetilde{\mathscr{A}}_g(k)_{[p]}}$
- W_i is closed in $\widetilde{\mathcal{A}}_g$ and $W_i \supseteq W_{i+1}$.
- $\widetilde{\mathcal{A}}_g$ is Noetherian, so $W_n = W_{n+1} = \cdots$ for some n > 0.
- Vojta for stacks $\Rightarrow W_n$ has dimension ≤ 0 .

(Jump to Vojta)

4□ > 4□ > 4□ > 4□ > 4□ > 3□

- $\widetilde{\mathcal{A}}_g \to \operatorname{Spec} \mathbb{Z} := \operatorname{moduli} \operatorname{stack}$ of ppav's of dimension g.
- $\widetilde{\mathcal{A}}_g(k)_{[m]} := k$ -rational points of $\widetilde{\mathcal{A}}_g$ corresponding to ppav's A/k admitting a full-level m structure.
- $\widetilde{\mathscr{A}}_g(k)_{[m]} = \pi_m(\widetilde{\mathscr{A}}_g^{[m]}(k)),$ where $\widetilde{\mathscr{A}}_g^{[m]}$ is the space of ppav with full level.
- $W_i := \overline{\bigcup_{p \ge i} \widetilde{\mathscr{A}}_g(k)_{[p]}}$
- W_i is closed in $\widetilde{\mathcal{A}}_g$ and $W_i \supseteq W_{i+1}$.
- $\widetilde{\mathcal{A}}_g$ is Noetherian, so $W_n = W_{n+1} = \cdots$ for some n > 0.
- Vojta for stacks $\Rightarrow W_n$ has dimension ≤ 0 .

(Jump to Vojta)

4□ > 4□ > 4 = > 4 = > = 90

- $\widetilde{\mathcal{A}}_g \to \operatorname{Spec} \mathbb{Z} := \operatorname{moduli} \operatorname{stack}$ of ppav's of dimension g.
- $\widetilde{\mathcal{A}}_g(k)_{[m]} := k$ -rational points of $\widetilde{\mathcal{A}}_g$ corresponding to ppav's A/k admitting a full-level m structure.
- $\widetilde{\mathcal{A}}_g(k)_{[m]} = \pi_m(\widetilde{\mathcal{A}}_g^{[m]}(k)),$ where $\widetilde{\mathcal{A}}_g^{[m]}$ is the space of ppav with full level.
- $W_i := \overline{\bigcup_{p \ge i} \widetilde{\mathcal{A}}_g(k)_{[p]}}$
- W_i is closed in $\widetilde{\mathcal{A}}_g$ and $W_i \supseteq W_{i+1}$.
- $\widetilde{\mathcal{A}}_g$ is Noetherian, so $W_n = W_{n+1} = \cdots$ for some n > 0.
- Vojta for stacks $\Rightarrow W_n$ has dimension ≤ 0 .

(Jump to Vojta)

4□ > 4□ > 4 = > 4 = > = 90

- Suppose that $W_n = \overline{\bigcup_{p \ge n} \widetilde{\mathscr{A}}_g(k)_{[p]}}$ has dimension 0.
- representing finitely many geometric isomorphism classes of ppav's.
- Fix a point in W_n that comes from some A/k.
- Pick a prime $q \in \operatorname{Spec} \mathcal{O}_k$ of potentially good reduction for A.
- Twists of A with full-level p structure $(p > 2; q \nmid p)$ have good reduction at q.
- p-torsion injects modulo $q \implies p \le (1 + Nq^{1/2})^2$.

- Suppose that $W_n = \overline{\bigcup_{p \ge n} \widetilde{\mathscr{A}}_g(k)_{[p]}}$ has dimension 0.
- representing finitely many geometric isomorphism classes of ppav's.
- Fix a point in W_n that comes from some A/k.
- Pick a prime $q \in \operatorname{Spec} \mathcal{O}_k$ of potentially good reduction for A.
- Twists of A with full-level p structure $(p > 2; q \nmid p)$ have good reduction at q.
- p-torsion injects modulo $q \implies p \le (1 + Nq^{1/2})^2$.

- Suppose that $W_n = \overline{\bigcup_{p \ge n} \widetilde{\mathscr{A}}_g(k)_{[p]}}$ has dimension 0.
- representing finitely many geometric isomorphism classes of ppav's.
- Fix a point in W_n that comes from some A/k.
- Pick a prime $q \in \operatorname{Spec} \mathcal{O}_k$ of potentially good reduction for A.
- Twists of A with full-level p structure $(p > 2; q \nmid p)$ have good reduction at q.
- p-torsion injects modulo $q \implies p \le (1 + Nq^{1/2})^2$.

- Suppose that $W_n = \overline{\bigcup_{p \ge n} \widetilde{\mathscr{A}}_g(k)_{[p]}}$ has dimension 0.
- representing finitely many geometric isomorphism classes of ppav's.
- Fix a point in W_n that comes from some A/k.
- Pick a prime $q \in \operatorname{Spec} \mathcal{O}_k$ of potentially good reduction for A.
- Twists of A with full-level p structure $(p > 2; q \nmid p)$ have good reduction at q.
- p-torsion injects modulo $q \implies p \le (1 + Nq^{1/2})^2$.

- k a number field; S a finite set of places containing infinite places.
- $(\mathcal{X}, \mathcal{D})$ a pair with:
 - $\mathscr{X} \to \operatorname{Spec} \mathscr{O}_{k,S}$ a smooth proper morphism of schemes;
 - $ightharpoonup \mathscr{D}$ a fiber-wise normal crossings divisor on \mathscr{X} .

$$(X,D) :=$$
the generic fiber of $(\mathcal{X},\mathcal{D}); \mathcal{D} = \sum_{i} \mathcal{D}_{i}.$

• We view $x \in \mathcal{X}(\bar{k})$ as a point of $\mathcal{X}(\mathcal{O}_{k(x)})$, or a scheme $\mathcal{T}_x := \operatorname{Spec} \mathcal{O}_{k(x)} \to \mathcal{X}$.

- k a number field; S a finite set of places containing infinite places.
- $(\mathcal{X}, \mathcal{D})$ a pair with:
 - ▶ \mathscr{X} → Spec $\mathscr{O}_{k,S}$ a smooth proper morphism of schemes;
 - $\mathscr D$ a fiber-wise normal crossings divisor on $\mathscr X$.
 - (X,D) :=the generic fiber of $(\mathcal{X},\mathcal{D})$; $\mathcal{D} = \sum_{i} \mathcal{D}_{i}$.
- We view $x \in \mathcal{X}(\bar{k})$ as a point of $\mathcal{X}(\mathcal{O}_{k(x)})$, or a scheme $\mathcal{T}_x := \operatorname{Spec} \mathcal{O}_{k(x)} \to \mathcal{X}$.

- k a number field; S a finite set of places containing infinite places.
- $(\mathcal{X}, \mathcal{D})$ a pair with:
 - ▶ \mathscr{X} → Spec $\mathscr{O}_{k,S}$ a smooth proper morphism of schemes;
 - \mathscr{D} a fiber-wise normal crossings divisor on \mathscr{X} .

$$(X,D) :=$$
the generic fiber of $(\mathcal{X},\mathcal{D}); \mathcal{D} = \sum_{i} \mathcal{D}_{i}.$

• We view $x \in \mathcal{X}(\bar{k})$ as a point of $\mathcal{X}(\mathcal{O}_{k(x)})$, or a scheme $\mathcal{T}_x := \operatorname{Spec} \mathcal{O}_{k(x)} \to \mathcal{X}$.

- k a number field; S a finite set of places containing infinite places.
- $(\mathcal{X}, \mathcal{D})$ a pair with:
 - ▶ \mathscr{X} → Spec $\mathscr{O}_{k,S}$ a smooth proper morphism of schemes;
 - $\mathscr D$ a fiber-wise normal crossings divisor on $\mathscr X$.
 - (X,D) :=the generic fiber of $(\mathcal{X},\mathcal{D}); \mathcal{D} = \sum_{i} \mathcal{D}_{i}.$
- We view $x \in \mathcal{X}(\bar{k})$ as a point of $\mathcal{X}(\mathcal{O}_{k(x)})$, or a scheme $\mathcal{T}_x := \operatorname{Spec} \mathcal{O}_{k(x)} \to \mathcal{X}$.

Dan Abramovich Vojta and levels

12 / 24

Towards Vojta: counting functions and discriminants

Definition

For $x \in \mathcal{X}(\bar{k})$ with residue field k(x) define the truncated counting function

$$N_k^{(1)}(D,x) = \frac{1}{[k(x):k]} \sum_{\substack{\mathfrak{q} \in \mathsf{Spec}\mathscr{O}_{k,S} \\ (\mathscr{D}|_{\mathscr{I}_X})_{\mathfrak{q}} \neq \emptyset}} \log \underbrace{|\kappa(\mathfrak{q})|}_{\substack{\mathsf{size of} \\ \mathsf{residue field}}}.$$

and the relative logarithmic discriminant

$$d_{k}(k(x)) = \frac{1}{[k(x):k]} \log |\operatorname{Disc}\mathcal{O}_{k(x)}| - \log |\operatorname{Disc}\mathcal{O}_{k}|$$
$$= \frac{1}{[k(x):k]} \deg \Omega_{\mathcal{O}_{k(x)}/\mathcal{O}_{k}}.$$

13 / 24

Towards Vojta: counting functions and discriminants

Definition

For $x \in \mathcal{X}(\bar{k})$ with residue field k(x) define the truncated counting function

$$N_k^{(1)}(D,x) = \frac{1}{[k(x):k]} \sum_{\substack{\mathfrak{q} \in \operatorname{Spec}\mathscr{O}_{k,S} \\ (\mathscr{D}|_{\mathscr{T}_X})_{\mathfrak{q}} \neq \emptyset}} \log \underbrace{|\kappa(\mathfrak{q})|}_{\substack{\text{size of residue field}}}.$$

and the relative logarithmic discriminant

$$\begin{split} d_k\big(k\big(x\big)\big) &= \frac{1}{[k(x):k]}\log|\operatorname{Disc}\mathscr{O}_{k(x)}| - \log|\operatorname{Disc}\mathscr{O}_k| \\ &= \frac{1}{[k(x):k]}\deg\Omega_{\mathscr{O}_{k(x)}/\mathscr{O}_k}. \end{split}$$

- ◀ □ ▶ ◀ @ ▶ ◀ 볼 ▶ 《 볼 · 씨 역 (~

Conjecture (Vojta c. 1984; 1998)

X a smooth projective variety over a number field k.

D a normal crossings divisor on X; H a big line bundle on X.

Fix a positive integer r and $\delta > 0$.

There is a proper Zariski closed $Z \subset X$ containing D such that

$$N_X^{(1)}(D,x) + d_k(k(x)) \ge h_{K_X+D}(x) - \delta h_H(x) - O_r(1)$$

for all
$$x \in X(\bar{k}) \setminus Z(\bar{k})$$
 with $[k(x):k] \le r$.

 $d_k(k(x))$ measure failure of being in $\mathcal{X}(k)$

$$N_X^{(1)}(D,x)$$
 measure failure of being in $\mathscr{X}^0(\mathscr{O}_k) = (\mathscr{X} \setminus \mathscr{D})(\mathscr{O}_k)$

◄□▶
◄□▶
◄□▶
◄□▶
◄□▶
₹
₹
₽
♥

Conjecture (Vojta c. 1984; 1998)

X a smooth projective variety over a number field k.

D a normal crossings divisor on X; H a big line bundle on X.

Fix a positive integer r and $\delta > 0$.

There is a proper Zariski closed $Z \subset X$ containing D such that

$$N_X^{(1)}(D,x) + d_k(k(x)) \ge h_{K_X+D}(x) - \delta h_H(x) - O_r(1)$$

for all
$$x \in X(\bar{k}) \setminus Z(\bar{k})$$
 with $[k(x):k] \le r$.

 $d_k(k(x))$ measure failure of being in $\mathscr{X}(k)$ $N_X^{(1)}(D,x)$ measure failure of being in $\mathscr{X}^0(\mathcal{O}_k) = (\mathscr{X} \setminus \mathscr{D})(a)$

Conjecture (Vojta c. 1984; 1998)

X a smooth projective variety over a number field k.

D a normal crossings divisor on X; H a big line bundle on X.

Fix a positive integer r and $\delta > 0$.

There is a proper Zariski closed $Z \subset X$ containing D such that

$$N_X^{(1)}(D,x) + d_k(k(x)) \ge h_{K_X+D}(x) - \delta h_H(x) - O_r(1)$$

for all $x \in X(\overline{k}) \setminus Z(\overline{k})$ with $[k(x):k] \le r$.

 $d_k(k(x))$ measure failure of being in $\mathscr{X}(k)$

 $N_X^{(1)}(D,x)$ measure failure of being in $\mathscr{X}^0(\mathscr{O}_k) = (\mathscr{X} \setminus \mathscr{D})(\mathscr{O}_k)$

→□▶ →□▶ → □▶ → □ ● の○○

Conjecture (Vojta c. 1984; 1998)

X a smooth projective variety over a number field k.

D a normal crossings divisor on X; H a big line bundle on X.

Fix a positive integer r and $\delta > 0$.

There is a proper Zariski closed $Z \subset X$ containing D such that

$$N_X^{(1)}(D,x) + d_k(k(x)) \ge h_{K_X+D}(x) - \delta h_H(x) - O_r(1)$$

for all
$$x \in X(\overline{k}) \setminus Z(\overline{k})$$
 with $[k(x):k] \le r$.

 $d_k(k(x))$ measure failure of being in $\mathscr{X}(k)$ $N_X^{(1)}(D,x)$ measure failure of being in $\mathscr{X}^0(\mathscr{O}_k) = (\mathscr{X} \setminus \mathscr{D})(\mathscr{O}_k)$

→ □ ▷ → □ ▷ → □ ▷ → ○ ○ ○ ○

- $D = \emptyset$; $H = K_X$; r = 1; X of general type: Lang's conjecture: X(k) not Zariski dense.
- $H = K_X(D)$; r = 1; S a finite set of places ; (X, D) of log general type: Lang-Vojta conjecture: $\mathcal{X}^0(\mathcal{O}_{k,S})$ not Zariski dense.
- $X = \mathbb{P}^1$; r = 1; $D = \{0, 1, \infty\}$: Masser-Oesterlé's ABC conjecture.

Dan Abramovich

- $D = \emptyset$; $H = K_X$; r = 1; X of general type: Lang's conjecture: X(k) not Zariski dense.
- $H = K_X(D)$; r = 1; S a finite set of places ; (X, D) of log general type: Lang-Vojta conjecture: $\mathcal{X}^0(\mathcal{O}_{k,S})$ not Zariski dense.
- $X = \mathbb{P}^1$; r = 1; $D = \{0, 1, \infty\}$: Masser-Oesterlé's ABC conjecture.

- $D = \emptyset$; $H = K_X$; r = 1; X of general type: Lang's conjecture: X(k) not Zariski dense.
- $H = K_X(D)$; r = 1; S a finite set of places ; (X, D) of log general type: Lang-Vojta conjecture: $\mathscr{X}^0(\mathcal{O}_{k,S})$ not Zariski dense.
- $X = \mathbb{P}^1$; r = 1; $D = \{0, 1, \infty\}$: Masser-Oesterle's ABC conjecture.

- $D = \emptyset$; $H = K_X$; r = 1; X of general type: Lang's conjecture: X(k) not Zariski dense.
- $H = K_X(D)$; r = 1; S a finite set of places; (X, D) of log general type: Lang-Vojta conjecture: $\mathscr{X}^0(\mathcal{O}_{k,S})$ not Zariski dense.
- $X = \mathbb{P}^1$; r = 1; $D = \{0, 1, \infty\}$: Masser-Oesterlé's ABC conjecture.

- Recall: Vojta ⇒ Lang.
- Example: $X = \mathbb{P}^2(\sqrt{C})$, where C a smooth curve of degree > 6.
- Then $K_X \sim \mathcal{O}(d/2-3)$ is big, so X of general type, but X(k) is dense.
- The point is that a rational point might still fail to be integral: it may have "potentially good reduction" but not "good reduction"!
- The correct form of Lang's conjecture is: if X is of general type then $\mathscr{X}(\mathscr{O}_{k,S})$ is not Zariski-dense.

What about a quantitative version? We need to account that even rational points may be ramified.

- Heights and intersection numbers are defined as usual.
- We must define the discriminant of a point $x \in X(k)$.

- Recall: Vojta \Rightarrow Lang.
- Example: $X = \mathbb{P}^2(\sqrt{C})$, where C a smooth curve of degree > 6.
- Then $K_X \sim \mathcal{O}(d/2-3)$ is big, so X of general type, but X(k) is dense.
- The point is that a rational point might still fail to be integral: it may have "potentially good reduction" but not "good reduction"!
- The correct form of Lang's conjecture is: if X is of general type then $\mathscr{X}(\mathscr{O}_{k,S})$ is not Zariski-dense.

What about a quantitative version? We need to account that even rational points may be ramified.

- Heights and intersection numbers are defined as usual.
- We must define the discriminant of a point $x \in X(k)$.

◆□▶ ◆□▶ ◆≧▶ ◆≧▶ · ≧ · かへで

- Recall: Vojta ⇒ Lang.
- Example: $X = \mathbb{P}^2(\sqrt{C})$, where C a smooth curve of degree > 6.
- Then $K_X \sim \mathcal{O}(d/2-3)$ is big, so X of general type, but X(k) is dense.
- The point is that a rational point might still fail to be integral: it may have "potentially good reduction" but not "good reduction"!
- The correct form of Lang's conjecture is: if X is of general type then $\mathscr{X}(\mathscr{O}_{k,S})$ is not Zariski-dense.

What about a quantitative version? We need to account that even rational points may be ramified.

- Heights and intersection numbers are defined as usual.
- We must define the discriminant of a point $x \in X(k)$.

- Recall: Vojta ⇒ Lang.
- Example: $X = \mathbb{P}^2(\sqrt{C})$, where C a smooth curve of degree > 6.
- Then $K_X \sim \mathcal{O}(d/2-3)$ is big, so X of general type, but X(k) is dense.
- The point is that a rational point might still fail to be integral: it may have "potentially good reduction" but not "good reduction"!
- The correct form of Lang's conjecture is: if X is of general type then $\mathscr{X}(\mathscr{O}_{k,S})$ is not Zariski-dense.

What about a quantitative version? We need to account that even rational points may be ramified.

- Heights and intersection numbers are defined as usual.
- We must define the discriminant of a point $x \in X(k)$.

- Recall: Vojta ⇒ Lang.
- Example: $X = \mathbb{P}^2(\sqrt{C})$, where C a smooth curve of degree > 6.
- Then $K_X \sim \mathcal{O}(d/2-3)$ is big, so X of general type, but X(k) is dense.
- The point is that a rational point might still fail to be integral: it may have "potentially good reduction" but not "good reduction"!
- The correct form of Lang's conjecture is: if X is of general type then $\mathscr{X}(\mathscr{O}_{k,S})$ is not Zariski-dense.

What about a quantitative version? We need to account that even rational points may be ramified.

- Heights and intersection numbers are defined as usual.
- We must define the discriminant of a point $x \in X(k)$.

◆□▶ ◆□▶ ◆≧▶ ◆≧▶ · ≧ · かへで

Discriminant of a rational point

- $\mathscr{X} \to \operatorname{Spec} \mathscr{O}_{k,S}$ smooth proper, \mathscr{X} a DM stack.
- For $x \in \mathcal{X}(\bar{k})$ with residue field k(x), take Zariski closure and normalization of its image.
- Get a morphism $\mathcal{T}_X \to \mathcal{X}$, with \mathcal{T}_X a normal stack with coarse moduli scheme $\operatorname{Spec} \mathcal{O}_{k(X),S}$.
- The relative logarithmic discriminant is

$$d_k(\mathcal{T}_{\mathsf{x}}) = \frac{1}{\deg \mathcal{T}_{\mathsf{x}}/\mathcal{O}_k} \deg \Omega_{\mathcal{T}_{\mathsf{x}}/\mathcal{O}_k}.$$

Discriminant of a rational point

- $\mathscr{X} \to \operatorname{Spec} \mathscr{O}_{k,S}$ smooth proper, \mathscr{X} a DM stack.
- For $x \in \mathcal{X}(\bar{k})$ with residue field k(x), take Zariski closure and normalization of its image.
- Get a morphism $\mathcal{T}_X \to \mathcal{X}$, with \mathcal{T}_X a normal stack with coarse moduli scheme $\operatorname{Spec} \mathcal{O}_{k(X),S}$.
- The relative logarithmic discriminant is

$$d_k(\mathcal{T}_{\mathsf{x}}) = \frac{1}{\deg \mathcal{T}_{\mathsf{x}}/\mathcal{O}_k} \deg \Omega_{\mathcal{T}_{\mathsf{x}}/\mathcal{O}_k}.$$

Discriminant of a rational point

- $\mathscr{X} \to \operatorname{Spec} \mathscr{O}_{k,S}$ smooth proper, \mathscr{X} a DM stack.
- For $x \in \mathcal{X}(\bar{k})$ with residue field k(x), take Zariski closure and normalization of its image.
- Get a morphism $\mathcal{T}_X \to \mathcal{X}$, with \mathcal{T}_X a normal stack with coarse moduli scheme $\operatorname{Spec} \mathcal{O}_{k(X),S}$.
- The relative logarithmic discriminant is

$$d_k(\mathcal{T}_x) = \frac{1}{\deg \mathcal{T}_x/\mathcal{O}_k} \deg \Omega_{\mathcal{T}_x/\mathcal{O}_k}.$$

Vojta's conjecture for stacks

Conjecture

k number field; S a finite set of places (including infinite ones).

 $\mathscr{X} \to \operatorname{Spec}\mathscr{O}_{k,S}$ a smooth proper DM stack.

 $X = \mathcal{X}_k$ generic fiber (assume irreducible)

 \underline{X} coarse moduli of X; assume projective with big line bundle H.

 $\mathscr{D} \subseteq \mathscr{X}$ NC divisor with generic fiber D.

Fix a positive integer r and $\delta > 0$.

There is a proper Zariski closed $Z \subset X$ containing D such that

$$N_X^{(1)}(D,x) + d_k(\mathcal{T}_X) \ge h_{K_X + D}(x) - \delta h_H(x) - O(1)$$

for all $x \in X(\bar{k}) \setminus Z(\bar{k})$ with $[k(x):k] \le r$.

→□▶ →□▶ →□▶ →□▶ □ ● ♥Q♥

Vojta's conjecture for stacks

Conjecture

k number field; S a finite set of places (including infinite ones).

 $\mathscr{X} \to \operatorname{Spec}\mathscr{O}_{k,S}$ a smooth proper DM stack.

 $X = \mathcal{X}_k$ generic fiber (assume irreducible)

 \underline{X} coarse moduli of X; assume projective with big line bundle H.

 $\mathscr{D} \subseteq \mathscr{X}$ NC divisor with generic fiber D.

Fix a positive integer r and $\delta > 0$.

There is a proper Zariski closed $Z \subset X$ containing D such that

$$N_X^{(1)}(D,x) + d_k(\mathcal{T}_X) \ge h_{K_X + D}(x) - \delta h_H(x) - O(1)$$

for all $x \in X(\bar{k}) \setminus Z(\bar{k})$ with $[k(x):k] \le r$.

- 4 ロ ト 4 個 ト 4 速 ト 4 速 ト 9 年 9 9 (で

Vojta is flexible

Proposition (ℵ, V.-A. 2017)

Vojta for DM stacks follows from Vojta for schemes.

Key: Vojta showed that Vojta's conjecture is compatible with taking branched covers.

Proposition (Kresch-Vistoli)

- There is a finite flat surjective morphism $\pi\colon Y\to\mathscr{X}$
- with Y a smooth projective irreducible scheme
- and $D_Y := \pi^* \mathscr{D}$ a NC divisor.

Vojta for $Y \Longrightarrow V$ ojta for X.

Vojta is flexible

Proposition (ℵ, V.-A. 2017)

Vojta for DM stacks follows from Vojta for schemes.

Key: Vojta showed that Vojta's conjecture is compatible with taking branched covers.

Proposition (Kresch-Vistoli)

- There is a finite flat surjective morphism $\pi: Y \to \mathscr{X}$
- with Y a smooth projective irreducible scheme
- and $D_Y := \pi^* \mathscr{D}$ a NC divisor.

Vojta for $Y \Longrightarrow V$ ojta for X.

Recall:

$$W_i := \overline{\bigcup_{p \geq i} \widetilde{\mathcal{A}}_g(k)_{[p]}}$$

- and $W_n = W_{n+1} = \cdots$ for some n > 0.
- Want to show: dim $W_n \le 0$. Proceed by contradiction.
- Let X is an irreducible positive dimensional component of W_n .
- $X' \rightarrow X$ a resolution of singularities.
- $X' \subseteq \overline{X}'$ smooth compactification with $D := \overline{X}' \setminus X$ NC divisor.
- Pick model $(\mathcal{X}, \mathcal{D})$ of (\overline{X}', D) over $\operatorname{Spec}_{\mathcal{C}_{k,S}}$ (Olsson)

Recall:

$$W_i := \overline{\bigcup_{p \geq i} \widetilde{\mathcal{A}}_g(k)_{[p]}}$$

- and $W_n = W_{n+1} = \cdots$ for some n > 0.
- Want to show: dim $W_n \le 0$. Proceed by contradiction.
- Let X is an irreducible positive dimensional component of W_n .
- $X' \rightarrow X$ a resolution of singularities.
- $X' \subseteq \overline{X}'$ smooth compactification with $D := \overline{X}' \setminus X$ NC divisor.
- Pick model $(\mathcal{X}, \mathcal{D})$ of (\overline{X}', D) over $\operatorname{Spec}_{\mathcal{C}_{k,S}}$ (Olsson)

Recall:

$$W_i := \overline{\bigcup_{p \geq i} \widetilde{\mathcal{A}}_g(k)_{[p]}}$$

- and $W_n = W_{n+1} = \cdots$ for some n > 0.
- Want to show: dim $W_n \le 0$. Proceed by contradiction.
- Let X is an irreducible positive dimensional component of W_n .
- $X' \rightarrow X$ a resolution of singularities.
- $X' \subseteq \overline{X}'$ smooth compactification with $D := \overline{X}' \setminus X$ NC divisor.
- Pick model $(\mathcal{X}, \mathcal{D})$ of (\overline{X}', D) over $\operatorname{Spec}_{\mathcal{C}_{k,S}}$ (Olsson)

Recall:

$$W_i := \overline{\bigcup_{p \geq i} \widetilde{\mathcal{A}}_g(k)_{[p]}}$$

- and $W_n = W_{n+1} = \cdots$ for some n > 0.
- Want to show: dim $W_n \le 0$. Proceed by contradiction.
- Let X is an irreducible positive dimensional component of W_n .
- $X' \rightarrow X$ a resolution of singularities.
- $X' \subseteq \overline{X}'$ smooth compactification with $D := \overline{X}' \setminus X$ NC divisor.
- Pick model $(\mathcal{X}, \mathcal{D})$ of (\overline{X}', D) over $Spec \mathcal{O}_{k,S}$ (Olsson)

Birational geometry

- [Zuo 2000] $K_{\overline{X}'} + D$ is big.
- Remark [Brunebarbe 2017]: As soon as m > 12g, every subvariety of $\mathscr{A}_g^{[m]}$ is of general type. Uses the fact that $\mathscr{A}_g^{[m]} \to \mathscr{A}_g$ is highly ramified along the boundary. Implies a Manin-type result for full $\lceil p^r \rceil$ -levels.
- Can one prove a result for torsion rather than full level?
- Taking $H = K_{\overline{X}'} + D$ get by Northcott an observation on the right hand side of Vojta's conjecture

$$N_X^{(1)}(D,x) + d_k(\mathcal{T}_X) \ge \underbrace{h_{K_{\overline{X}'}+D}(x) - \delta h_H(x)}_{-O(1)}$$

large for small δ away from some Z

Birational geometry

- [Zuo 2000] $K_{\overline{X}'} + D$ is big.
- Remark [Brunebarbe 2017]: As soon as m > 12g, every subvariety of $\mathscr{A}_g^{[m]}$ is of general type. Uses the fact that $\mathscr{A}_g^{[m]} \to \mathscr{A}_g$ is highly ramified along the boundary. Implies a Manin-type result for full $\lceil p^r \rceil$ -levels.
- Can one prove a result for torsion rather than full level?
- Taking $H = K_{\overline{X}'} + D$ get by Northcott an observation on the right hand side of Vojta's conjecture

$$N_X^{(1)}(D,x) + d_k(\mathcal{T}_X) \ge \underbrace{h_{K_{\overline{X}'}+D}(x) - \delta h_H(x)}_{-O(1)}$$

large for small δ away from some Z

Birational geometry

- [Zuo 2000] $K_{\overline{X}'} + D$ is big.
- Remark [Brunebarbe 2017]: As soon as m > 12g, every subvariety of $\mathscr{A}_g^{[m]}$ is of general type. Uses the fact that $\mathscr{A}_g^{[m]} \to \mathscr{A}_g$ is highly ramified along the boundary. Implies a Manin-type result for full $\lceil p^r \rceil$ -levels.
- Can one prove a result for torsion rather than full level?
- Taking $H = K_{\overline{X}'} + D$ get by Northcott an observation on the right hand side of Vojta's conjecture

$$N_X^{(1)}(D,x) + d_k(\mathcal{T}_X) \ge h_{K_{\overline{X}'}+D}(x) - \delta h_H(x) - O(1)$$

large for small δ away from some Z

→□▶ →□▶ → □▶ → □ ♥ ♀ ♥ ♀ ♥

 $X(k)_{[p]} = k$ -rational points of X corresponding to ppav's A/k admitting a full-level p structure.

```
Lemma

Fix \epsilon_1, \epsilon_2 > 0. For all p \gg 0 and x \in X(k)_{[p]}, we have

(1)

N_X^{(1)}(D, x) \leq \epsilon_1 h_D(x) + O(1)
```

and

$$d_k(\mathcal{T}_x) \le \epsilon_2 h_D(x) + O(1)$$

Note: $h_D \ll h_H$ outside some Z.

Vojta gives, outside some Z

$$h_H(x) \ll N_X^{(1)}(D,x) + d_k(\mathcal{T}_X) \ll \epsilon h_H(x),$$

giving finiteness outside this Z by Northcott

- 4 ロ ト 4 昼 ト 4 差 ト - 差 - 夕 Q (C)

 $X(k)_{[p]} = k$ -rational points of X corresponding to ppav's A/k admitting a full-level p structure.

Lemma

Fix $\epsilon_1, \epsilon_2 > 0$. For all $p \gg 0$ and $x \in X(k)_{[p]}$, we have

(1)

$$N_X^{(1)}(D,x) \le \epsilon_1 h_D(x) + O(1)$$

and

(1)

$$d_k(\mathcal{T}_x) \leq \epsilon_2 h_D(x) + O(1).$$

Note: $h_D \ll h_H$ outside some Z.

Vojta gives, outside some Z

$$h_H(x) \ll N_X^{(1)}(D, x) + d_K(\mathcal{T}_X) \ll \varepsilon h_H(x)$$

giving finiteness outside this Z by Northcott

→ □ ト → □ ト → 重 ト → 重 → りへで

 $X(k)_{[p]} = k$ -rational points of X corresponding to ppav's A/k admitting a full-level p structure.

Lemma

Fix $\epsilon_1, \epsilon_2 > 0$. For all $p \gg 0$ and $x \in X(k)_{[p]}$, we have

(1)

$$N_X^{(1)}(D,x) \le \epsilon_1 h_D(x) + O(1)$$

and

(1)

$$d_k(\mathcal{T}_x) \le \epsilon_2 h_D(x) + O(1).$$

Note: $h_D \ll h_H$ outside some Z.

Vojta gives, outside some Z

$$h_H(x) \ll N_X^{(1)}(D,x) + d_k(\mathcal{T}_X) \ll \epsilon h_H(x)$$

giving finiteness outside this Z by Northcott

↓□▶ ↓□▶ ↓□▶ ↓□▶ □ ♥९♥

 $X(k)_{[p]} = k$ -rational points of X corresponding to ppav's A/k admitting a full-level p structure.

Lemma

Fix $\epsilon_1, \epsilon_2 > 0$. For all $p \gg 0$ and $x \in X(k)_{[p]}$, we have

(1)

$$N_X^{(1)}(D,x) \le \epsilon_1 h_D(x) + O(1)$$

and

(1)

$$d_k(\mathcal{T}_x) \leq \epsilon_2 h_D(x) + O(1).$$

Note: $h_D \ll h_H$ outside some Z.

Vojta gives, outside some Z,

$$h_H(x) \ll N_X^{(1)}(D, x) + d_k(\mathcal{T}_X) \ll \varepsilon h_H(x),$$

giving finiteness outside this Z by Northcott.

4□ > 4□ > 4□ > 4□ > 4□ > 900

$$(1) N^{(1)}(D,x) \ll \epsilon_1 h_D(x)$$

- x is the image of a rational point on $\mathscr{A}_{\sigma}^{[p]}$
- $\pi_D: \mathscr{A}_{\sigma}^{[p]} \to \mathscr{A}_{\sigma}$ is highly ramified along D (Mumford / Madapusi
- So whenever $(D|_{\mathcal{T}_{\nu}})_{\mathfrak{g}} \neq \emptyset$ its multiplicity is $\gg p$.

• So whenever
$$(D|_{\mathscr{T}_x})_{\mathfrak{q}} \neq \emptyset$$
 its
• so $N^{(1)}(D,x) \ll h_D(x) \underbrace{\frac{1}{p}}_{\mathscr{D}^{(2)}}$.

$$(1) N^{(1)}(D,x) \ll \epsilon_1 h_D(x)$$

- x is the image of a rational point on $\mathscr{A}_{\sigma}^{[p]}$
- $\pi_p: \mathscr{A}_g^{[p]} \to \mathscr{A}_g$ is highly ramified along D (Mumford / Madapusi Pera).
- So whenever $(D|_{\mathcal{T}_{\nu}})_{\mathfrak{q}} \neq \emptyset$ its multiplicity is $\gg p$.

• So whenever
$$(D|_{\mathscr{T}_x})_{\mathfrak{q}} \neq \emptyset$$
 its
• so $N^{(1)}(D,x) \ll h_D(x) \underbrace{\frac{1}{p}}_{\sim \ell_1}$.

$$(1) N^{(1)}(D,x) \ll \epsilon_1 h_D(x)$$

- ullet x is the image of a rational point on $\mathscr{A}_{g}^{[p]}$
- $\pi_p: \mathscr{A}_g^{[p]} \to \mathscr{A}_g$ is highly ramified along D (Mumford / Madapusi Pera).
- So whenever $(D|_{\mathcal{T}_x})_{\mathfrak{q}} \neq \emptyset$ its multiplicity is $\gg p$.

• so
$$N^{(1)}(D,x) \ll h_D(x) \underbrace{\frac{1}{p}}_{\sim \epsilon_1}$$
.

◆ロト ◆個ト ◆差ト ◆差ト 差 りゅつ

$$(1) N^{(1)}(D,x) \ll \epsilon_1 h_D(x)$$

- x is the image of a rational point on $\mathscr{A}_{\sigma}^{[p]}$
- $\pi_p: \mathscr{A}_g^{[p]} \to \mathscr{A}_g$ is highly ramified along D (Mumford / Madapusi Pera).
- So whenever $(D|_{\mathscr{T}_x})_{\mathfrak{q}} \neq \emptyset$ its multiplicity is $\gg p$.

• So whenever
$$(D|_{\mathcal{T}_x})_{\mathfrak{q}} \neq \emptyset$$
 its
• so $N^{(1)}(D,x) \ll h_D(x) \underbrace{\frac{1}{p}}_{\sim \varepsilon_1}$.

(2)
$$d_k(\mathcal{T}_x) \leq \epsilon_2 h_D(x)$$

- x corresponds to an abelian variety with many p-torsion points.
- Flexor–Oesterlé at any small prime $\Rightarrow h_D(x) \gg p^s$.
- x has semistable reduction outside $p \Rightarrow d_k(\mathcal{T}_x) \ll \log p$

• so
$$d_k(\mathcal{T}_X) \ll h_D(x) \frac{\log p}{p^s}$$
.

(2)
$$d_k(\mathcal{T}_x) \leq \epsilon_2 h_D(x)$$

- x corresponds to an abelian variety with many p-torsion points.
- Flexor–Oesterlé at any small prime $\Rightarrow h_D(x) \gg p^s$.
- x has semistable reduction outside $p \Rightarrow d_k(\mathcal{T}_x) \ll \log p$

• so
$$d_k(\mathcal{T}_X) \ll h_D(x) \frac{\log p}{p^s}$$
.

4日ト4個ト4差ト4差ト 差 からの

(2)
$$d_k(\mathcal{T}_x) \leq \epsilon_2 h_D(x)$$

- x corresponds to an abelian variety with many p-torsion points.
- Flexor–Oesterlé at any small prime $\Rightarrow h_D(x) \gg p^s$.
- x has semistable reduction outside $p \Rightarrow d_k(\mathcal{T}_x) \ll \log p$

• so
$$d_k(\mathcal{T}_x) \ll h_D(x) \underbrace{\frac{\log p}{p^s}}_{\sim f_2}$$
.

(2)
$$d_k(\mathcal{T}_x) \leq \epsilon_2 h_D(x)$$

- x corresponds to an abelian variety with many p-torsion points.
- Flexor–Oesterlé at any small prime $\Rightarrow h_D(x) \gg p^s$.
- x has semistable reduction outside $p \Rightarrow d_k(\mathcal{T}_x) \ll \log p$

• so
$$d_k(\mathcal{T}_x) \ll h_D(x) \underbrace{\frac{\log p}{p^s}}_{\sim \epsilon_2}$$
.