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1. INTRODUCTION

Throughout this paper, we work over C, the field of complex numbers.

1.1. Degeneration formula using expanded degenerations. Gromov-Witten theory
has been established and intensively studied in the past decades for compact symplectic
manifolds under the symplectic setting, and for smooth projective complex varieties under
the algebraic setting. We refer to [CK] for an extensive bibliography. This theory was later
extended to the case of smooth Deligne-Mumford stacks, see [CR, AGVO08].

An important remaining problem is how to calculate Gromov-Witten invariants in general.
The method we are interested in here is by means of degenerations. Consider 7: W — B, a
flat, projective family of schemes over a smooth, connected, and possibly non-proper curve B.
Let 0 € B be a closed point such that 7 is smooth away from Wy = W x g0, and the central
fiber W) is reducible with two smooth components X; and X intersecting transversally along
a smooth divisor D C Wy. We view D as a smooth divisor in X;, and write D; C X;. Then
we have two smooth pairs (X1, D1) and (X, Ds). It is well-known that the smooth fibers all
have the same Gromov-Witten invariants. It is natural to ask the following questions:

Problem 1.1.1. Can we define Gromov-Witten theories for the singular fiber W and the
pairs (X;, D;) such that
(1) The Gromov-Witten invariants of W are the same as those of the smooth fibers;
(2) There exists a degeneration formula that relates the Gromov-Witten invariants of
Wy, and hence of the smooth fibers, to the relative Gromov-Witten invariants of
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In the situation described above, these problems were answered under symplectic setting
by A.M. Li and Y. Ruan [LRO1], and about the same time by E.N. Ionel and T. Parker
[IP03, IP]. On the algebraic side, these were worked out by Jun Li [Li00, Li02]. Their
approach uses the method of expanded degenerations — a surgery on the target which
forces the stable maps to be non-degenerate, namely no components of the curves mapping
into the singular locus of Wy or the divisor D;.

The objects studied in Jun Li’s setting are called the predeformable maps. One difficulty
of this theory is that the predeformability is in general not an open condition. The usual
deformation theory of stable maps, hence the usual construction of perfect obstruction the-
ory, does not work for predeformable maps. Jun Li’s study of the deformation theory of
predeformable maps was inspired by log structures. However he did not use log structures
explicitly, as at the time he developed the theory of predeformable maps, the theory of
logarithmic cotangent complex [O1s05] has not been developed yet.

Another approach that combines the method of expanded degenerations and the orbifold
techniques was recently introduced by Dan Abramovich and Barbara Fantechi [AF]. By tak-
ing the suitable root stacks along singular locus, they constructed transversal maps over each
predeformable map. Since the transversality is open, the construction of perfect obstruction
theory for transversal maps is more transparent. A degeneration formula was proved in [AF]
by systematically using the orbifold techniques.

Based on Jun Li’s construction, B. Kim introduced his notion of logarithmic stable maps
[Kim] by putting certain log structures along the nodes of the source curves, and the singular
locus of the targets. This can be viewed as a generalization of the idea of admissible covers
revisited by Mochizuki [Moc95| using log structures. Then using logarithmic cotangent
complex in the sense of [Ols05], B. Kim construct a perfect obstruction theory for the stack
of the log stable maps. However, he did not give a degeneration formula under this setting.

1.2. The goal and outline of this paper. This paper is aimed at obtaining the degenera-
tion formula in Theorem 7.1.3 by applying the method developed in [AF] to Kim’s log stable
maps. However for the purpose of the degeneration formula, the log structures for log stable
maps in this paper are slightly different from the one in [Kim]: besides Kim’s log structure
along singular locus, the log maps in this paper were also equipped with the standard log
structures coming from both marked points of the source curves and the smooth divisors of
the targets. The stack parameterizing the log stable maps in this paper will be constructed
by following the same proof in [Kim|. We refer to Section 2 for the log structures we used
on curves, and Section 3 for the definition of log stable maps, and the construction of the
stacks.

The idea of constructing virtual fundamental class with log cotangent complex in the sense
of [Ols05] was first introduced in [Kim]. In this paper, we will adopt this idea. However, the
formation of our virtual fundamental class will be similar to the one in [AF]. Section 4 is
devoted to construct the virtual fundamental class, and study its behavior under the base
change, which will be important in the proof of the degeneration formula.

In Section 5, we will introduce the targets and their moduli spaces that are related to
Problem 1.1.1. It will be proved that those stacks are similar or even identical to the ones in
[AF]. Then we collect some splitting results in [AF] for those stacks. The Gromov-Witten
invariants for the targets introduced in Section 5 will be defined in Section 6.

Section 7 is devoted to prove the degeneration formula using the method in [AF]. The
main difficulty here is to study the gluing of the log maps. Unlike the situation in [AF],
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the gluing of log maps can not be expressed as a push-out diagram. However, the possible
log structures on the glued underlying maps can be expressed as tuples of isomorphisms of
certain line bundles. This still gives a way for us to compare the virtual fundamental classes
of the stacks of relative log stable maps and the stack of log stable maps with fixed splittings.

Finally we give an appendix, which collect some results of log geometry that we will use
in this paper.

We would like to point out that the degeneration formula constructed in this paper has
the same formation as in [AF]. Indeed, we further expect the theory of transversal maps
in [AF] is equivalent to the theory of log stable maps in the sense of this paper, and are
planning to explore this in the subsequent paper.

1.3. Other approaches. As early as in 2001, another approach using logarithmic structures
without expansions was first proposed by Bernd Siebert [Sie01]. The goal here is also to
obtain the degeneration formula, but in a much more general situation, such as normal
crossing divisors. However, the program has been on hold for a while, since Mark Gross and
Bernd Siebert were working on other projects in mirror symmetry. Only recently they have
taken up the unfinished project of Siebert jointly. In particular, they succeeded to find a
definition of basic log maps, a crucial ingredient for a good moduli theory of stable log maps
with a fixed target [GS]. Their definition builds on insights from tropical geometry, obtained
by probing the stack of log maps using the standard log point. This theory is expected
to cover the case of targets with arbitrary fine and saturated log structures, or even with
relatively coherent log structures. In particular, this includes the class of deformations Gross
and Siebert need in their mirror symmetry program [GS09, 2.2].

Along this approach, another theory of minimal log stable maps was established recently by
Dan Abramovich and the author [Che, AC], which gives a compactifications of moduli spaces
of stable maps relative to certain toric divisors. This covers many cases of interesting, such as
a variety with a simple normal crossings divisor, or a simple normal crossings degeneration of
a variety with simple normal crossings singularities. Using the theory of minimal log stable
maps, a further program for the degeneration formulas in more general situations is on its
way.

A different approach using exploded manifolds to studying holomorphic curves was recently
introduced by Brett Parker in [Par09al, [Par09b], and [Par09c|. It also aimed at defining
and computing relative and degenerated Gromov-Witten theories in general situation. It
was pointed out by Mark Gross that this approach is parallel, and possibly equivalent to the
logarithmic approach.

1.4. Acknowledgements. I would like to thank my advisor Dan Abramovich for suggesting
the problem of this paper, giving me many enlightening suggestions and encouragement. I
would also like to thank Mark Gross, and Bernd Siebert for their helpful conversations.

2. MINIMAL LOG PRESTABLE CURVES

2.1. Log prestable curves. Let (C' — S, {%;}! ;) be a usual genus g, n-marked prestable
curve over S, where ¥; is the ¢-th marking for : = 0,--- ,n.

First consider the family of curves C' — S without markings. By [Kat00] and [Ols03b],
there is a pair of canonical log structure Mg/ % and Mg/ % on the fiber and base respectively,
and a log smooth, integral morphism 7 : (C’,Mg/s) — (S,Mg/s) whose underlying map
coincides with C' — S. This canonical log structure has the following universal property
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that for any other log smooth, integral morphism = : (C, M¢) — (S, Mg), there is a unique
(up to a unique isomorphism) pair of morphisms of fine log structures Mg/ 5 M and
./\/lg/ 5 Mcgon S and C respectively, which give the following catesian diagram:

(2.1.1) (C. Mc) — (C, M(!®)

J |

(S, Ms) — (C, MZ®).

Remark 2.1.1. Let Sing{C/S} be the set of connected singular locus of C' over S, and
assume that S is a geometric point. For each p € Sing{C/S}, there is a rank 1, locally free
log structure AV, on S, which smooths the singular locus p. We have the decomposition:

C/S ~
M= 3 N
peSing{C/S}
where the sum is taken over O%.
In order to do the degeneration formula, we would like to also put log structure on mark-

ings. Note that the n markings {¥;} corresponds to n disjoint smooth divisors in C' over
S. By [Kat89, 1.5(1)], there is a canonical log structure associated to the smooth divisors

described as follows. Etale locally we choose a generator o; for the ideal sheaf J; that defin-
ing the divisor corresponding to ;. There is canonical log structure N; which is the log
structure associated to the pre-log structure N — O¢ sending 1 to ;. Now we have another
canonical log structure taking into account the markings:

(2.1.2) ./\/ljj = Mg/s Doo M Dos No Do, - Pos N,,.
We also have a log smooth map 7# : (C, M%) — (S,Mg/s), induced by the canonical log

structure without markings. Consider any log morphism 7 : (C, M¢) — (S, Mg) such that

(1) The underlying map C' — S is family of prestable curves with n markings {¥;};
(2) There is another log structure My, on C, such that

Me = ICEBZM;

(3) The log morphism 7 is induced by a log smooth, integral map (C, M) — (S, Mg).
The universal property as in (2.1.1) implies that there are a unique pair of morphisms of log
structures ./\/lﬁc — M and ./\/lg/ 5 Mg fitting in to the following catesian diagram:

(2.1.3) (C, Mc) —— (C, M)

l |

(8, Ms) — (C, MS"®).

Definition 2.1.2. A triple (C' — S, {Z‘i}?:l,./\/lg/s — Mg) is called a genus g, n-pointed
log prestable curves over S, if
(1) (C — S,{3;}~,) is a usual genus g, n-pointed prestable curve over S;

(2) /\/lg/ S M s is a morphism of fine log structures, where /\/lg/ % is the canonical log
structure as in (2.1.3).
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Denote by M¢ the log structure on C' given by (2.1.3). In the rest of the paper, we will use
(C/S, Mg) to denote the log prestable curve over S, when there is no confusion about the
markings and the canonical log structure on the base.

An arrow (C7 — S1, Mg ) — (Cy — S3, Mg,) between two log prestable curves is a
cartesian diagram of log schemes:

(017 MC1) B (027 Moz)

J l

(Sla M51> — (527 MSQ)’
where the bottom arrow is strict as in Section A.1.2.

2.2. Minimality condition. We introduce the minimality condition on log pre-stable curves
as in [Kim, 3.7].

Definition 2.2.1. A log prestable curve (C' — S, MS/S — Mg) over S is called minimal if
it satisfies the following two conditions:

(1) the log structure Mg is free, and there is no proper free sub-log structure of Mg
containing the image of Mf;/ S;
(2) for any s € S and irreducible elements b € Mgs, there is an irreducible elements

-—C/5 P
ae M S,/§ such that a — [ - b for some positive integer [.

Remark 2.2.2. It was proved in [Kim, 5.3.2] that the minimality condition is an open
condition.

2.3. Extended log structure on curves. For the purpose of degeneration formula, we
need to introduce the extended log structure on minimal log prestable curves.

Definition 2.3.1. A log prestable curves (C' — S, {Zi}?zl,/\/lg/s — Mg) over S is called
extended minimal log prestable, if there is a sub-log structure My — Mg, such that

(1) the arrow Mg/s — Mg factors through Mg/s — M;
(2) the log prestable curve (C' — S, M) is minimal;
(3) locally we have a chart for ./\/lg/ 5 My — M5 as follows:

Mg/54>Miq—>Ms

T | ]

N™ NE N" @ Nn’

Proposition 2.3.2. The stack ?)ﬁgﬁ’; parameterizing genus g, n-pointed extended minimal
log prestable curves is an algebraic stack.

Proof. Consider the log stack Logsy,, as in Section A.2. By the discussion in Section A.2,
the stack Logoy,, parameterizing all log smooth curves. By Remark 2.2.2, the extended
minimal log prestable curves forms an open substack of Logon,, . This proves the statement.

O
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2.4. Curves with disjoint components. Let V' be a finite set with two weight functions
g:V—-Nandn:V —N.

Definition 2.4.1. Consider a family of curves C' — S, such that C' is the disjoint union of
C, for all v € V| where C, — S is a usual family of prestable curves of genus g(v) and n(v)

marked points. We call such C' — S the prestable curves with disjoint components of data
V.

Note that there is a canonical log structure on S given by

MES =5 MG,

veV

This induces a log structure on C, by (2.1.3), hence a canonical log structure ./\/lﬂc on C.
Similarly, we have the following definition:

Definition 2.4.2. Let C' — S be a family of prestable curves with disjoint components of
data V. A tuple (C' — S, Mg/s — M%) over S is called a minimal log prestable curve with

disjoint components over S, if the morphism of log structures Mg/ S M satisfies the two
conditions in Definition 2.2.1. It is called extended minimal log prestable curves with disjoint

components, if Mg/ 5 M satisfies the three conditions in Definition 2.3.1.

Note that the stack parameterizing prestable curve of disjoint components of data V is
given by
My =[] My
veV
where 9y ,) n(v) is the algebraic stack of genus g(v) prestable curves with n(v)-marked points.
Note that 9ty has a canonical log structure, which comes from the canonical log structure
of each My () n(w)- Thus, we can view My as a log stack.

jointCurve| Proposition 2.4.3. The stack M parameterizing extended minimal log prestable curves
with disjoint components of data V' is an open substack of Logon,, hence is an algebraic
stack.

U

Proof. The proof is identical to the one for Proposition 2.3.2. [

3. LOG STABLE MAPS
ral-target

In this section we introduce our log structures on Jun Li’s predeformable maps [Li00].
This is mainly Kim’s log structure as in [Kim|, but we add the standard log structures on
markings and the fixed divisor on the target as in Section A.3.1. Such difference is mainly

for the purpose of the degeneration formula as in Theorem 7.1.3.
gStrTarget

3.1. Kim’s log structure on the target. Here we gathering some of the definitions and
results in [Kim, section 4].

i1

f:FM-space| Definition 3.1.1. An algebraic space W over S is called a Fulton-Macpherson (FM) type
space if
(1) W — S is a proper, flat map;
(2) for every closed point s € S, étale locally there is an étale map
W§ - SpeCk(§> {JI, Y, 21, 7ZT—1]/(‘Ty)

where z,y and z; are independent variables with the only relation xy = 0.



equ:log-FM
og-special

g-twist-FM

THE DEGENERATION FORMULA FOR LOGARITHMIC EXPANDED DEGENERATIONS 7

Consider a FM type space W — S| if it admits a log smooth morphism
(3.1.1) T (W, MUY = (8, METS),
then we call W — S the log F'M type space.

Remark 3.1.2. Recall that in [Ols03b], the log smooth morphism 7 in (3.1.1) is called
special if:
(1) M%/S and MZV/S are free;

, S —=W/S . . N .
(2) For any w € W, the induced map 7° : 7 *MW/ ng{,‘, is an isomorphism if w is
a smooth point of W — S, or part of the cocatesian diagram

A:er—eq+es

N N?
] |
—W/S W/S

MTI’('LU),S M

when w is in the singular locus, where h(e) is an irreducible element.

(3) There is a bijection induced by the above diagram
IrrWsan N IrrML/VS/,S’

where IrrWSi"g is the set of irreducible components of the singular locus of W5 and
Il"l"./\/ls S is the set of irreducible elements of MW/S.

Such log structure on W and S is called the canonical log structure associated to the log FM
type space W — S.

Definition 3.1.3. A pair (W — S, MW/S — M) is called an extended log twisted FM type
space over S, if W — S'is a log FM type space, and the morphism of log structures M?// 5
M on S is simple. Namely, étale locally at any point s € .S, there is a commutative diagram
of charts:

M;V/S » Mg
= we
T, s T'm id,0

where the first bottom map is the diagonal map, and the maps 6"/ and 6 induce an
isomorphism from N to M?ZS, and N™ & N” to MS 5 respectively.
The integer r; is called the log twisting index. If n = 0, then the pair (W — S, Mg

M) is called a unextended log twisted FM type space or just log twisted FM type space. As
in the case of curves, the log structure on W is given by

My = 75 (Mg) @ MUE.

w/s

A4wvs)
Note that we have a log smooth, integral map (W, My) — (S, Mg).

Definition 3.1.4. We call (W — S, D) a smooth pair over S, if D < W — S is a smooth
divisor of W over S.

Similarly we have the following:
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Definition 3.1.5. A triple (W — S, D,M;V/S — Mg) is called a (un)extended log twisted

smooth pair over S, if (W — S, M;V/S — M) is a (un)extended log twisted FM type space,

and (W — S, D) is a smooth pair. We denote MP to be the log structure associated to the
divisor D, thus the log structure on W is defined to be

. w/s
My = 7" (Ms) . gwss) MY o, MP.
Note that we have a log smooth morphism (W, My, ) — (S, Mg).

Notation. For simplicity, we will use (W — S, M) to denote the extended log twisted FM

type space or smooth pair when there is no confusion about the map M;V/ S M s and the
divisor D.

Definition 3.1.6. Consider two extended log twisted FM type spaces or smooth pairs
(W; — S;, Mg,) for i = 1,2. An arrow (W, — Si, Mg,) — (Wy — Sz, Mg,) is a cartesian
diagram of log schemes as follows:

W1 HWQ

|

51%32

where the bottom arrow is strict.

Consider a stack B, which parametrizes one of the following objects:

(1) a pair (W — S, W — X x S) such that W — S is log FM type space, and X is a
fixed scheme;
(2) atuple (W — S, D, W — X x S) same as above but with a smooth divisor D in W.

We assume that B is an algebraic stack, and &/ — B is its universal family. Thus B has a

log structure given by Mg/ 5 the canonical log structure given by this family. We view B as
a log stack with this canonical log structure.

Lemma 3.1.7. With the above assumption, the stack B*™ (respectively B ), which parametrizes
(respectively extended) log twisted FM type space (or smooth pair) is an algebraic stack.

Proof. By Definition 3.1.3 and 3.1.5 and [Ols03a], the stack B™ (respectively B") is an
open substack of Logp, hence an algebraic stack. 0

Remark 3.1.8. We have a natural map 7 : BY — B by removing the extended log
structures. In this way, we view B as a log stack over B*. By [Ols03a, 3.19], there is an
open immersion B — Bev,

Remark 3.1.9. In Section 5, we will introduce the stacks of expanded pairs and expanded
degeneration. Those stacks will satisfy the conditions for B as above.

3.2. Log Stable Maps. Next we introduce Kim’s definition for log stable maps [Kim,
section 5], with the only difference that we have the standard log structure given by markings
on the source curve and the smooth divisors on the target.

Definition 3.2.1. A log morphism
§: (f: (C, M) = (W, Mw))/(S, Ms)

is called a (g,n) log prestable map over S if:
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(1) (C — S, Mg) is a genus g, n-pointed, extended minimal log prestable curve.

(2) (W — 8, Mg) is an extended log twisted FM type space.

(3) (Corank condition) For every point s € S, the rank of Coker(./\/l?fs/s — Msg,)
coincides with the number of non-distinguished nodes on Cs.

(4) f:(C,M¢g) — (W, My ) is a log morphism.

(5) (Log admissibility) the morphism of log structures f*: f* My — My is simple at
every distinguished node.

In case the source has disjoint components, the definitions are the same, except we put the
conditions for genus and marked points on each connected components separately. Here a
node is called distinguished if it maps to the singular locus of W, otherwise is called non-
distinguished.

Definition 3.2.2. An arrow £ — £’ between two log prestable maps is a log commutative
diagram:

(C,M¢) (W, M)
(S, Mg)
(C', M) (W', M)
e

where the top and bottom triangles correspond to £ and £ respectively, the three side squares
are all cartesian of log schemes, and the vertical arrow (S, Mg) — (S’, M) is strict.

Remark 3.2.3. (1) The corank condition implies that the log structure on the base is
coming from the singular loci of W and the non-distinguished nodes. It was proved
in [Kim, 5.3.2] that corank condition is an open condition.

(2) It was shown in [Kim, 5.1.2] that with conditions (1) - (4), the log admissibility forces
the underlying maps to be predeformable in the sense of [Li00].

Remark 3.2.4. For later use, we would like to give a short description of log prestable maps
at the distinguished nodes as in [Kim, 5.2.3]. Assume that S = Speck is a geometric point.
Let D' € W be a connected singular locus, and pq,--- ,p be the distinguished nodes that
map to D’ via f, and ¢y, -+ , ¢ is the corresponding contact order at each p;. Denote by

r=1lcm(c, - ,¢) and [ =71/c.

Let m and m’ be the number of disjoint singular loci and non-distinguished nodes. Then
locally at p; and f(p;) we have charts given by

(N2 @y N) @ N™*™ =1 M,

and
(N? oy N) @ N™ =1 My,
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where the first amalgamated sum are given by the push-out of:

e—l-e/

N——N

eb—»a—f—bl

N2
and the second amalgamated sum are given by the push-out of:

er—r-e/

N——N

e»—>x+yJ{

N2

On the level of charts, the morphism of log structures f* My — Mg is given by identity
on N™*+™' =1 and the following diagram:

—(ci-a,c;i-b)

(@)

N id N2 @y N

em %)
N

We remark that such description also holds when the source curve has disjoint components.

N2 ¢y

Remark 3.2.5. As pointed out in [Kim, 5.3.1], if the target W — S is a family of smooth
projective variety over S, then any stable map to such target is an underlying usual stable
map equipped with the canonical log structure from its underlying curve. In this case, all
nodes are non-distinguished.

Let (W — S, D) be a smooth pair. Denote by N the index set of all marked points with
IN| =n, and M C N asubset. Let ¢ = (¢;);jem be the tuple of positive integers, which will
be the assigned tangency multiplicity at the marked points indexed by M.

Definition 3.2.6. A log map
(f : <C7MC) - (VV7 D7MW>>/<SJM5)

is called a (g,n) relative log prestable map over S with tangency condition c if:

(1) By removing the log structure associated to D, the map f is a (g,n) log prestable
map over S.

(2) The underlying map of f is non-degenerate, namely no component of C' maps into
D via the map f.

(3) The marked points indexed by M has assigned tangency multiplicity ¢ such that

f+[C].D = ZJEM cj.
Similarly when the source curves has disjoint components, we put the conditions for genus,
marked points and the intersection multiplicity on each connected components separately.

Remark 3.2.7. For any j € M, with log structure put on marked points >; and the smooth
divisor D, the underlying map induces the map M* — f*(M?P), which étale locally has the
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following chart:
f*(MD) N ME

T log x+—c;-log & T
N N

where z and 0 is the local coordinates whose vanishing correspond to ¥ and D respectively.
Since the underlying map is non-degenerate by Definition 3.2.6(2), the morphism of log
structures f” along the marked points with tangency condition is uniquely determined by the
underlying map. Note that the tangency condition with log structures is an open condition,
for example see [Che, Precise location).

Definition 3.2.8. [Kim, 5.2.4] Let W — S be equipped with a map wx : W — X from W
to a scheme. A (relative) log prestable map defined as above is called log stable if for any
point s € S, the group of automorphisms (o, 7) is finite where

(1) o is an automorphism of (C'— S, Mg)s preserving the marked points.

(2) 7 is an automorphism of (W — S, Mg)s preserving Wy — X.

(3) Tofs= fso00.
The automorphism of the underlying maps can be defined similarly without considering the
log structures.

Remark 3.2.9. It was shown in [Kim, 6.2.4] that f is log stable if and only if the underlying
map f is stable.

Definition 3.2.10. A (relative) log stable map f is said to have curve class § € Hy(X,Z),
if (mx o f)«|Cs] = B for every point s € S.

Next we consider the case when the source curves has disjoint components. We fix a
smooth pair (W — S, D) and amap 7y : W — X x S. Follow [Li00] and [AF], we introduce
the following refined data for disconnected relative log stable maps.

Definition 3.2.11. An admissible weighted graph = is a collection of vertices V(Z), legs
L(Z) and roots R(Z) but with no edges, coupled with the following data:

(1) each vertex v € V(E) is assigned a non-negative integers g(v), and and a curve class
B(v) € Hy(X;Z);
(2) each root j € R(Z) is assigned a positive integer c;;
Furthermore, we require the graph = to be relatively connected, i.e. either V' (Z) contains a
single element or each vertex in V' (Z) has at least one root attached to it.

For each vertex v € V(Z), we denote R, and L, to be the sets of roots and legs that
attached to v.

Definition 3.2.12. A log morphism
(f : <C7MC) - (VV7 D7MW>>/<57MS)

is called a =-relative log stable maps over S if

(1) C is a disjoint union of {C,},cv(z) such that each (C' — S, Mg) is an extended
minimal log prestable curves with disjoint components over .S with genus and marked

points on each connected component given by g(v) and R, U L, respectively.
(2) The curve class for each f|¢, is B(v).
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(3) The map f is a relative log prestable map with assigned tangency multiplicity c¢;
along the marked points indexed by j € R, such that 3(v).D =35 ¢;.
(4) The map f satisfies the stability condition in Definition 3.2.8.

:map-stack

3.3. Stack of log stable maps. We fix the stack B as in Lemma 3.1.7. Denote by U —
B the universal family over B. Define K% (U/B, 3) (resp. KL (U/B)) to be the stack
parameterizing (resp. relative) log stable maps of genus g, n marked points with curve

class § (resp. with data Z). Similarly, we define KC,, (U/B,3) and Kz(U/B) to be the
stack parameterizing the underlying structure of the log stable maps. For simplicity, we use
the short hand notation K¢ for Kles(U/B, B) or KL (U/B), and Ky for K, (U/B, ) or
K=(U/B).

deformable| Remark 3.3.1. The maps parametrized by Kz is called stable predeformable maps as in
[Li00]. Consider a fixed stable predeformable map. It was shown in [Kim, 6.3.1(2)] that
there exists (not necessarily unique) log stable maps whose underlying structures is identical
to the given predeformable map.

Note that we have a map
IClBog _ mlog X 10 Betw
by sending a map to its source log curve and target. Here 9t/ is the stack parametrizing the
source log curves, which can be either i)ﬁg”;f as in Proposition 2.3.2 or My, as in Proposition
2.4.3, and the product is in the category of log stacks. Similarly, we have the map

/CB—>§)JI><B

where 91 is the stack parameterizing corresponding curves without log structures. The
following result is proved in [Kim)].

tackForMap| Theorem 3.3.2. If the stack Kp is a proper DM-stack, then so is IC%OQ.

Proof. When the target is log FM type spaces, it was shown in [Kim, 5.3.2] that IC%OQ is a
locally closed substack of Kz Xonxs I X roc B, therefore an algebraic stack. When the
target is smooth pairs, the map of log structures on the markings are uniquely determined
by the underlying structure as in Remark 3.2.7. Thus the same proof as in [Kim] still holds.
The properness is proved in [Kim, 6.3.2]. Finally, since we are working over an algebraic
field of characteristic zero, the finiteness of automorphisms implies the diagonal of ng’g is
unramified.

ckSmTarget | Remark 3.3.3. Let us consider the case where the target is a smooth projective variety X.
By Remark 3.2.5, the stack IC;?,%(X ,3) is the usual stack parameterizing stable maps to X
from genus g, n-marked curves with curve class 3. The log structure on lCé‘fz(X ,3) is the

canonical one corresponding to the smoothing of its universal curves.

ondistNode| Remark 3.3.4. Note that the structure arrow K'% — B factor through K9 — B — Bt
In fact, it is convenient to view lcﬁgg as a log stack over B, On the one hand, relative to B
still gives the information of the log structure along each singular locus of the target. On
the other hand, we get rid of the information of log structures from the non-distinguished
nodes. Later we will construct a perfect obstruction theory relative to B

BaseChange| Remark 3.3.5. Consider any 7" — B. Denote by Ur = U xg T the universal family over T,
and p : Ur — U to be the projection. Let ' be the curve class in the fiber of Ur induced
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by 5. Denote by = the data obtained by replacing § with /" in =Z. Let I to be either
KgnUr /T, ) or Ke(Ur/T). Then we say that Kg is well-behaved under base change, if we
have the following catesian diagram:

ICTH/CB

|

T ——B.

Here the top arrow is given by sending a log map f to po f. With this assumption, it is not
hard to see that the log stack ICZQ is also well-behaved under base change, namely we have
the following catesian diagram:

log log
Kp® — Ky

|

Ttw — Btw

|

T——B.

4. THE OBSTRUCTION THEORY AND VIRTUAL FUNDAMENTAL CLASSES

In this section, we use the method developed in [AF, Appendix C] to define the perfect
obstruction theory for the log stable maps. Denote by L' and LY the Olsson’s and Gabber’s
log cotangent complex respectively in the sense of [Ols05]. We use L for the usual cotangent
complex. We refer to [Ols05] for properties of these log cotangent complexes.

4.1. Perfect obstruction theory for (relative) log stable maps. We adopt the nota-
tions in Section 3.3. Denote by C the universal curve over Ki?. Let U™ and U™ be the
universal families of targets over B and B¢“ respectively. By Remark 3.3.4, we have the
following commutative diagram of log stacks:

(4.1.1) CN

) Z/{;étw — Yt —3 ftw
\

Nl

]Cé;)g RN Betw RN Btw’

where the squares are all cartesian squares of log stacks, and f is the universal (relative) log
stable map. By the functoriality of Gabber’s log cotangent complex [Ols05, 8.24], we have
triangles

(4.1.2) F*Ljgrw pew — Lo — LY
and

*7 G G G
(413) f Lu,%tw//ClBOg — LC/’CZBOg — Lf .
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By [Ols05, 8.29] and the definition of the log stable maps, we have

G ~ T log G _ 1 log
Lu’ectw/uetw - Lu}ectw /uetw? Lulectw//ClBOQ - Ly}%w/]dé’.@’
and
G _ 71 log
LC/zc’gg - LC/zcg’g'

Thus, by (4.1.3) we have the following triangle

x1 log log log
(4.1.4) f Lufctw/lclgg — LC/ICg’g — Lf .

This gives a canonical isomorphism Li?g = L?. Denote by L the log cotangent complex
Llog'
f

Lemma 4.1.1. L'

~ % log
U’fétw/utw - w L

,ng /Bt

Proof. By [Ols05, 3.2], the log cotangent complex Lig;qog - is the usual cotangent complex
B

of the map of algebraic stacks:

h: K — Loggew

where the above map is induced by the map of log stacks lcﬁ_,;’g — B™. By our construction
of log stable maps, the image of & lies in the open sub-stack B““ C Loggiw. Thus, we have

Similarly, we have
Ly jye = Luggro seen.
Note that the squares in (4.1.1) are cartesian squares of log stacks. Now the statement
follows from the base change of usual cotangent complex. [ O
By Lemma 4.1.1 and (4.1.2), we have an arrow Lg[—1] — q*Ligic'g/Btw' Let w, be the

dualizing complex of ¢, then it is a line bundle sitting in degree —1. By tensoring with wy,
we have
*7 lo
Lo®w,[—1] — ¢ L,Cg ® wy.

ng/Btw

B

Since q!(Ling"g/Btw) = q*Lﬁng?g/Bm ® wy, and ¢ is left adjoint to ¢., we have an arrow
lo

(415) Q*<L|:| & wq[_l]) - LICZOQ/B““.

Denote by E,CzBog e = @(Lo ® wy[—1]). A standard argument yields:

(4.1.6) EKlBog/Bm ~ (¢.(Lo)Y)Y[-1].
Proposition 4.1.2. The arrow E,ngg g Ligég /g in derived category gives a perfect

obstruction theory relative to BEv.

Proof. Note that Lo = L?. The obstruction theory argument follows from the deformation
theory of Gabber’s log cotangent complex [Ols05, 8.31]. Since the families are log smooth,
by [Ols05, 1.1(iii)] we have

G o] log ~ / log
f*LZ/{fth/lClBog = f*Lulectw/KlBOg - (f >*Qutw/5tw
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and

lo lo
LG ., LY, ~Qly
c/Kles c/Kle c/Ke

By (4.1.3), L is the cone of the following locally free sheaves:

*ylo lo
(417) (f/) ngw/Btw - QC;]’CIBOQ.

Since g is proper and flat of relative dimension 1, we have EKzBog B = Re. (Lo ® wy[—1]) is
perfect in [—1,0]. O
By [BF97] and [Kre99], the perfect obstruction theory Ejcio0 /00 giVES 2 virtual fundamental

class of K9 relative to B“. Denote by [Kjg?] the resulting virtual cycle.

Remark 4.1.3. Consider the morphism 7 : B — B given in Remark 3.1.8. The map 7
is smooth in the usual sense. Consider the following map of complexes in derived category:

E]Clog/Btw [—1] — LT'
Denote by Ficiog /5w the cone of the above morphism. By [BL00, Al], we have a map

FICZDQ/BM’ - L/ClBOg/B“”’

which gives a perfect obstruction theory for ngg relative to B*. Furthermore, the virtual
fundamental class induced by Fioq /510 coincides with the one given by Ejog /.

4.2. Comparison of the virtual fundamental class when target is smooth. When
the target is a smooth projective variety X over S = SpecC, we assume that X and S are
log schemes with trivial log structure. We have already seen in Remark 3.3.3 that the stack
K= lclgfg (X, ) is the stack M, ,,(X, ) of usual stable maps with the canonical log structure
given by its universal curves. We have the following universal diagram:

C]c L) X
J"
K,

where Cx is the universal family of curves, and f : Cx — X is the universal map over K. In
this case, the log cotangent complex L is giving by the cone of the following:

FOx — Q% .

Then Ex/s = ¢.(Lo ® wy[—1]) gives a perfect obstruction theory for K relatively over S,
where S parametrizes log schemes with free log structures over S.

On the one hand, let 9, , be the stack of usual genus g, n-pointed prestable curves.
Denote by C,, the universal curves of M, ,,, and Myy, , the canonical log structure of M, ,
as in Section 2.1, which is locally free. Since 91,,, can be viewed as a smooth (hence log
smooth) stack with free log structures over S, we have a natural smooth map 9, — S*.

On the other hand, we have a natural map K — 91, ,,. Note that the log structure on £ is
given by the pull-back of Mgy, via this map. Therefore, we have a commutative diagram
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of log stacks:

(4.2.1) K

N

h1
M, 2 Geat

Since h; is strict, by [Ols05, 3.2] we have Lj, = ng‘;tggn.
Consider the following

Cyn — My, — S,
This induces a triangle
Ly, = L&, = Q0
hence a map ng,n/m?g,n[_l] o q*Lg‘;{m. Repeat the argument in Section 4.1, we obtain an
obstruction theory:

lo lo
q*(QOgg,n/smg,n ® wy)[—1] — Limgg,n'

Since h; is smooth in the usual sense, by [Ols05, 5.6] and [GLB00, 17.9.1] the above map is
an isomorphism, namely

~ lo
(4.2.2) Li, = q.(Q5) o, © wg)[—1].
By [BF97], we have a perfect obstruction theory

q>)<<f*QX ® w‘]) - L’C/Qﬁg,n

for K relative to M, ,. This induces the Behrend-Fantechi virtual fundamental class for K.
By (4.2.1), we have the following composition of maps

(4.2.3) ¢ (" Qx ® wg)[—1] — Licom, . [=1] — gL, .

Let F be the cone of (4.2.3). Then F induces a perfect obstruction theory of K relative
to S¢**. By [BL00, Al], the virtual fundamental class associated to F coincide with the
Behrend-Fantechi class.

By (4.2.2), F is the cone of

¢ (f*Qx @ wy)[-1] — Q*(ngjn/smgm ® w,)[—1].

Comparing with (4.1.5), we have F' = Ej g, where Ej /g is the perfect obstruction theory
constructed in Section 4.1. This gives the following result:

Proposition 4.2.1. If the target is a smooth projective variety over C, the virtual funda-
mental class [K] induced by Ex g coincides with the Behrend-Fantechi class.

4.3. The perfect obstruction theory under base change. Assume that the stack Kz
behaves well under base change as in Remark 3.3.5. Then the stack ICZ?Q is also well-behaved
under base change. Consider a morphism v : T — B. We have the following base change
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diagram from Remark 3.3.5:

log ¢ log
Kl s ke

|

Ttw - Btw

|, |

T——B8.
Proposition 4.3.1.
Eyios jpew = L6 Byon g
Proof. Note that we have the following catesian diagram of log stacks:

)

log ¢ log
Kp? — K5,

where C is the universal curve over IClgg. Denote by L the corresponding complex over Cr
as in Section 4.1. Since L is the cone of (4.1.7), and the family of targets are both log
smooth and integral over the base, we can pull-back the complex via 1. Then we have a
canonical isomorphism

Ly = L(¢')"Lo.

Furthermore, we have the canonical isomorphism of dualizing complexes
wy = L(¢') w,.

Thus, we have the following:

E;Cl;g/Ttw = RQL(L(QZS,)*( /D ® wq’[_l])) = L¢*(RQ*<LD & wq[_1]>> = Lgb*EKzBog/Btw.

Note that the middle isomorphism follows from the usual base change theorem and the proof
of [BO95, 1.3], where the proof still works when the fiber is a family of prestable curves.
This finishes the proof of the statement. [ ([l

Denote by [ICl;g | the virtual fundamental class of IClTog relative to T given by B, .00 [Tt
T
Then the above proposition implies that:

Corollary 4.3.2. [K!%9] = ¢*([K]).

5. EXPANDED PAIRS AND DEGENERATIONS

Following [Li00] and [AF], we will introduce expanded pairs, degenerations, and their
stacks. Since they are log FM type spaces as in Definition 3.1.1, we will consider the corre-
sponding log stacks as in Lemma 3.1.7.
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5.1. Log twisted half accordions and log twisted expanded pairs. Consider a smooth
pair (X, D), where X is a smooth projective scheme, and D C X is a connected smooth
divisor. Denote by Np,x the normal bundle of D in X, and P = Pp(Op @ Np,x) the pro-
jective completion of the normal bundle Np,x. Note that we have a canonical isomorphism
Pp(Op @ Np/x) = Pp(Op @ Ng/X). Let DT and D~ be the divisors in P with normal
bundles Np,x and Nj /X respectively. Then we have canonical isomorphisms of divisors

DD D"

Consider P; fort =0, -+ ,n—1, which are n copies of P. Using the canonical isomorphisms
of divisors, we can glue X and P; along D and D™, write the resulting normal crossing
singularity to be Dp; and glue P; and P;,; along D* C P; and D~ C P;,;, write the
resulting normal crossing singularity to be D, ;. In such a way, we obtain a scheme

(5.1.1) Xl =XxT[P [ ] Por-

D1 Do

Note that there is a natural projection P — D, which induces a projection X[n] — X by
contracting IP; for all 7. Denote by D,, the divisor D' in P,,_;. Now we have a sequence of
morphisms D = D,, — X|[n] — X, we call it the n-th half accordion over (X, D).

Denote by 7" the stack of expanded pairs over (X, D), which associate to every reduced
scheme S a sequence of morphisms D x S <— X — X x S over S, such that

(1) D x S < X is a closed embedding;
(2) the family X — S is flat;
(3) for every point s € S, the fiber D — X, — X is a half accordion over (X, D).

Remark 5.1.1. The stack 7" is studied in [ACFW] and [AF], which has the following
properties.

(1) The stack 7" is a connected, smooth algebraic stack of dimension 0.
(2) The stack do not depend on the choice of the pair (X, D).

Remark 5.1.2. By the above gluing construction, any expanded pair D x S — X — X x §
over a reduced scheme S is d’semistable along its singularity as in [Ols03b]. Thus the family
X — S has a canonical log structures as described in Remark 3.1.2. Therefore, the family
X — S is a log FM type space with the divisor D x § — X.

Now we introduce the log twisting for expanded pairs.

Definition 5.1.3. A (un)extended log twisted expanded pair over S is a (un)extended log

twisted smooth pair (D x S — & — X X S,/\/lfg(/s — M) as in Definition 3.1.5, where
DxS— X — X xS is a family of expanded pairs over S. In the rest of the paper, we use

(X — S, Mg) for the log twisted half accordion over S, when no confusion could arise.

Same as in Section 3.1, we have smooth algebraic stacks 7' and 7% parameterizing
unextended and extended log twisted expanded pairs respectively. Denote by X%, X,
and X% the universal family of 7%, 7, and T respectively. We have the canonical
log structures Myuw, Maxtw, Myetw, and Mzu, Mztw, Mzew on the families and bases
respectively.
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Remark 5.1.4. We would like to describe the structure of 7" given in [ACFW] and [AF].
Denote by U, = [A*/GF ]| = A*  where each G,, acts on the corresponding copy of A by
multiplication, and £ is a positive integer. This U}, carries a universal family &}, of expanded
degenerations with splitting divisors labeled by elements of {1,--- ,k}. The locus A; where
the [-th splitting divisor persists corresponds to z; = 0 in A*. Thus we see that the canonical
log structure Mg:/ U corresponds to the smooth divisors A; fori = 1,--- , k. For each strictly

increasing map {1,--- ,k} — {1,--- |k}, there is a natural open embedding
(5.1.2) Up 2 Uy X [A*/G]¥ 7F — U

The set of all such U}, forms an étale open cover of 7.
The stack 7" is given by taking the limit of Uy in the categorical sense with the arrow
described in (5.1.2).

Proposition 5.1.5. The stack T is identical to the stack T in [AF] which parameterizing
twisted expanded pairs with no twists along the smooth divisor.

Proof. Denote r = (r1,- -+ ,7x) to be a tuple of k positive integers. Now consider Uy ., which
is given by taking the r;-th root stack along A; in Uy as above, see Section A.3 for taking
root stacks. Then by [Ols03a] and Definition 5.1.3, such Uy, has a universal family A}, of
log twisted half accordions with the log twisting index r; along the splitting divisor in W
that corresponding to A;. Similarly, we have a map Uy, — Uy, induced by the increasing
map ¢ : {1,--- ,k} — {1, -+, K’} with the condition r;(i) = r;. Clearly 7™ is the categorical
limit of such Uy, with respect to the maps above. This proves what we want. [
5.2. Log twisted expanded degeneration. Consider 7 : W — B, a flat, projective family
of schemes over a smooth curve B. Let 0 € B be a closed point such that 7 is smooth away
from Wy = W x g 0, and the central fiber W, is reducible with two smooth components X,
and X intersect transversally along the smooth divisor D C Wy. We view D as a smooth
divisor in X;, and write D; C X;. So we have two smooth pairs (X, D;) and (X2, D).
Denote by N; the normal bundle of D; in X; for ¢ = 1,2. Since W} is smoothable, we have
Ny = N

Same as in the case of half accordions, we can glue X;[n| and X, along D,, and D,. Recall
that D,, is the divisor corresponding to the normal bundle Ny in P,,_; 2 Pp(Op & Ny). We
still use D,, to denote the image of D in the resulting gluing Wy[n]. We call Wy[n] the n-th
accordion over Wy. Note that we have a projection Wy[n] — Wy by contracting all P to the
divisor D. We have the following definition from [ACFW] and [AF]:

Definition 5.2.1. A family of projective morphism W — S x g W over a reduced B-scheme
S is called an ezxpanded degeneration of m over S if:
(1) the morphism W — S is flat and proper;
(2) for every point s € S the fiber W, — W) is an isomorphism if p(s) # 0, and is an
accordion over Wy if p(s) = 0, where p : S — B is the structure morphism.

Sometimes we use W — S to denote the expanded degeneration when there no confusion
about the contraction.

Remark 5.2.2. Same as in Remark 5.1.2, any family of expanded degenerations W — S
give a family of log FM type spaces.

Following Section 3.1, we have:
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Definition 5.2.3. A (un)extended log twisted expanded degeneration over S is a (un)extended

log twisted FM type space (W — S, MW/S — M) as in Definition 3.1.3, where W — S is
a family of expanded degeneration of 7 over S. Denote by r = (r1,--- ,7,,) the log twisting
index along the corresponding singular locus of W.

Remark 5.2.4. Let " be the stack parameterizing expanded degenerations of w. By
[ACFW] and [AF], it is a smooth algebraic stack which has the following description.

For any positive integers k, consider the product morphism A* — A, and the morphism
B — A given by the divisor 0 € B. Denote by U, = A* x 4 B. It has a universal family of
expanded degenerations of 7, with the splitting singular divisors labelled by the set {1,--- | k}
such that the locus A, Where the [-th singular locus persists corresponds to z; = 0 in Ak
Same as in Remark 5.1.4, the stack ¥ is the limit of such Uy given by the map U, — Uy
for any strictly increasing map {1,--- ,k} — {1,--- | k’}. The canonical log structure on the
stack is given by the divisors A; for all .

Denote by T and T the stack parameterizing log twisted and extended log twisted
expanded degenerations of 7. We have the following:

Proposition 5.2.5. (1) The stack T is identical to the stack in [AF] which parame-
terizing twisted expanded degeneration.
(2) The stacks T and T only depend on the base (B,0).
(3) The stacks T and ™ are smooth, connected algebraic stacks of dimension 1.
(4) There is a natural open embedding T* — T and a natural right inverse T — %.

Proof. The proof of the first statement is identical to Proposition 5.1.5 by taking the root
stack along divisors A;. The rest follows from [ACFW]|. O

For later use, denote by W™ W™ and W" the universal family over T¢%, T and T“
respectively.

5.3. Splitting expanded degeneration. We have seen in Proposition 5.1.5 and 5.2.5 that
the stacks parameterizing log twisted expanded pairs and degenerations coincide with the
stacks with the stack twisting in [ACFW] and [AF]. Next, we would like to gathering several
results from [ACFW] and [AF] about the splitting of those stacks. However, we will state the
results for our log twisted stacks. These results will be used later for the proof of degeneration
formula.

Denote by T¢ = T“x g0 and TH» = T x 50. It is clear that Y is a reduced normal crossing
divisor in T*, its inverse image in T is the non-reduced stack T = > r%(, where Tj is
the divisor corresponding to expansions having a splitting divisor with log twisting index r.
Then we have the following:

Proposition 5.3.1. [AF, 2.3.1]

(1) The stacks Ty and TH parametrize untwisted and log twisted expansions of the sin-
gular fiber Wy respectively.
(2) These two stacks are independent of Wy.

Denote by Tp™ the stack of log twisted accordions with a choice of a splitting divisor D;
with log twisting index r. We can similarly define T;"*" " in the untwisted case. We have a
natural map Tp¥ — T and T — TY,
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Consider the stack Q = T¢™ x5 T5*. As shown in [AF], it has a decomposition of disjoint
union

(5.3.1) aQ=][a.

where over the reduction of £,., the splitting divisor in the universal family has log twisting
index r.

Lemma 5.3.2. [AF, 2.4.1] The morphism Ty — Q, is of degree 1/r.

Consider the universal family W over Tp*'. If we normalize along the splitting divisor,

we have two family of log twisted expanded pairs. Conversely, we have:

Lemma 5.3.3. [AF, 2.4.2] The natural morphism 5" — T x T corresponding to the
two components of the partial normalization of the universal family is a gerbe banded by ., ;
in particular it has degree 1/r.

Proof. We give a proof in our log case. If we glue the resulting two components, locally
along the splitting divisor D, it has a canonical log structure given by N> — M,y where
we denote a and b to be the two standard generators of N2. In order to put log twisting,
we take the r-th root e of a +b. Then the new log structure is generated by e, a and b with
the only relation re = a + b. Clearly, there is a u, action on the new log structure by the
multiplication on e but without changing a and b. [J

Remark 5.3.4. By the above lemma, we have the canonical isomorphism Ti* 2 7w x Tt
In fact the universal family W% over T;"" ' can be obtained by gluing the two universal
families over each copy of 7", and then put the standard log structure along the splitting
divisor.

Now we compare Tp*” and T As explained in [AF] that T is a smooth divisor in
T We use the notations in Remark 5.2.4. Consider D = (Ay,--- ,A)),and r = (rq,--- , 7).
By Proposition 5.2.5(1) and Section A.3.3, we may assume that locally we have a chart (U )p,
for . Then T has a chart given by the image of Ay in (Uy)p,. Here, we assume that
the splitting divisor is indexed by [ + 1.

Still use A1 to denote this divisor in U := (Uk)]D),r- Consider the root stack Ua,,,
and the special divisor D which is the r-th root of A;y; as in subsection A.3. Then by the
definition of T*', we have a chart U, 1, for % in which the stack Tp™ " is given by the

divisor D. Locally the map ™ — T is induced by Ua,,,, — U.

6. RELATIVE AND DEGENERATE GROMOV-WITTEN INVARIANTS

In this section, we introduce the Gromov-Witten invariants with the target given by the
extended log twisted expanded pairs or degenerations.

6.1. Gromov-Witten invariants for expanded degenerations. We use the notations
as in Section 5.2. Let (8 be a curve class in the fiber of 7 : W — B. Denote by g > 0
the genus, and n the number of marked points. Consider the singular fiber W,, and the
stack T parameterizing the expanded degenerations of Wy with extended log twisting.
Denote by lClg‘?fL(Wo, () the stack parameterizing log stable maps to the extended log twisted
expansions of Wy. Let K, ,,(Wp,3) be the stack parameterizing the corresponding stable
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predeformable maps as in Remark 3.3.1. It was shown in [Li00] and [AF] that IC,,, (W, B)
is a proper DM-stack. By Theorem 3.3.2, the stack IClg‘jfL(Wg, 3) is also a proper DM-stack.

Denote by C the universal curve over IClgfg(WO, B), and {¥;}", the n universal sections.
Note that we have a projection W§" — W from the universal family of expansions. Consider
the following universal diagram:

C Wetw Wy
K (Wo, B).
The composition of the top arrows gives a pre-stable map. We take its stabilization:

(6.1.1) c—L—w,

J

Kiys (Wo, B).
The section ¥; induces an evaluation morphism of usual stacks:
ev; : Ki9(Wo, 8) — W.
Consider the i-th descendant class of the stabilized curve:

Definition 6.1.1. Given positive integer m; and cohomology class v, € H*(W,) for each

1=1,---,n, we define the Gromov-Witten invariant with gravitational descendants by:
n Wo n
A m; log
<H7'mi(%‘)> = deg <H (¥i") - evi(vi) N [ICg,n(WOaﬁ)]> )
i=1 gn.B i=1

where the virtual fundamental class [k (WW;, 3)] is constructed in Section 4.1.

Remark 6.1.2. Note that the stack Kéffl(WO, () and the Gromov-Witten invariant does not
depent on a global smoothing W — B of W,. We only need that W, to be a log FM type
space over a point.

Similarly, we have a stack K, ,,(W/B, 3) parameterizing stable predeformable maps to the
expanded degeneration of W — B. Denote by KI°9(W/B, () the stack parameterizing log
stable maps to the extended log twisted expanded degeneration of W — B. It was shown in

[Li00] and [AF] that ICy,,(W/B, 3) is a proper DM-stack. Furthermore it behaves well under
base change. Therefore, by Remark 3.3.5 the stack K!°¢ (W/B, ) is also well-behaved under
base change. It is not hard to see that

K29 (Wo, B) = K'°(W/B, 8) x5 0.
Proposition 6.1.3. The Gromov-Witten invariants of Wy, = W x g b is independent of b.

Proof. Since the perfect obstruction theory for K9 (W/B, 3) relative to T restrict to that

of K9 (W, ), the statement follows from [BF97, 7.2(2)].
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6.2. Relative Gromov-Witten invariants. We fix the smooth pair (X, D) as in the be-
ginning of Section 5.1, and the data = as in Definition 3.2.11. Denote by ICZEOQ(X7 D) the stack
parameterizing =-relative log stable maps to the extended log twisted expanded pairs. Let
K=(X, D) be the stack parameterizing the corresponding underlying stable predeformable
maps. Again by [Li00] and [AF], this is a proper DM-stacks. Hence ICéog (X, D) is also a

proper DM-stack. Similarly, we can define evaluation maps ev; : ICIEOQ (X,D) — X of the
underlying stacks, and the descendant classes v; for ¢ € N as in Section 6.1.

Definition 6.2.1. Given nonnegative integers m; for i € L(Z), cohomology classes v; €
H*(X) for i € I(2), and v, € H*(D) for j € R(Z), we define relative Gromov-Witten
invariants with gravitational descendants by:

(X,D)
<H ) m> =g T wrovn) - IT e ez o

S JER(E) ieL(2) JER(E

Remark 6.2.2. Note that the evaluation map ev; defined in thlS section is just usual
morphism without log structures.

7. DEGENERATION FORMULA

7.1. Statement of the degeneration formula. Following the method in [AF], we prove
the degeneration formula in the logarithmic setting. We first fix the following notations.
Consider the log FM type space Wy = X; [[, X2 and two smooth pairs (X, D;) and
(X3, D) as in Section 5.2. Denote by H, H; and Hs the monoids of curve classes in Wy, X7,
and X, respectively. Fix the data T" = (g, N, 3), where g > 0 is the genus, N = {1,--- ,n}
is the index set for marked points, and § € H is the curve class. We would like to view I'
as a weighted graph having one vertex with genus g, curve class 3, and legs labelled by N.
For simplicity, we use K to denote the stack K¢ (W, §).
For smooth pairs we introduce the following data:
Definition 7.1.1. A splitting 1 of I' is an ordered pair n = (=2, Z5) where
(1) Z; and =, are admissible weighted graphs as in Definition 3.2.11.
(2) The labeling of legs L(Z;) U L(Z2) = N gives a partition of N.
(3) The labeling of roots R(Z;) «— M «— R(Z3) is ordered by the set M disjoint from
N.
(4) For elements r € R(Z,) and 1’ € R(Z,) that correspond to the same element j € M,
we associate the same tangency multiplicity ¢; for both r and 7.
(5) For each vertex v € V(Z;), we assign the genus g(v) and a curve class §(v) € H;.
The above data must satisfy the following conditions:
(1) By Gluing =; and =, along the roots labeled by M, we obtain a graph I' of genus g,
and total weight f3.
(2) For each vertex v € Vz,, we have

> (¢j) = (B(v) - Dy)x,, fori=12.
JERy
The last condition in the above definition implies that (5(Z;) - D1)x, = (8(Z2) - D2)x,,
where ((Z;) is the total weight of Z;. For each 7, there is a special number

r(n) =lem(c)jem,
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which will be the log twisting index along the splitting divisor as in Remark 3.2.4. We call
it the log twisting index of n.

Denote by Q(T") the set of all splitting classes of I". Note that we have the symmetric
group S(M) acting on €2 by its action on the index set M of the roots.

Definition 7.1.2. Two splittings are said to be equivalent if they belong to the same S(M)-
orbit. Denote by () the set of equivalence classes, and 7 the equivalence class of n € €.

Denote by F a homogeneous basis of H*(D). For each § € F, denote 6" to be the dual
element in the dual basis with respect to the pairing [ p0-0Y =1

Theorem 7.1.3. For any non-negative integers m;, and cohomology classes ~; € H*(Wy),
where i € N1 U Ny, the following degeneration formula holds:

. Wo . X1,D
(o) =Tt 5= (T il T )

g7n’ﬁ UGQ 6]€F 1€N1 jeM El
Xo,D
\Y
- <H 7 ()| T ] 6j>
i€ N2 JjEM =

where the sign (—1)¢ satisfies the following:
H%" 1_[(53'5]'v:(_1)E H'YiH(Si H@H(Szv
iEN  jeM i€N) ieM  i€Ny €M

Remark 7.1.4. The formation of the above degeneration formula in the log setting is iden-
tical to the one in [Li02] and [AF].

7.2. Splitting the coarse target. Consider the following cartesian diagram of log stacks:

Kq — Qe 9 Tt
C—— FEtw Ttw Ty

Here the sup-script ext means the stack parameterizing extended log structure, which is the
same as in the case of curves and targets with extended log structure. Note that since the
arrows are all integral log morphisms, the underlying of the above log cartesian diagram
coincides with the usual cartesian diagram by removing all log structures. Identical to the
case in [AF], we have the normalization map T — T of pure degree 1 in the sense of
[Cos06, Section 5]. Then the map Q%' — T is also of pure degree 1.

Lemma 7.2.1.
s:[Kal = [K].

Proof. This follows from [Cos06, Theorem 5.0.1], and our construction of virtual fundamen-
tal classes which is well-behaved under base change. [
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7.3. Splitting the stack target. As in (5.3.1), we have the following decomposition:
a=]]a
r>1

which implies the decomposition

Ka=]]Ka.

r>1

The stack 9, is non-reduced, and the reduced one is T;*" l, which is the stack parameter-
izing log twisted accordions with splitting divisor of index r. By Lemma 5.3.2, we have a
degree 1/r map T — Q,. The same proof as above gives:

Lemma 7.3.1. Consider the (log) cartesian diagram

]Cipl N (3:6,8101)@3@15 N ‘ZS’SPZ

1]

Ka, — ()% —9,.

T

Then
[Ka.] =7 ()],

7.4. Decomposing the moduli space with split target. Given the log twisting index
r, denote by €, the set of isomorphism classes of type n with r(n) = r. We have the refined

decomposition
K =11 K
7€Qy
Denote by t; : K — Kgq, the restriction of ¢,. Then we have
[Ka,] =71 (t7) Z [KCql.
e
Note that K, — K5 is an S(M)-bundle. Therefore K, has an associated perfect obstruction
theory and virtual fundamental class. Denote by ¢, the following composition
Ky — Ky — Kq,.
Putting Lemmas 7.2.1 and 7.3.1 together, we have:
Proposition 7.4.1.

K] = Z(fw—"ﬁ! (50 ty)[KC).

neQ

7.5. Gluing the target. By Lemma 5.3.3 the morphism T5*' — T x T gives a gerbe
banded by pu,. Denote by Kz, = Kz, (X;, D;) the stack of relative log stable maps with data
Z; for i = 1,2. Next we try to decompose [K,] in terms of Kz, and Kgz,. Consider the
following catesian diagram of log stacks:

(751) ICLQ * (3”675175)63315 - SS’SPZ

“| J J |

K:El X ]CE2 - Tetw % Tetw — (Ttw X Ttu))eoct SN Ttw % Ttw
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Note that for 7% x T we have two extended log structures from each 7¢%“. The arrow
Tew x T — (T x T™)e at the bottom is given by forgetting the order of extended log
structure.

Lemma 7.5.1. The map T x T — (T™ x T™) is étale of DM-type.

Proof. The statement is local on the target. Consider charts U; and U, for 7%, then we
form a chart U = Uy x Uy x A" for (T x T™)e* Clearly, the targets are covered by such
charts. The preimage of this chart in 7¢% x T is given by assign copies of A to each T,
le.
(T X TM) X grusguyee U= [ (U1 x A™) x (U1 x A™).
ni+nz2=n

The statement follows from this. [

Remark 7.5.2. The stack K; o parametrizes a glued log twisted target, along with a pair
of relative log stable maps to the two parts of the partial normalization of the glued target
with data =; and =,.

In Section 4.1, we construct the perfect obstruction theory Ex., /7w for Kz, relative to
T, Thus, we have a perfect obstruction theory E,CEl 7w D E,C52 e for Kz, x Kz, relative
to 7 x T By Lemma 5.3.3 and 7.5.1, the vertical maps in (7.5.1) are étale and of
DM-type. The perfect obstruction theory Ex. 7t ® Ex. /7w pulls back, and defines a
perfect obstruction theory for Iy o/*. Thus, it defines a perfect obstruction theory for K o
relative to (T5*")*. Denote by [K;.5] and [Kz, x Kz,] = [Kz,] x [Kz,] the associated virtual
fundamental classes. Therefore, we have the following result:

Lemma 7.5.3.
Kz, x Kz, =1+ (uy)[Ky12]-

7.6. Gluing the underlying maps. Denote by f; : C; — &} for ¢ = 1,2 the universal
relative log stable maps over ;o with data =; and =y respectively, and W the universal
glued log target over Ky2. Let D = D x K; 2 be the universal splitting divisor of W over
K12, and D; and D, the universal divisors in X; and &5 respectively. Then we have natural
isomorphisms D = Dy = D,. For convenience, we use D to denote both D; and D, if there
is no confusion. Denote by 7 : D — D the canonical projection.

For each i € M, we have sections Xz, ; : K12 — C; and Yz, ; : K12 — C2 given by the
universal pre-stable curves C; and C, respectively. Consider the following compositions:

€Vz, ;- = TO f1 o 25171 . ]CLQ — D and €vVz,; - =T O f2 o 252,1' : ICLQ — D.
Combine those maps, we have
evio = H evz i X evg, ;! ]CLQ — (D X D)‘M|
ieM
Now consider the following cartesian diagram:

/

(7.6.1) > L Ko

/ ev
evnl l 1,2

pM & (D x D)™,
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where the bottom map A is the diagonal morphism.

By pulling back the universal family over K 2, there are two universal relative log stable
maps fj : C; — &; of type Z; for i = 1,2, and the glued log target W' over Kf,. Con-
sidering only the underlying structure, the above cartesian diagram induces the following
commutative diagram (without log structures):

(7.6.2) G G

I
/ 1 /

4 ——C 7
I
I
4

1 D—-———--- + X

Here G is the union of the sections numbered by M, and the top and bottom squares are
push-out diagrams. Thus, we obtain a glued underlying curve C, and a usual stable morphism
f:C — W of underline schemes over K} ,. Furthermore, it is not hard to see that f is a
family of predeformable maps. Therefore, the stack K} , parametrizes all possible underlying
maps of log stable maps with their splittings to two relative log stable maps of data =; and
=5, and the glued log targets.

7.7. Log structures on K ,.

7.7.1. The log structure from the splitting divisor. Note that on K7 , there is a canonical log

structure M given by the smoothing of the splitting divisor in W’. Let M"V/Ki2 be the
log structure on K, with respect to the glued unextended log target W'. Note that such
log structure is obtained by pulling back the log structure from the universal family over
o' By Remark 5.3.4 and Lemma 5.3.3, there is a rank 1 locally free sub-log structure
Mk MWKz and a morphism of log structures M5PL — M™PL which locally have
chart:

L]

M lspl — Mr,spl )

Given a positive integer c|r, denote by I = £. We define a new log structure M;*” on K/ ,
as follows. Let e be the local generator of M™*!. Then locally we define M}*” to be the
sub-log structure of M”*" generated by - e. It is not hard to check that such M is well-
defined, and is a rank 1 locally free log structure. Since I|r, the morphism MsPt — A75P!
induces a morphism M*Pt — AMPP ! which locally have chart:

|

1,spl r,spl
MU —— My,
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By our discussion in Section A.3, this gives a map IC/L2 — ‘Zg’sl’l,

7.7.2. The log structures from the splitting nodes. Denote by p; € C the universal splitting
node, which splits to the two marked points numbered by ¢ € M. Note that there is a rank
1, locally free log structure N; on K15, corresponding to smooth of the node p;. Let ¢; be
the contact order at p;.

Lemma 7.7.1. There is a natural map MYP' — N;, locally given by the following chart:

L]

Mbsel—— N,
. . l
Therefore, we have a morphism K} 5 — Tg"™".

Proof. Consider a geometric point 5 € K} ,. Then there is a geometric point t € p; over 3,
and t' := f(t) € W'. Locally around ¢, we can choose coordinates x and y which correspond to
the coordinates of the two components intersecting at the node p;, such that e = log z +logy
gives the local generator of A; on the base. Similarly for ¢, we can choose local coordinates
u and v that correspond to the coordinates of the two components intersecting along the
splitting divisor, such that ¢’ = log u+log v gives the local generator of M*P! on K- Since
f is predeformable along p;, we may assume that f*(u) = 2% and f*(v) = y“. We can locally
define a morphism M*?! — Af; by ¢’ s ¢; - e. Note that such morphism is independent of
the choice of the chart, and only relies on the underlying map f. Thus, we can glue the local
construction and obtain a morphism M*?! — A/; as in the statement. O]

7.8. Comparison of stacks K, and K,. First, we want to put log structures on the
universal map f : C — W' over K ,. This should be compatible with the two relative log
stable maps. By the decomposition in Remark 2.1.1, we have the canonical log structure M™
on K 5, which smoothes all the non-distinguished nodes of C only. Consider the following
log structure on K ,:

nd W' /K
M;C/ng./\/l EBOI*C/IQM / 1,2

Since the map of underlying structure is given, by Remark 3.2.4 we only need to define
/K c/K, . :
maps of log structures M /C/’l 21’2 — My ,, where M ,C/ll 21’2 is the canonical log structure as

in Section 2.1. Denote by Séng{C/lC’m} the set of connected nodes of C over Kj ,, and N,
the canonical log structure smoothing p € Sing{C/K ,}. By Remark 2.1.1, étale locally we
have the following decomposition

Mz NN,

PESinQ{C/’q,Q}

c/K . .
This implies that to define /\/l,C/,L;’2 — My Lo itis enough to locally give N, — M .

Consider any p € Sing{C/K ,} which is not a splitting node. It corresponds to a node in
one of the relative log stable maps obtained by splitting from f. Since the two relative log
stable maps have well-defined log structures, locally we have a well-define map N, — M K,
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obtained from the relative log stable map where p sits. Also notice that the splitting node
p; for any ¢ € M only maps to the splitting divisor. Therefore, we only need to define tuples

(7.8.1) (NG — M)y,
Moreover, we need this map fitting in the following commutative diagram:

(7.8.2) MLspl —— Aq7spl

|~

Ni

where the map MYP' — A/ is given in Lemma 7.7.1. This is because that the map N; —
M™Pt should compatible with the underlying structure of f.
Conversely, we can construct an arrow of fibered categories h : K, — K , as follows:

Definition 7.8.1. Given an object &, € IC,(T") over a scheme T', we define an object &5 €
12(T') consisting of the following data:

(1) a predeformable map fr, which is the underlying map of ¢,

(2) log relative stable maps f; with discrete data =; for i = 1,2, which is obtained by
splitting &, along the splitting divisor on target, and the splitting nodes on source
curve Cr of &;

(3) a glued log target Wy, which is the log target of &,, but removing the log structures
from the non-distinguished nodes.

Lemma 7.8.2. The morphism h is representable.

Proof. For any scheme T, and any objects &2 € K',(T) and &, € K,(T) such that
h(&,) = &2, it is enough to show that a non-trivial automorphism of ¢, induces a non-
trivial automorphism of & . Note that &, gives tuples (N;r — My as in (7.8.1)
satisfying (7.8.2). Since outside the splitting nodes, the two objects & o and &, determine
each other uniquely, it is enough to consider the isomorphisms of &, given by isomorphisms

of the tuples (N;pr — M Nienmr. By the commutativity of (7.8.2), any such isomorphism
is an isomorphism of M7 which fix the arrow M — M"P!_ But any such non-trivial
isomorphisms of M7 ' induce non-trivial automorphisms of the glued log target, hence
non-trivial automorphisms of &; 5. This proves the lemma. [

Let &15 € K7 5(T) be an object over a scheme T'. Denote by C,)(&1,2) the groupoid consisting
of objects &, € K, (T') over & 5. Then we have the following result:

Corollary 7.8.3. The groupoid K, (&15) is a set of all tuples (N;r — M3 )icnr satisfying
(7.8.2).
Proof. This follows from Lemma 7.8.2, and the argument in Section 7.8.[]

7.9. Define log structures on the glued underlying map. Let [; = =, for any i € M.

Note that both M™% and Nj; are rank 1, locally free. Since they fit in (7.8.2), for any
N; — M"P! locally we have chart given by the following form:

Xli
N———N

I

Ni —— Ml
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Note that the map N; — M™% factors through M, b M™PL Thus, to give N — MTP!

satisfying (7.8.2), it is equivalent to have an isomorphism N — Mp* ' which fits in the
following commutative diagram:

r,spl
M 1,spl — Mlz

|~

N;

where the top arrow is induced by MUsPL — AM"PL
For each ¢ € M, consider the following catesian diagram:

c;,spl
I; T

T

i l i l
o T X T

where the right column is the diagonal morphism, and the bottom is given by the pair of log

structures NV; and M. By Section A.3.3, the stack I; is a sheaf over K/ , parameterizin
li y 1,2 g

. . I
isomorphisms between N; and M*".

Lemma 7.9.1. The morphism q; : I; — K 5 defined above is étale of degree c;. It has a

section q; : K, — I, such that K 5 forms a trivial By, gerbe over I;. Therefore, q; is étale

of degree cl

Proof. The first statement follows from g™ X gL TP = B, x TP By pulling back
the projection B, x T57P' — TP we obtain the natural section ¢/ of ¢;, which is étale of

degree c; . This proves the second statement. [J

Consider K, := [],c), fi, where the product is taking over K ,. We have the following
morphism:

(7.9.1) q:= H g Kiy — K,
ieM
By Lemma 7.9.1, the map ¢ is étale of degree [[,,, c;, with a section
(7.9.2) ¢ :=]]d:Ki.— Kis
ieM
which is étale of degree (IT,c,, i)™

Remark 7.9.2. Let us give the moduli interpretation of Kf, relative to K},. Given a
morphism 7" — K , from a scheme, the stack KY, associates to T — K, a set of tuples

(Nir — M;’Spl)ieM such that:
(1) For each i € M, the map N — My fits into (7.8.2).
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(2) For each i € M, the map N7 — M5 is locally given by the following chart

Xli
N———N

|

Niz —— My

Therefore, by the argument in Section 7.8, we have a universal family of log stable maps
ficr, over K ,. This family induces a map A : KY, — K,

Combining Remark 7.9.2 and Corollary 7.8.3, we obtain:
Proposition 7.9.3. The map X\ is an isomorphism.

We thus identify Kf, with K,. Note that the map ¢ in (7.9.2) is étale. Consider
Ey e = (¢ )*E,Cn jxpent- Then Ejy, e gives a perfect obstruction theory of K , rela-
tive to (T7*")¢**. Denote by | 1 o] the virtual fundamental class of K/ , defined by Ey, -
Then we have: 7
Corollary 7.9.4.

¢.[KC,] = (] e)IKia).
€M
Proof. This follows from (7.9.1) and Lemma 7.9.1. O

7.10. Comparison of virtual fundamental classes of K|, and K;,. Note that the
section ¢' : K, — K, gives a family of log stable maps fi; , over K, and the perfect
obstruction theory E,C,1 JTpent can be obtained by applying the construction in Section 4.1 to
the log stable map [, 5 The underlying map of fi; B coincide with the glued predeformable

map f as in (7.6.2). Denote by L the complex constructed in Section 4.1 with respect to
the log stable map fx;, , on K ,. Let Lo, be the corresponding complex with respect to the

relative log stable maﬁ flon Ky 2 with data Z;, for i =1, 2.
Proposition 7.10.1. Consider the diagram (7.6.1). Then we have A'([K1]) = [K1 ,].

Proof. This proof of this proposition is very similar to [AF, 5.8.1]. By [BF97, 5.10], it
suffices to produce a diagram of distinguished triangles

(1]

(7101) U*EK1,2/T}§%SPZ s EICT]/Téw,Spl [N eV;LA LN

| l |

log
Kn /%"

(1]

«7 log
,spl LICT]/’CI,Q

v*L L
K/t

Since the map A in (7.6.1) is a regular embedding, we have La = NX[1].
Consider (7.6.2). Denote by v : C; [[C) — C the normalization map, and ¢ : G — C the
embedding. We have the following standard normalization triangle

7.10.2 LY — v, Lo*LY — 1, LoLY 2
O O O

and a natural decomposition

U, LU LY = v, LU LY @ vg Lus LY.
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Lemma 7.10.2.
LuiLh =LY, LuyLh= LY,
and
L*LY = (f o1)*Tp[—1].

Proof of the lemma. Note that the underlying map f is obtained by gluing the two
underlying maps [ and f) along the marked point as in (7.6.2). Away from the splitting
nodes, the log structure on fi; L s obtained by pulling-back that from f/, locally we have a
canonical isomorphism LvfLg = L .

Near the splitting nodes, we can directly check that the log differentials of the log maps
i B and f! are identical to the sheaf of differentials of transversal maps as in [AF, A.2].

Therefore, the same argument as in [AF, 5.8.2] shows that locally near the splitting nodes,
there are canonical isomorphisms Lv}LY =2 L\éi. We check that those local isomorphisms
can be glued together to give a global one Lu; Ly = L .

For the same reason, we have Li*LYj = (f o ¢)*Tp[—1]. This finishes the proof of the
lemma.

By (7.10.2) and the above lemma, we have:

(7.10.3) L — v L, @ vi Ly, — w(f o) Th il

Denote by p : C — K, and p; : C; — K , the canonical projections. Note that we have
Pats(f 0 t)*Tp = (ev%)*NA.
By applying Rp., dualizing and rotate (7.10.3) we have

(Rpr.L,)V[~1] @ (RpouLs,)¥[-1] — (Rp.L)"[~1] — ev; Na[1] &

This triangle fits into (7.10.1) as required. [J

Combining Corollary 7.9.4 and 7.10.1, we have the following:
Corollary 7.10.3.
H ci) A ICl 2

ieM
Denote by [A] the class A,(D'™). By [Ful98, 6.3.4], we have

= (] ) -evinlaln Kzl

ieM
Since
= H (Z di X 0}'),
iEM §;€F
we obtain

€., = H ¢ Z evt, 0; x evi, .0 ) N [Kyy.
ieM 0;€F
By Lemma 7.5.3 we have

Corollary 7.10.4.
(uy 0 @)y =1(n H & Z evt 0; x evk, ;6)) N[Kz, x Kg,).

€M 6 EF
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7.11. Proof of Theorem 7.1.3. Same as the situation in [AF, 5.10], the stack I, carries
two universal families of contracted curves:
(1) the disconnected family C" — K, with sections s}, and evaluations ev}, which are the
pull-back of the contracted family of C; [[Cy — Kz, X K=,;
(2) the connected family C,, — K, as in (6.1.1) with sections s;, and evaluations ev;.

Note that the pull-back of the class v; of the sheaf sj(wc,/k,) coincides with the class
(81)"(wey 11 o/, xk=, ), and the same for the pull-back of 7; via the evaluation maps. Now
we have:

deg ((soty) Hibml eviy) N [K,])

iEN

<H Tm; (%)> Z
=1 g,

neq
(by the projection formula and Proposition 7.4.1)

deg noh)* mez ev;y) N K, )

1EN

IM!'

ne
(by the above discussion)

- 5 e

neqQ iEN

) H (Z eV*Ei,j 5j X eV*EQ,j 5;/) U iICEIi X i’CEQi>

jeEM 6j€F

(by the projection formula and Corollary 7.10.4)

-yl s (o )

neQ 0;eF i€EN1 JEM =
X2,D
\Y
- < [ 7ol 1] 5 >
1€EN2 JjEM =

=2

This finishes the proof of the theorem. [J

APPENDIX A. PREREQUISITES ON LOGARITHMIC GEOMETRY

A.1. Basic definitions and properties. Following [Kat89] and [Ogu01], we first recall
some basic terminologies on logarithmic geometry.

A.1.1. Monoids. A monoid is a commutative semi-group with a unit. We usually use “+ 7"
and “0” to denote the binary operation and the unit of a monoid respectively. A morphism
between two monoids is required to preserve the unit.

Let P be a monoid. We can associate a group

PP .= {(a,b)|(a,b) ~ (c,d) if Is € P such that s+ a+d = s+ b+ c}.

The monoid P is called integral if the natural map P — P9 is injective. It is called saturated
if it is integral, and satisfies that for any p € P9 if n-p € P for some positive integer n then
p € P. A monoid P is called fine if it is integral and finitely generated.
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A morphism h : Q — P between integral monoids is called integral if for any ay,as € @,
and by, by € P which satisfy h(a;)b; = h(az)bs, there exist as,ay € @ and b € P such that
by = h(a3)b and aya3 = asay. This is equivalent to say that the morphism of monoid algebras
Z[Q] — Z[P] is flat.

A monoid P is called sharp if there are no other unit except 0. A nonzero element p in a
sharp monoid P is called irreducible if p = a + b implies either a = 0 or b = 0. Denote by
Irr(P) the set of irreducible elements in a sharp monoid P. A fine monoid P is called free
if P = N" for some positive integer n.

A.1.2. Logarithmic structures. Let X be a scheme. A pre-log structure on X is a pair
(M, exp), which consists of a sheaf of monoids M on the étale site X of X, and a morphism
of sheaves of monoids exp : M — Oy, called the structure morphism of M. Here we view
Ox as a monoid under multiplication.

A pre-log structure M on X is called a log structure if exp~!(O%) = O% via exp. We
sometimes omit the morphism exp, and use M to denote the log structure if no confusion
could arise. We call the pair (X, M) a log scheme.

Given two log structures M and N on X, a morphism of the log structures h : M — N
is a morphism of sheaves of monoids which are compatible with the structure morphisms of
M and V.

Given a pre-log strucutre M on X, we obtain a log structure M® given by
M =M @exp*l((’)}}) O;(

Such M is called the associated log structure of M. Consider a morphism of schemes
f X — Y, and a log structure My on Y. We can define the pull-back log structure
f*(My) to be the log structure associated to the pre-log structure

[ My) — f71(Oy) — Ox.

Consider two log schemes (X, Mx) and (Y, My ). A morphism of log schemes (X, Mx) —
(Y, My) is a pair (f, f*), where f : X — Y is a morphism of the underlying schemes, and
71 f*(My) — My is a morphism of log structures on X. The morphism (f, f°) is called
strict if f° is an isomorphism of log structures. It is called wertical if the quitient sheaf of
monoids Mx/f*(My) is a sheaf of groups under the induced monoidal operation.

A.1.3. Charts of log structures. Let (X, M) be a log scheme, and P a fine monoid. Denote
by Px the constant sheaf of monoid P on X. A chart of M is a morphism Py — M such that
the associated log structure of the composition Px — M — Ox is M. The log structure
M is called a fine log structure on X if a chart exists étale locally everywhere on X. If the
charts are all given by fine and saturated monoids then M is called an fs log structure. In
this paper, we only consider fs log structures.

Let M = M/O% be the quotient sheaf. We call it the characteristic of the log structure
M. Tt is useful to notice that f*(M) = f~1(M) for any morphism of schemes f : Y — X.
For any closed point x € X, denote by ¥ the separable closure of z. A fine log structure M
is called locally free if for any = € X, we have M; = N” for some positive integer r.

Consider a morphism of log structures h : M — N over X. The morphism A is called
simple at p € X, if Mﬁ — Nﬁ is injective, and for any e € [ rr(mﬁ) there exists an element
¢’ € Irr(N,), such that h(e) = [-¢’ for some positive integer [. Here h is the map of monoids

induced by h.
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Let ﬂj’f’” be the torsion part of M2 . The following result is very useful for creating
charts.

Proposition A.1.1. [Ols03a, 2.1] Using the notation as above, there exist an fppf neigh-
borhood f : X' — X of x, and a chart 5 : P — f*(M) such that for some geometric point
' — X' lying over x, the natural map P — f~'* Mz is bijective. ]f_‘?p’tor ®k(x) =0, then

such a chart exists in an étale neighborhood of x.

T

Remark A.1.2. In this paper, we only work with fs log structures over field of characteristic
0. The above proposition implies that in such situation, there exists a section of Mz — M3,
which gives a chart étale locally near z.

Consider a morphism f : (X, Mx) — (Y, My) of fine log schemes. A chart of f is a triple
(Px — Mx,Qy — My, Q — P), where Px — Mx and Qy — My are charts of My and
My respectively, and () — P is a morphism of monoids such that the following diagram
commutes:

Qx — Px

L

fr(My) — Mx.
Charts of morphisms of fine log schemes exist étale locally by the following result:

Proposition A.1.3. [Ols03a, 2.2] Notations as above, suppose that Qy — My is a chart.
Then étale locally on X, there exist a chart Py — M x and an injective morphism of monoids
Q — P, such that the triple (Px — Mx,Qy — My, Q — P) gives a chart for f étale locally
on X. If f is a morphism of fs log schemes and if Q) is saturated and torsion free, then we
can choose P to be also saturated and torsion free in the chart of f.

Remark A.1.4. Consider a morphism of log schemes f : (X, Myx) — (Y, My). With the
help of charts, we can describe the log smoothness properties of f that we will use later. The
log map f is called log smooth if étale locally, there is a chart (Pxy — Mx,Qy — My, Q —
P) of f such that:

(1) Ker Q% — P9 and the torsion part of Coker(Q% — P9) are finite groups;
2) the induced map X — Y Xgpeczion SpecZ|p| is smooth in the usual sense.
pec(Z[Q])

The map f is called integral if for every p € X, the induced map Mf(ﬁ) — M, is
integral. In general, the underlying structure map of a log smooth morphism need not be
flat. However, it was shown in [Kat89, 4.5] that the underlying map of a log smooth and
integral morphism is flat.

A.2. Olsson’s Log Stacks. We follow [Ols03a] to introduce the algebraic stack parameter-
izing log structures. Consider a base scheme S, and an algebraic stack X over S in the sense
of [Art74]. This means that the diagonal X — X xg X is representable and of finite type,
and there exists a surjective smooth morphism X — & from a scheme. Now we can define
a fine log structure My on X by repeating the definitions in A.1.2 and A.1.3 but using the
lisse-étale site instead of the étale site. See [Ols03a, Section 5] for details.

For any S-scheme T, and an arrow g : T — X, we obtain a fine log structure g*(My) on
the lisse-étale site Tjjs-¢; of T. It is shown in [Ols03a, 5.3] that such g*(My) is isomorphic
to a unique fine log structure on the étale site Ty of T. Thus, we can still use g*(My) to
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denote this new log structure on 7. By pull-back the log structure My, we define a functor
from schemes over X to the category of fine log schemes over S. The stack X associated with
this functor is called a log stacks in [Kat00]. A fine log scheme (X, Mx) can be naturally
viewed as a log algebraic stack.

Consider the log algebraic stack (X, Mx). We define a fibered category Log(x i) over
X. Its objects are pairs (g : X — X,g"(My) — M), where g is a map from scheme X
to X, and g*(My) — My is a morphism of fine log structures on X. An arrow (g : X —
X, g5My) - Mx) = (h: Y — X, h*(My) — My) is a strict morphism of log schemes
(X, Mx) — (Y, My), such that the underlying map X — Y is a morphism over X', and we
have the following cartesian diagram:

CX7A4X)444444%(Y:AAY>

J |

(X, 9" (Mx)) — (¥, h*(Mx)).

Theorem A.2.1. [Ols03a, 5.9] The fibered category Logx amy) @5 an algebraic stack locally
of finite presentation over X.

A.3. Root of log structures from smooth divisors. Here, we collect some results of
locally free log structures and their roots as we will used in our construction. We refer to
[BV] for more details of the root construction.

A.3.1. Log structures associated to normal crossing divisors. This is an important example
given in [Kat89, 1.5]. Let X be a smooth scheme, and D is reduced divisor in X with normal
crossings. We define a fine log structure on X:

MP = {g € Ox|g is invertible outside D} C Ox.

For each point p € D, let {g;}!_, be the set of local coordinates near p, such that D is given
by the vanishing of g; - - - g,. Then the log structure ./\/ll’? is generated by {log g;}" ,, where
log g; is the pre-image of g; in the log structure. Thus étale locally near p we have a chart

N — MD €; — gi,

where e; is the standard generators of N”. The above chart gives an isomorphism N" = MY

-
Thus, the log structure MP? is locally free, and its rank at a point p equals the number of
components of D at p.

Consider the case when D is a finite union of reduced divisors in X with normal crossings.

Denote by D = ]_[j D;. The same definition as above gives a log structure M” on X.
Similarly, for each D; we associate a log structure M5 on X as above. We have the
following decomposition:
MP =N M5,
J
where the sum is taking over O%.

We can assume that X is an algebraic stack, and D is a finite union of reduced divisors
in X with normal crossings. Then we can still define the locally free log structure MP? on
X using smooth topology. The decomposition of MP¥ into amalgamated sum of MPi still
holds in this case.
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A.3.2. Root stacks of divisors. For later use, we introduce the theory of root stacks developed
in [Cad07] and [AGV08, Appendix B].

Let X be an algebraic stack, and D an effective divisor on X. Such data corresponds to
the line bundle Ox (D) with its canonical section 1p, therefore induces a map X — A =
[A'/G,,]. Consider the degree r map v, : A — A, given by t — " where ¢ is the coordinates
of A'. We form a stack Xp, = X Xp 4,, A. Given a X-scheme S, the objects in Xp,.(5)
are tuples (f, M, ¢, s) where

(1) f: S — X is a morphism;
(2) M is a line bundle on S;
(3) ¢: M" — f*Ox(D) is an isomorphism;
(4) s € H°(M) such that ¢(s") = f*(1p).
We call Xp, the r-th root stack of D. It is of Deligne-Mumford type over X.

Consider the case where X is smooth, and the effective divisor D is smooth in X. We would
like to consider the local structure of Xp ,. Thus, we can assume that X = Spec k[zy, -+, x],
and D is given by the vanishing of x;. Then in this case, the stack Xp, is given by the
following stack quotient:

[Spec(k[ya$2a T 7xl]/(yr = xl))/ﬂr]

where p, is a finite cyclic group of order r invertible in k&, and for any v € p,., the action is
given by u : y — wu -y, and fix all other coordinates.

The above local description shows that when both X and D are smooth, the stack Xp,
is also smooth. Denote by D C Xp , the smooth divisor given by the vanishing of the local
coordinate y. The inverse image of D in Xp, is - D. In fact, the morphism D — D makes
D an ji,-gerbe over D. We call the D is the r-th root of D in Xp,.

Consider D = (Dy,---,D,) an n-tuple of effective divisors D; C X, and consider r =
(r1,--+,rn) an n-tuple of positive integers. We use the following notation:

Xpr =Xpr Xx - Xx XDy

A.3.3. Root of log structures. Let X be a smooth algebraic stack, and D = ]_[j D; be a
normal crossings divisor given by union of smooth divisors D; on X. We assume that
D; # D, if j #i. Let r = (r1,--- ,7,) be an n-tuple of positive integers. By the argument
in A.3.1, we have locally free log structures M and M%5 on X for all j such that

MD & ./\/lD1 @o;{ cee @o;{ MD".

Let N — MP5 be a local chart for MPs, then the above decomposition gives a local chart
N* — MP.

Now we define a fibered category X over X. Given a morphism f : Y — X from a scheme
Y, the fiber X(Y) is the groupoid of simple morphisms of log structures f*(MP) — M,
such that for each geometric point p € Y, we locally have a chart near p

®; xr;
NTL N Nn

L

fr(MP) — M,
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where each integer r; corresponds to the factor of N in N™ given by the divisor D;. A
morphism between two objects

(f"(MP) = M) = (f*(MP) = Ms)

is an isomorphism of log structures M; — M, fitting in the following commutative diagram:

frMx)
/ \
My Ma.

Denote by D = (Dy,--- , D,). It was shown in [Cad07, 3.6] and [MOO05, Section 4] that X
is the stack Xp, defined above.
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