Resolution in Toroidal Orbifolds

Dan Abramovich

Brown University

Lecture at AGNeaU-BosCo March 18, 2017.

Joint work with

Michael Temkin (Jerusalem)

Jarosław Włodarczyk (Purdue)

Toroidal orbifolds

Definition (KKMS-D)

 $U \subset X$ is toroidal if étale^a locally it is isomorphic to a toric $T \subset Y$. In other words, for $p \in X$ there is an étale neighborhood $\phi : Z \to X$ and étale map $\psi : Z \to Y$ such that $\phi^{-1}U = \psi^{-1}T$.

^aor formally, or analytically

Definition

 An orbifold X is a Deligne–Mumford stack with dense open subscheme, locally [Y/G] with G finite acting faithfully.

• A toroidal orbifold is one which is locally [Y/G], where $U \subset Y$ toroidal and equivariant.

Theorem (KKMS-D, Nizioł)

Any toroidal orbifold has a toroidal resolution of singularities.

Admissible centers

- Anything toroidal is étale locally like $\mathbb{A}^k \times \operatorname{Spec} k[M]$, with the toroidal structure coming from M.
- We use x_i, y, z for non-monomial parameters of A^k and u, v, w or m_i for elements coming from M.

Definition

- A toroidal submanifold is locally defined by (x_1, \ldots, x_r) .
- An admissible center is locally defined by $(x_1, \ldots, x_r, m_1, \ldots, m_s)$.

• A Kummer admissible center is locally defined by $(x_1, \ldots, x_r, m_1^{1/n}, \ldots, m_s^{1/n})$.

Definition

If $\mathcal{I} \subset \mathcal{O}_{\mathcal{X}}$ and $a \in \mathbb{N}$, a Kummer admissible center with ideal \mathcal{J} is (\mathcal{I}, a) -admissible if $\mathcal{I} \subset \mathcal{J}^a$. In particular \mathcal{I} vanishes on the center.

Main result: principalization

You can blow up a Kummer center $\mathcal{X}' \to \mathcal{X}$, and \mathcal{X}' is another toroidal orbifold. It is like a weighted blowup on steroids.

Theorem (ℵTW)

Let \mathcal{X} be a toroidal orbifold and $\mathcal{I} \subset \mathcal{O}_{\mathcal{X}}$ a coherent ideal sheaf. Then there is a sequence

$$\mathcal{X}' = \mathcal{X}_n \to \mathcal{X}_{n-1} \to \cdots \to \mathcal{X}_1 \to \mathcal{X}_0 = \mathcal{X}$$

of admissible Kummer blowups^a such that $\mathcal{IO}_{\mathcal{X}'}$ is an invertible monomial ideal.

$$\mathcal{I}_{j}, a_{j})$$
-admissible, where $\mathcal{I}_{j} = \mathcal{I}_{E_{j}}^{-a_{j}}(\mathcal{I}_{j-1}\mathcal{O}_{\mathcal{X}_{j}})$

- Using destackification [Bergh] / torification [&KMW, &T] we can replace $\mathcal{X}' \to \mathcal{X}$ by a representable morphism.
- Using toroidal resolution [KKMS-D], we may replace \mathcal{X}' by a smooth one.

From principalization to resolution

- Let $Y \subset X := \mathbb{P}^n$ be a subvariety, $\mathcal{I} = \mathcal{I}_Y$.
- In the principalization sequence for \mathcal{I} write \mathcal{Y}_i for the proper transforms.
- Admissiblity implies: there is a unique time $\mathcal{X}_{i+1} \to \mathcal{X}_i$ where $\mathcal{I}_{\mathcal{Y}_i}$ is blown up.
- Necessarily \mathcal{Y}_i is a toroidal submanifold, so it is a toroidal orbifold itself.
- Destackification replaces $\mathcal{Y}_i \to Y$ by a representable morphism $Y' \to Y$.
- Toroidal resolution gives a resolution $Y'' \to Y' \to Y$.

Cleaning up

An ideal is monomial if it locally corresponds to an ideal of the form (m_1, \ldots, m_k) . E.g. $(u, v) \subset k[u, v]$. Consider the minimal monomial ideal $\mathcal{M} := \mathcal{M}(\mathcal{I})$ containing \mathcal{I} . E.g. $\mathcal{I} := (u - v) \subset (u, v)$. Write \mathcal{D}^{∞} for the ring of logarithmic differential operators. E.g. $u \frac{\partial}{\partial u}, v \frac{\partial}{\partial v}, 1$.

Theorem (Kollár, \aleph TW) $\mathcal{M}(\mathcal{I}) = \mathcal{D}^{\infty}(\mathcal{I}).$

E.g.
$$u\frac{\partial}{\partial u}(u-v) = u, v\frac{\partial}{\partial v}(u-v) = -v$$
, so $\mathcal{D}^{\infty}(\mathcal{I}) = (u, v)$

Theorem (Kollár, ℵTW)

Let $X' \to X$ be the normalized blowing up of $\mathcal{M}(\mathcal{I})$, with $\mathcal{M}' = \mathcal{MO}_{X'}$. Then $\mathcal{IO}_{X'} = \mathcal{M}' \cdot \mathcal{I}^{cln}$, with $\mathcal{M}(\mathcal{I}^{cln}) = 1$.

E.g. X' = the blowup, locally Spec k[u, v/u]. $\mathcal{M}' = (u)$. $\mathcal{I}^{cln} = (1 - v/u)$, a clean ideal: $\mathcal{M}(\mathcal{I}^{cln}) = 1$.

examples

Order reduction

Definition

Write $\mathcal{D}^{\leq a}$ for the sheaf of logarithmic differential operators of order $\leq a$. The logarithmic order of a clean ideal \mathcal{I} is the minimum *a* such that $\mathcal{D}^{\leq a}\mathcal{I} = (1)$.

Theorem (Order reduction)

Let X be a toroidal orbifold, \mathcal{I} a clean ideal with logarithmic order a. Then there is an (\mathcal{I}, a) -admissible Kummer sequence such that the transformed ideal \mathcal{I}_n has logarithmic order < a. Furthermore, the procedure assigning to (X, \mathcal{I}) the Kummer sequence is functorial for toroidal morphisms.

This implies principalization by induction on a.

Example (3)

- $\mathcal{J} = (u^2, x)$ on $X = \operatorname{Spec} \mathbb{C}[u, x]$, clean.
- Blowing up \mathcal{J} : a modification $X' \to X$ with an exceptional divisor E.
- We use E to enrich the toroidal structure.
- Charts:

***** Exceptional: u = 0, monomial

★ $(x, u^2)\mathcal{O}_{X'} = (u^2)$, invertible monomial ideal.

- So $\mathcal{JO}_{X'}$ is a monomial ideal on a singular toroidal variety.
- The classical algorithm would have us blow up (x, u) and then an infinitely near point.
- In the case of $\mathcal{J}_{200} = (u^{200}, x)$, the classical algorithm would have us blow up 200 times.

Jump to page 12

Analysis of example

- The same blowing up works $\mathcal{I}_1 := \mathcal{J}^2$, as well as its unsaturated variant $\mathcal{I}_2 := (u^4, x^2)$.
- How do we know in all these cases to blow up \mathcal{J} ?
- Restricting the ideal \mathcal{J} to the hypersurface $\{x = 0\}$ we obtain the monomial ideal (u^2) ,
- hinting that we should lift this ideal from $\{x = 0\}$ to X, giving (u^2, x) .
- What distinguishes x? It defines a toroidal submanifold.
- $x + u^2$ would do just as well.
- Note: \mathcal{J} has *logarithmic order* 1: it contains a regular parameter,

Analysis of example (continued)

- Note: $\mathcal J$ has *logarithmic order 1*: it contains a regular parameter,
- namely: restricting \mathcal{J} to the stratum u = 0 the resulting ideal (x) defines a toroidal subvariety.
- $\mathcal{I}_1 = \mathcal{J}^2$ or \mathcal{I}_2 have logarithmic order a = 2:
- on u = 0 restrict to (x^2) ; also $\mathcal{D}^{\leq 2}\mathcal{I}_j = (1)$.
- Following classical methods, pick parameter $x \in \mathcal{D}^{\leq a-1}(\mathcal{I}_j) = \mathcal{D}^{\leq 1}(\mathcal{I}_j).$
- \mathcal{J} is $(\mathcal{I}_j, 2)$ -admissible, in the sense that $\mathcal{I}_j \subseteq \mathcal{J}^2 = \mathcal{J}^a$.
- $\Rightarrow \mathcal{I}_j \mathcal{O}_{X'}$ factors out monomial ideal $(\mathcal{J}\mathcal{O}_{X'})^2$.
- In the example, $\mathcal{I}_j \mathcal{O}_{X'} = (\mathcal{J} \mathcal{O}_{X'})^2$.
- in general the other factor is automatically clean

Example (4)

- $\mathcal{I}_3 = (x^2, u)$, logarithmic order a = 2.
- $H = \{x = 0\}$ hypersurface of maximal contact, $\mathcal{I}_3 \mathcal{O}_H = (u)$
- but (x, u) not admissible, as $\mathcal{I}_3 \not\subseteq (x, u)^2$.
- Kummer ideal sheaf $(x, u^{1/2})$ admissible: $\mathcal{I}_3 = (x^2, u) \subseteq (x, u^{1/2})^2 = (x^2, xu^{1/2}, u).$
- associated blowing up $X' \to X$ with charts:
 - X'_x := Spec ℂ[x, u, v]/(vx² = u), where v = u/x² (nonsingular scheme).
 - **★** Exceptional x = 0, now monomial.
 - * $\mathcal{I}_3 = (x^2, u)$ transformed into (x^2) , invertible monomial ideal.
 - * Kummer ideal $(x, u^{1/2})$ transformed into monomial ideal (x).

▶ The *u*^{1/2}-chart:

- ★ stack quotient $X'_{u^{1/2}} := [\operatorname{Spec} \mathbb{C}[w, y]/\mu_2]$,
- * where y = x/w and $\mu_2 = \{\pm 1\}$ acts via $(w, y) \mapsto (-w, -y)$.
- ***** Exceptional w = 0 (monomial).
- ★ (x^2, u) transformed into invertible monomial ideal $(u) = (w^2)$.
- * $(x, u^{1/2})$ transformed into invertible monomial ideal (w).

Example (4) - continued

• Outside $\{y = 0\}$ this becomes the schematic quotient

 $\operatorname{Spec} \mathbb{C}[w, y, y^{-1}]/\mu_2 = \operatorname{Spec} \mathbb{C}[y^2, y^{-2}, wy] = \operatorname{Spec} \mathbb{C}[v^{-1}, v, x],$

an open subscheme in X'_x , allowing gluing of the two charts.

- Note that X'_{u1/2} is again a toroidal orbifold with respect to the toroidal structure enriched by E,
- but that the stabilizer of y = w = 0 does not act as a subgroup of the torus.
- This means that the coarse moduli space is not toroidal in any natural manner, and in order to maintain the toroidal structure the stack structure must remain.
- Classical principalization requires two blowings up, and for (x^{200}, u) , it would require 200 blowings up. We need one Kummer blowing up.

Tuning

- Maximal contact elements are local and not unique.
- Włodarczyk introduced the homogenization $\mathcal{H}(\mathcal{I}, a)$.

Theorem

- Order reduction for \mathcal{I} is equivalent to order reduction for $\mathcal{H}(\mathcal{I})$.
- Any two maximal contact elements for $\mathcal{H}(\mathcal{I})$ are related by a local automorphism.
- So it suffices to prove functorial order reduction.
- Order reduction for $\mathcal{I}_{x=0}$ does not imply order reduction for \mathcal{I} .
- Włodarczyk adapted the coefficient ideal $C(\mathcal{I}, a)$ (Villamayor, Bierstone-Milman).

Theorem

Order reduction for $C(\mathcal{I}, a)_{x=0}$ implies order reduction for \mathcal{I} .

Next goals

- Extend to ge schemes.
- Extend to good schemes over valuation rings
- Extend to other categories
- Functorial semistable reduction.
- Functorial alteration results.