Punctured logarithmic maps and punctured invariants

Dan Abramovich, Brown University

Work with Qile Chen, Mark Gross and Bernd Siebert
3CinG - London, Warwick, Cambridge
Other work by Parker, Tehrani, Dhruv, Fan-Tseng-Wu-You

September 18, 2020
Virtual fundamental classes in Gromov–Witten theory require working with smooth targets.

Making full use of deformation invariance in Gromov–Witten theory requires degenerating the target

Such as \(xyz = t\) as \(t \to 0\).

At the very least, étale locally like toric varieties and fibers of toric morphisms

We need a fairytale world in which these are smooth.
Log geometry

- Observation (Siebert, 2001): Such fairytale world already exists - logarithmic geometry.
- Schemes are glued from closed subsets of affine spaces - the standard-issue smooth spaces.
- Log schemes are étale glued from closed subsets of affine toric varieties - the standard-issue log smooth spaces.
- (Keep this in mind when we go one step further)
a log structure is a monoid homomorphism $\alpha : M \to \mathcal{O}_X$
such that $\alpha^* \mathcal{O}_X^\times \to \mathcal{O}_X^\times$ is an isomorphism.
Morphisms are given by natural commutative diagrams.
A key example is the log structure associated to an open $U \subset X$, where $M = \mathcal{O}_X \cap \mathcal{O}_U^\times$.
Toric and log smooth Log structures (K. Kato)

- When X is a toric variety and U the torus this is a prototypical example of a log smooth structure.
- In this case the monoid is associated to the regular monomials, with \mathcal{O}^\times thrown in.
- In general X is log smooth if it is étale locally toric.
- A morphism $X \to Y$ is log smooth if it is étale locally a base change of a dominant morphism of toric varieties.
Log curves

- A **log curve** is a reduced 1-dimensional fiber of a flat **log smooth morphism**.
- F. Kato showed that these are the same as nodal marked curves, with “the natural” log structure.
Log curves under the microscope

- Say $C \rightarrow S$ a log curve, $S = \text{Spec}(M_S \rightarrow k)$.
- A general point of C looks like $\text{Spec}(M_S \rightarrow k[x])$.
- A node looks like $\text{Spec}(M \rightarrow k[x, y]/(xy))$, where
 \[M = M_S \langle \log x, \log y \rangle / (\log x + \log y = \log t), \quad t \in M_S. \]
- A marked point looks like $\text{Spec}(M \rightarrow k[x])$ where
 \[M = M_S \oplus \mathbb{N} \log x. \]
Stable log maps

- Fix X a nice log smooth scheme.
- A stable log map $C \to X$ is a log morphism with stable underlying morphism of schemes.
- Marked points record contact orders with divisors of X.
- These are recorded by integer points $u \in \Sigma(X)(\mathbb{N})$.
- Stable log maps have “standard issue” log structure, called minimal.

Theorem ([GS,C,ACMW])

$\mathcal{M}(X, \tau)$, the stack of minimal stable log maps of type τ, is a Deligne–Mumford stack which is finite and representable over $\mathcal{M}(X, \tau)$.
Tropical picture

- \(X \) has a cone complex \(\Sigma(X) \) with integer lattice.
- \(C \to S \) has cone complex \(\Sigma(C) \to \Sigma(S) \). The fiber over \(u \in \Sigma(S) \) is a tropical curve:
- Components give vertices, nodes give edges, and marked points give infinite legs.
- A stable log map gives \(\Sigma(C) \to \Sigma(X) \), a family of tropical curves in \(\Sigma(X) \).
- Minimality is beautifully encoded in this picture...
Logarithmic invariants

- Recall that $\mathcal{M}(X, \tau)$ has a perfect obstruction theory over $\mathcal{M}_{g,n} \times \mathcal{X}^n$. This affords invariants by virtual pullback.
- $\mathcal{M}(X, \tau)$ has a POT over $\mathcal{M}^{ev}(A_X, \tau)$, where A_X is the artin fan, a stack-theoretic version of $\Sigma(X)$.
- Here $\mathcal{M}^{ev}(A_X, \tau)$ is approximately $\mathcal{M}(A_X, \tau) \times A_X^n \times \mathcal{X}^n$.

Theorem ([GS,C,AC])

$\mathcal{M}^{ev}(A_X, \tau)$ is log smooth, and has a fundamental class. This affords invariants by virtual pullback.
An Analogy: Orbifold vs. Logarithmic cohomology

- If \mathcal{X} is an orbifold, Chen-Ruan defined orbifold and quantum cohomology based on $H^*(\overline{\mathcal{I}}_\infty(\mathcal{X}), \mathbb{Q})$.
- $\overline{\mathcal{I}}_\infty(\mathcal{X})$, the rigidified inertia stack is the moduli space of orbifold points in \mathcal{X}, whose components, twisted sectors, correspond to (x, ϕ) where $x \in \mathcal{X}$ and $\phi \in \text{Aut}(x)$.
- Chen Ruan cohomology pairs ϕ with ϕ^{-1}.
- If X is a log scheme, Gross–Hacking–Keel–Siebert... define the ring of theta functions,
 - based on the moduli space $\mathcal{P}(X)$ of log points in \mathcal{X},
 - whose components correspond to (x, u) where $x \in X$ and u a contact order at x, namely $u \in \Sigma(X)(\mathbb{N})$.
 - what about $-u$?
Splitting?

- Consider $X \to \mathbb{A}^1$ the total space of $xy = t$, and
- $C \to S$ given by $\{y = 0\} \to \{t = 0\}$.
- At the origin $M_S + \mathbb{N} \log x \subsetneq M \subsetneq M_S + \mathbb{Z} \log x$.
- It is not a log curve, but rather a punctured curve.
- Its tropicaliation is a finite leg.
A puncturing of a marked curve is a log structure M at a marked point with

$$M_S + \mathbb{N} \log x \subseteq M \subset M_S + \mathbb{Z} \log x.$$

It is an instance of an idealized log smooth scheme.

A morphism $f : C \to X$ is prestable if M is generated by $M_S + \mathbb{N} \log x$ and $f^! M_X$.
Another example

- Now consider $X = \mathbb{P}^1 \times \mathbb{P}^1$ with log structure given by $D = \text{one ruling}$.
- Let a conic C degenerate to the union of the two rulings $C_0 = D + F$.
- Then D has one marked point and one puncture,
- and (after pre-stabilizing) F has one marked point.
Punctured log maps

- A punctured stable log map $C \to X$ is a prestable log morphism with stable underlying morphism of schemes.
- Punctured points record contact orders with divisors of X.
- These are recorded by integer tangents of the cone complex of X.
- Punctured log maps have “standard issue” minimal log structures.

Theorem ([ACGS])

$\mathcal{M}(X, \tau)$, the stack of minimal punctured stable log maps of type τ, is a Deligne–Mumford stack which is finite and representable over $\mathcal{M}(X, \tau)$.
Punctured invariants

- \(\mathcal{M}(X, \tau) \) has a POT over \(\mathcal{M}^{\text{ev}}(A_X, \tau) \), where \(A_X \) is the artin fan.
- \(\mathcal{M}^{\text{ev}}(A_X, \tau) \) is not log smooth, and doesn't have a fundamental class.

Theorem ([ACGS])

\(\mathcal{M}^{\text{ev}}(A_X, \tau) \) is idealized log smooth. This affords invariants by super-careful virtual pullback.

- The case of \(g = 0, n = 3, u_1, u_2, -u_3 \in \Sigma(X)(\mathbb{N}) \) is, fortunately, manageable.
There is a natural finite and representable splitting morphism
\[M(X, \tau) \xrightarrow{\delta} \prod M(X, \tau_i). \]

Theorem (ACGS)

There is a virtual-pullback cartesian diagram

\[
\begin{array}{ccc}
M(X, \tau) & \rightarrow & \prod_{i=1}^{r} M(X, \tau_i) \\
\downarrow & & \downarrow \\
M^{ev}(A_X, \tau) & \rightarrow & \prod_{i=1}^{r} M^{ev}(A_X, \tau_i)
\end{array}
\]

with horizontal arrows the splitting maps, and the vertical arrows the canonical strict morphisms.

One needs even more care to relate this to a diagonal map.
The end

Thank you for your attention