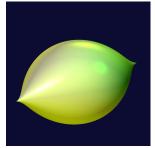
Resolving singularities of varieties and families

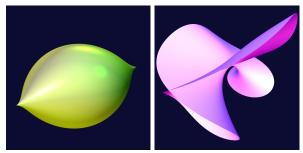
Dan Abramovich Brown University

Joint work with Michael Temkin and Jarosław Włodarczyk

July 2018



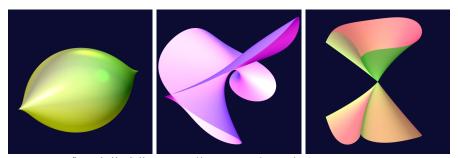
figrures by Herwig Hauser, https://imaginary.org/gallery/herwig-hauser-classic



figrures by Herwig Hauser, https://imaginary.org/gallery/herwig-hauser-classic

figrures by Herwig Hauser, https://imaginary.org/gallery/herwig-hauser-classic

Singularities are beautiful.



 $figrures\ by\ Herwig\ Hauser,\ https://imaginary.org/gallery/herwig-hauser-classic$

Singularities are beautiful. Yet we get rid of them.

Resolution of singularities

Definition

A resolution of singularities $X' \to X$ is a modification^a with X' nonsingular inducing an isomorphism over the smooth locus of X.

^aproper birational map

Resolution of singularities

Definition

A resolution of singularities $X' \to X$ is a modification^a with X' nonsingular inducing an isomorphism over the smooth locus of X.

^aproper birational map

Theorem (Hironaka 1964)

A variety X over a field of characteristic 0 admits a resolution of singularities $X' \to X$, so that the exceptional locus $E \subset X'$ is a simple normal crossings divisor.^a

^aCodimension 1, smooth components meeting transversally

Resolution of families: $\dim B = 1$

Question

When are the singularities of a morphism $X \to B$ simple?

Resolution of families: $\dim B = 1$

Question

When are the singularities of a morphism $X \to B$ simple?

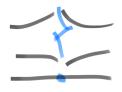
- ullet If dim B=1 the simplest one can have by modifying X is $t=\prod x_i^{a_i}$,
- and if one also allows base change, can have $t = \prod x_i$. [Kempf–Knudsen–Mumford–Saint-Donat 1973]

Resolution of families: $\dim B = 1$

Question

When are the singularities of a morphism $X \to B$ simple?

- ullet If dim B=1 the simplest one can have by modifying X is $t=\prod x_i^{a_i}$,
- and if one also allows base change, can have $t = \prod x_i$. [Kempf–Knudsen–Mumford–Saint-Donat 1973]



Question

What makes these special?

Log smooth schemes and log smooth morphisms

- A toric variety is a normal variety on which $T = (\mathbb{C}^*)^n$ acts algebraically with a dense free orbit.
- Zariski locally defined by equations between monomials.

Log smooth schemes and log smooth morphisms

- A toric variety is a normal variety on which $T = (\mathbb{C}^*)^n$ acts algebraically with a dense free orbit.
- Zariski locally defined by equations between monomials.
- A variety X with divisor D is toroidal or log smooth if étale locally it looks like a toric variety X_{σ} with its toric divisor $X_{\sigma} \setminus T$.
- Étale locally it is defined by equations between monomials.

Log smooth schemes and log smooth morphisms

- A toric variety is a normal variety on which $T = (\mathbb{C}^*)^n$ acts algebraically with a dense free orbit.
- Zariski locally defined by equations between monomials.
- A variety X with divisor D is toroidal or \log smooth if étale locally it looks like a toric variety X_{σ} with its toric divisor $X_{\sigma} \setminus T$.
- Étale locally it is defined by equations between monomials.
- A morphism $X \to Y$ is toroidal or \log smooth if étale locally it looks like a torus equivariant morphism of toric varieties.
- The inverse image of a monomial is a monomial.

Resolution of families: higher dimensional base

Question

When are the singularities of a morphism $X \to B$ simple?

Resolution of families: higher dimensional base

Question

When are the singularities of a morphism $X \to B$ simple?

The best one can hope for, after base change, is a semistable morphism:

Definition (ℵ-Karu 2000)

A log smooth morphism, with B smooth, is semistable if locally

$$t_1 = x_1 \cdots x_{l_1}$$

 \vdots \vdots
 $t_m = x_{l_{m-1}+1} \cdots x_m$

In particular log smooth.

Similar definition by Berkovich, all following de Jong.

Conjecture [ℵ-Karu]

Let $X \to B$ be a dominant morphism of varieties.

• (Loose) There is an alteration $B_1 \to B$ and a modification $X_1 \to (X \times_B B_1)_{\text{main}}$ such that $X_1 \to B_1$ is semistable.

Conjecture [ℵ-Karu]

- (Loose) There is an alteration $B_1 \to B$ and a modification $X_1 \to (X \times_B B_1)_{\text{main}}$ such that $X_1 \to B_1$ is semistable.
- (Tight) If the geometric generic fiber $X_{\bar{\eta}}$ is smooth, such $X_1 \to B_1$ can be found with $X_{\bar{\eta}}$ unchanged.

Conjecture [ℵ-Karu]

- (Loose) There is an alteration $B_1 \to B$ and a modification $X_1 \to (X \times_B B_1)_{\text{main}}$ such that $X_1 \to B_1$ is semistable.
- (Tight) If the geometric generic fiber $X_{\bar{\eta}}$ is smooth, such $X_1 \to B_1$ can be found with $X_{\bar{\eta}}$ unchanged.
- One wants the tight version in order to compactify smooth families.

Conjecture [ℵ-Karu]

- (Loose) There is an alteration $B_1 \to B$ and a modification $X_1 \to (X \times_B B_1)_{\text{main}}$ such that $X_1 \to B_1$ is semistable.
- (Tight) If the geometric generic fiber $X_{\bar{\eta}}$ is smooth, such $X_1 \to B_1$ can be found with $X_{\bar{\eta}}$ unchanged.
- One wants the tight version in order to compactify smooth families.
- I'll describe progress towards that.

Conjecture [ℵ-Karu]

- (Loose) There is an alteration $B_1 \to B$ and a modification $X_1 \to (X \times_B B_1)_{\text{main}}$ such that $X_1 \to B_1$ is semistable.
- (Tight) If the geometric generic fiber $X_{\bar{\eta}}$ is smooth, such $X_1 \to B_1$ can be found with $X_{\bar{\eta}}$ unchanged.
- One wants the tight version in order to compactify smooth families.
- I'll describe progress towards that.
- Major early results by [KKMS 1973], [de Jong 1997].

Conjecture [ℵ-Karu]

- (Loose) There is an alteration $B_1 \to B$ and a modification $X_1 \to (X \times_B B_1)_{\text{main}}$ such that $X_1 \to B_1$ is semistable.
- (Tight) If the geometric generic fiber $X_{\bar{\eta}}$ is smooth, such $X_1 \to B_1$ can be found with $X_{\bar{\eta}}$ unchanged.
- One wants the tight version in order to compactify smooth families.
- I'll describe progress towards that.
- Major early results by [KKMS 1973], [de Jong 1997].
- Wonderful results in positive and mixed characteristics by de Jong, Gabber, Illusie and Temkin.

Back to characteristic 0

Theorem (Toroidalization, ℵ-Karu 2000, ℵ-K-Denef 2013)

There is a modification $B_1 \to B$ and a modification $X_1 \to (X \times_B B_1)_{main}$ such that $X_1 \to B_1$ is log smooth and flat.

Theorem (Weak semistable reduction, ℵ-Karu 2000)

There is an alteration $B_1 \to B$ and a modification $X_1 \to (X \times_B B_1)_{main}$ such that $X_1 \to B_1$ is log smooth, flat, with reduced fibers.

Back to characteristic 0

Theorem (Toroidalization, ℵ-Karu 2000, ℵ-K-Denef 2013)

There is a modification $B_1 \to B$ and a modification $X_1 \to (X \times_B B_1)_{main}$ such that $X_1 \to B_1$ is log smooth and flat.

Theorem (Weak semistable reduction, ℵ-Karu 2000)

There is an alteration $B_1 \to B$ and a modification $X_1 \to (X \times_B B_1)_{main}$ such that $X_1 \to B_1$ is log smooth, flat, with reduced fibers.

• Passing from weak semistable reduction to semistable reduction is a purely combinatorial problem [ℵ-Karu 2000],

Back to characteristic 0

Theorem (Toroidalization, ℵ-Karu 2000, ℵ-K-Denef 2013)

There is a modification $B_1 \to B$ and a modification $X_1 \to (X \times_B B_1)_{main}$ such that $X_1 \to B_1$ is log smooth and flat.

Theorem (Weak semistable reduction, ℵ-Karu 2000)

There is an alteration $B_1 \to B$ and a modification $X_1 \to (X \times_B B_1)_{main}$ such that $X_1 \to B_1$ is log smooth, flat, with reduced fibers.

- Passing from weak semistable reduction to semistable reduction is a purely combinatorial problem [ℵ-Karu 2000],
- proven by [Karu 2000] for families of surfaces and threefolds, and

Back to characteristic 0

Theorem (Toroidalization, ℵ-Karu 2000, ℵ-K-Denef 2013)

There is a modification $B_1 \to B$ and a modification $X_1 \to (X \times_B B_1)_{main}$ such that $X_1 \to B_1$ is log smooth and flat.

Theorem (Weak semistable reduction, ℵ-Karu 2000)

There is an alteration $B_1 \to B$ and a modification $X_1 \to (X \times_B B_1)_{main}$ such that $X_1 \to B_1$ is log smooth, flat, with reduced fibers.

- Passing from weak semistable reduction to semistable reduction is a purely combinatorial problem [ℵ-Karu 2000],
- proven by [Karu 2000] for families of surfaces and threefolds, and
- whose restriction to rank-1 valuation rings is proven in a preprint by [Karim Adiprasito - Gaku Liu - Igor Pak - Michael Temkin].

Applications of weak semistable reduction

(with a whole lot of more input)

Theorem (Karu 2000; K-SB 97, Alexeev 94, BCHM 11)

The moduli space of stable smoothable varieties is projective.

Applications of weak semistable reduction

(with a whole lot of more input)

Theorem (Karu 2000; K-SB 97, Alexeev 94, BCHM 11)

The moduli space of stable smoothable varieties is projective.

Theorem (Viehweg-Zuo 2004)

The moduli space of canonically polarized manifolds is Brody hyperbolic.

Applications of weak semistable reduction

(with a whole lot of more input)

Theorem (Karu 2000; K-SB 97, Alexeev 94, BCHM 11)

The moduli space of stable smoothable varieties is projective.

Theorem (Viehweg-Zuo 2004)

The moduli space of canonically polarized manifolds is Brody hyperbolic.

Theorem (Fujino 2017)

Nakayama's numerical logarithmic Kodaira dimension is subadditive in families $X \to B$ with generic fiber F:

$$\kappa_{\sigma}(X, D_X) \ge \kappa_{\sigma}(F, D_F) + \kappa_{\sigma}(B, D_B).$$

Main result

The following result is work-in-progress.

Main result (Functorial toroidalization, ℵ-Temkin-Włodarczyk)

Let $X \to B$ be a dominant log morphism.

- There are log modifications $B_1 \to B$ and $X_1 \to (X \times_B B_1)_{\text{main}}$ such that $X_1 \to B_1$ is log smooth and flat;
- this is compatible with log base change $B' \to B$;
- this is functorial, up to base change, with log smooth $X'' \to X$.

This implies the tight version of the results of semistable reduction type.

Main result

The following result is work-in-progress.

Main result (Functorial toroidalization, ℵ-Temkin-Włodarczyk)

Let $X \to B$ be a dominant log morphism.

- There are log modifications $B_1 \to B$ and $X_1 \to (X \times_B B_1)_{\text{main}}$ such that $X_1 \to B_1$ is log smooth and flat;
- this is compatible with log base change $B' \to B$;
- this is functorial, up to base change, with log smooth $X'' \to X$.

This implies the tight version of the results of semistable reduction type.

Theorem (Temkin)

Resolution of singularities holds for excellent schemes, complex spaces, nonarchimedean spaces, p-adic spaces, formal spaces and for stacks.

Theorem (Temkin)

Resolution of singularities holds for excellent schemes, complex spaces, nonarchimedean spaces, p-adic spaces, formal spaces and for stacks.

 This is a consequence of resolution for varieties and schemes, functorial for smooth morphisms (submersions). Moreover

Theorem (Temkin)

Resolution of singularities holds for excellent schemes, complex spaces, nonarchimedean spaces, p-adic spaces, formal spaces and for stacks.

- This is a consequence of resolution for varieties and schemes, functorial for smooth morphisms (submersions). Moreover
- Włodarczyk showed that if one seriously looks for a resolution functor, one is led to a resolution theorem.

Theorem (Temkin)

Resolution of singularities holds for excellent schemes, complex spaces, nonarchimedean spaces, p-adic spaces, formal spaces and for stacks.

- This is a consequence of resolution for varieties and schemes, functorial for smooth morphisms (submersions). Moreover
- Włodarczyk showed that if one seriously looks for a resolution functor, one is led to a resolution theorem.
- Our main result will lead to this generality on families.
- Current application of our main result:

Theorem (Deng 2018)

The moduli space of minimal complex projective manifolds of general type is Kobayashi hyperbolic.

$\dim B = 0$: log resolution via principalization

• To resolve \log singularities, one embeds X in a \log smooth Y...

$\dim B = 0$: log resolution via principalization

- To resolve \log singularities, one embeds X in a \log smooth Y...
- ... which can be done locally.

$\dim B = 0$: log resolution via principalization

- To resolve \log singularities, one embeds X in a \log smooth Y...
- ... which can be done locally.
- One reduces to principalization of \mathcal{I}_X (Hironaka, Villamayor, Bierstone–Milman).

Theorem (Principalization . . . ℵ-T-W)

Let \mathcal{I} be an ideal on a log smooth Y. There is a functorial logarithmic morphism $Y' \to Y$, with Y' logarithmically smooth, and $\mathcal{IO}_{Y'}$ an invertible monomial ideal.

$\dim B = 0$: log resolution via principalization

- To resolve \log singularities, one embeds X in a \log smooth Y...
- ... which can be done locally.
- One reduces to principalization of \mathcal{I}_X (Hironaka, Villamayor, Bierstone–Milman).

Theorem (Principalization . . . ℵ-T-W)

Let $\mathcal I$ be an ideal on a log smooth Y. There is a functorial logarithmic morphism $Y' \to Y$, with Y' logarithmically smooth, and $\mathcal I\mathcal O_{Y'}$ an invertible monomial ideal.

Figure: The ideal (u^2, x^2)

4□ > 4□ > 4□ > 4□ > 4□ > 9

$\dim B = 0$: log resolution via principalization

- To resolve \log singularities, one embeds X in a \log smooth Y...
- ... which can be done locally.
- One reduces to principalization of \mathcal{I}_X (Hironaka, Villamayor, Bierstone–Milman).

Theorem (Principalization . . . ℵ-T-W)

Let $\mathcal I$ be an ideal on a log smooth Y. There is a functorial logarithmic morphism $Y' \to Y$, with Y' logarithmically smooth, and $\mathcal I\mathcal O_{Y'}$ an invertible monomial ideal.

Figure: The ideal (u^2, x^2) and the result of blowing up the origin, \mathcal{I}_E^2 . Here u is a monomial but x is not.

Principalization is done by order reduction, using logarithmic derivatives.

- for a monomial u we use $u\frac{\partial}{\partial u}$.
- for other variables x use $\frac{\partial}{\partial x}$.

Principalization is done by order reduction, using logarithmic derivatives.

- for a monomial u we use $u\frac{\partial}{\partial u}$.
- for other variables x use $\frac{\partial}{\partial x}$.

Definition

Write $\mathcal{D}^{\leq a}$ for the sheaf of logarithmic differential operators of order $\leq a$.

Principalization is done by order reduction, using logarithmic derivatives.

- for a monomial u we use $u\frac{\partial}{\partial u}$.
- for other variables x use $\frac{\partial}{\partial x}$.

Definition

Write $\mathcal{D}^{\leq a}$ for the sheaf of logarithmic differential operators of order $\leq a$. The logarithmic order of an ideal \mathcal{I} is the minimum a such that $\mathcal{D}^{\leq a}\mathcal{I}=(1)$.

Principalization is done by order reduction, using logarithmic derivatives.

- for a monomial u we use $u\frac{\partial}{\partial u}$.
- for other variables x use $\frac{\partial}{\partial x}$.

Definition

Write $\mathcal{D}^{\leq a}$ for the sheaf of logarithmic differential operators of order $\leq a$. The logarithmic order of an ideal \mathcal{I} is the minimum a such that $\mathcal{D}^{\leq a}\mathcal{I}=(1)$.

Take u, v monomials, x free variable, p the origin. $\log \operatorname{ord}_p(u^2, x) =$

Principalization is done by order reduction, using logarithmic derivatives.

- for a monomial u we use $u\frac{\partial}{\partial u}$.
- for other variables x use $\frac{\partial}{\partial x}$.

Definition

Write $\mathcal{D}^{\leq a}$ for the sheaf of logarithmic differential operators of order $\leq a$. The logarithmic order of an ideal \mathcal{I} is the minimum a such that $\mathcal{D}^{\leq a}\mathcal{I}=(1)$.

Take u, v monomials, x free variable, p the origin. $\log \operatorname{ord}_p(u^2, x) = 1$ (since $\frac{\partial}{\partial x} x = 1$)

Principalization is done by order reduction, using logarithmic derivatives.

- for a monomial u we use $u\frac{\partial}{\partial u}$.
- for other variables x use $\frac{\partial}{\partial x}$.

Definition

Write $\mathcal{D}^{\leq a}$ for the sheaf of logarithmic differential operators of order $\leq a$. The logarithmic order of an ideal \mathcal{I} is the minimum a such that $\mathcal{D}^{\leq a}\mathcal{I}=(1)$.

Take u, v monomials, x free variable, p the origin. $\log \operatorname{ord}_p(u^2, x) = 1$ (since $\frac{\partial}{\partial x} x = 1$) $\log \operatorname{ord}_p(u^2, x^2) =$

Principalization is done by order reduction, using logarithmic derivatives.

- for a monomial u we use $u\frac{\partial}{\partial u}$.
- for other variables x use $\frac{\partial}{\partial x}$.

Definition

Write $\mathcal{D}^{\leq a}$ for the sheaf of logarithmic differential operators of order $\leq a$. The logarithmic order of an ideal \mathcal{I} is the minimum a such that $\mathcal{D}^{\leq a}\mathcal{I}=(1)$.

Take u, v monomials, x free variable, p the origin.

$$\begin{array}{ll} \operatorname{logord}_p(u^2,x) = \mathbf{1} & (\operatorname{since} \ \frac{\partial}{\partial x} x = 1) \\ \operatorname{logord}_p(u^2,x^2) = \mathbf{2} & \operatorname{logord}_p(v,x^2) = \end{array}$$

Principalization is done by order reduction, using logarithmic derivatives.

- for a monomial u we use $u\frac{\partial}{\partial u}$.
- for other variables x use $\frac{\partial}{\partial x}$.

Definition

Write $\mathcal{D}^{\leq a}$ for the sheaf of logarithmic differential operators of order $\leq a$. The logarithmic order of an ideal \mathcal{I} is the minimum a such that $\mathcal{D}^{\leq a}\mathcal{I}=(1)$.

Take u, v monomials, x free variable, p the origin. $\log \operatorname{ord}_p(u^2, x) = 1$ (since $\frac{\partial}{\partial x} x = 1$) $\operatorname{logord}_p(u^2, x^2) = 2$ $\operatorname{logord}_p(v, x^2) = 2$ $\operatorname{logord}_p(v + u) =$

Principalization is done by order reduction, using logarithmic derivatives.

- for a monomial u we use $u\frac{\partial}{\partial u}$.
- for other variables x use $\frac{\partial}{\partial x}$.

Definition

Write $\mathcal{D}^{\leq a}$ for the sheaf of logarithmic differential operators of order $\leq a$. The logarithmic order of an ideal \mathcal{I} is the minimum a such that $\mathcal{D}^{\leq a}\mathcal{I}=(1)$.

Take u, v monomials, x free variable, p the origin. $\log \operatorname{ord}_p(u^2, x) = 1$ (since $\frac{\partial}{\partial x} x = 1$) $\log \operatorname{ord}_p(u^2, x^2) = 2$ $\log \operatorname{ord}_p(v, x^2) = 2$ $\log \operatorname{ord}_p(v + u) = \infty$ since $\mathcal{D}^{\leq 1} \mathcal{I} = \mathcal{D}^{\leq 2} \mathcal{I} = \cdots = (u, v)$.

Definition

 $\mathcal{M}(\mathcal{I})$ is the minimal monomial ideal containing \mathcal{I} .

Definition

 $\mathcal{M}(\mathcal{I})$ is the minimal monomial ideal containing \mathcal{I} .

Proposition (Kollár, ℵ-T-W)

(1) In cahracteristic 0, $\mathcal{M}(\mathcal{I}) = \mathcal{D}^{\infty}(\mathcal{I})$. In particular $\max_{p} \operatorname{logord}_{p}(\mathcal{I}) = \infty$ if and only if $\mathcal{M}(\mathcal{I}) \neq 1$.

Definition

 $\mathcal{M}(\mathcal{I})$ is the minimal monomial ideal containing \mathcal{I} .

Proposition (Kollár, ℵ-T-W)

- (1) In cahracteristic 0, $\mathcal{M}(\mathcal{I}) = \mathcal{D}^{\infty}(\mathcal{I})$. In particular $\max_{p} \operatorname{logord}_{p}(\mathcal{I}) = \infty$ if and only if $\mathcal{M}(\mathcal{I}) \neq 1$.
- (2) Let $Y_0 \to Y$ be the normalized blowup of $\mathcal{M}(\mathcal{I})$.

Definition

 $\mathcal{M}(\mathcal{I})$ is the minimal monomial ideal containing \mathcal{I} .

Proposition (Kollár, ℵ-T-W)

- (1) In cahracteristic 0, $\mathcal{M}(\mathcal{I}) = \mathcal{D}^{\infty}(\mathcal{I})$. In particular $\max_{p} \operatorname{logord}_{p}(\mathcal{I}) = \infty$ if and only if $\mathcal{M}(\mathcal{I}) \neq 1$.
- (2) Let $Y_0 \to Y$ be the normalized blowup of $\mathcal{M}(\mathcal{I})$. Then $\mathcal{M} := \mathcal{M}(\mathcal{I})\mathcal{O}_{Y_0} = \mathcal{M}(\mathcal{I}\mathcal{O}_{Y_0})$, and it is an invertible monomial ideal,

Definition

 $\mathcal{M}(\mathcal{I})$ is the minimal monomial ideal containing \mathcal{I} .

Proposition (Kollár, ℵ-T-W)

- (1) In cahracteristic 0, $\mathcal{M}(\mathcal{I}) = \mathcal{D}^{\infty}(\mathcal{I})$. In particular $\max_{p} \operatorname{logord}_{p}(\mathcal{I}) = \infty$ if and only if $\mathcal{M}(\mathcal{I}) \neq 1$.
- (2) Let $Y_0 \to Y$ be the normalized blowup of $\mathcal{M}(\mathcal{I})$. Then $\mathcal{M} := \mathcal{M}(\mathcal{I})\mathcal{O}_{Y_0} = \mathcal{M}(\mathcal{I}\mathcal{O}_{Y_0})$, and it is an invertible monomial ideal, and so $\mathcal{I}\mathcal{O}_{Y_0} = \mathcal{I}_0 \cdot \mathcal{M}$ with $\max_p \mathsf{logord}_p(\mathcal{I}_0) < \infty$.

Definition

 $\mathcal{M}(\mathcal{I})$ is the minimal monomial ideal containing \mathcal{I} .

Proposition (Kollár, ℵ-T-W)

- (1) In cahracteristic 0, $\mathcal{M}(\mathcal{I}) = \mathcal{D}^{\infty}(\mathcal{I})$. In particular $\max_{p} \operatorname{logord}_{p}(\mathcal{I}) = \infty$ if and only if $\mathcal{M}(\mathcal{I}) \neq 1$.
- (2) Let $Y_0 \to Y$ be the normalized blowup of $\mathcal{M}(\mathcal{I})$. Then $\mathcal{M} := \mathcal{M}(\mathcal{I})\mathcal{O}_{Y_0} = \mathcal{M}(\mathcal{I}\mathcal{O}_{Y_0})$, and it is an invertible monomial ideal, and so $\mathcal{I}\mathcal{O}_{Y_0} = \mathcal{I}_0 \cdot \mathcal{M}$ with $\max_p \mathsf{logord}_p(\mathcal{I}_0) < \infty$.

$(1) \Rightarrow (2)$

 \mathcal{D}_{Y_0} is the pullback of \mathcal{D}_Y , so (2) follows from (1) since the ideals have the same generators.

Proof of (1), basic affine case.

• Let $\mathcal{O}_Y = \mathbb{C}[x_1, \dots, x_n, u_1, \dots, u_m]$ and assume $\mathcal{M} = \mathcal{D}(\mathcal{M})$.

Proof of (1), basic affine case.

- Let $\mathcal{O}_Y = \mathbb{C}[x_1, \dots, x_n, u_1, \dots, u_m]$ and assume $\mathcal{M} = \mathcal{D}(\mathcal{M})$.
- The operators

$$1, u_1 \frac{\partial}{\partial u_1}, \dots, u_l \frac{\partial}{\partial u_l}$$

commute and have distinct systems of eigenvalues on the eigenspaces $u \mathbb{C}[x_1, \dots, x_n]$, for distinct monomials u.

Proof of (1), basic affine case.

- Let $\mathcal{O}_Y = \mathbb{C}[x_1, \dots, x_n, u_1, \dots, u_m]$ and assume $\mathcal{M} = \mathcal{D}(\mathcal{M})$.
- The operators

$$1, u_1 \frac{\partial}{\partial u_1}, \dots, u_l \frac{\partial}{\partial u_l}$$

commute and have distinct systems of eigenvalues on the eigenspaces $u \mathbb{C}[x_1, \dots, x_n]$, for distinct monomials u.

• Therefore $\mathcal{M}=\oplus u\mathcal{M}_u$ with ideals $\mathcal{M}_u\subset\mathbb{C}[x_1,\ldots,x_n]$ stable under derivatives,

Proof of (1), basic affine case.

- Let $\mathcal{O}_Y = \mathbb{C}[x_1, \dots, x_n, u_1, \dots, u_m]$ and assume $\mathcal{M} = \mathcal{D}(\mathcal{M})$.
- The operators

$$1, u_1 \frac{\partial}{\partial u_1}, \dots, u_l \frac{\partial}{\partial u_l}$$

commute and have distinct systems of eigenvalues on the eigenspaces $u \mathbb{C}[x_1, \dots, x_n]$, for distinct monomials u.

- Therefore $\mathcal{M}=\oplus u\mathcal{M}_u$ with ideals $\mathcal{M}_u\subset \mathbb{C}[x_1,\ldots,x_n]$ stable under derivatives,
- so each \mathcal{M}_u is either (0) or (1).

Proof of (1), basic affine case.

- Let $\mathcal{O}_Y = \mathbb{C}[x_1, \dots, x_n, u_1, \dots, u_m]$ and assume $\mathcal{M} = \mathcal{D}(\mathcal{M})$.
- The operators

$$1, u_1 \frac{\partial}{\partial u_1}, \dots, u_l \frac{\partial}{\partial u_l}$$

commute and have distinct systems of eigenvalues on the eigenspaces $u \mathbb{C}[x_1, \dots, x_n]$, for distinct monomials u.

- Therefore $\mathcal{M}=\oplus u\mathcal{M}_u$ with ideals $\mathcal{M}_u\subset \mathbb{C}[x_1,\ldots,x_n]$ stable under derivatives,
- so each \mathcal{M}_u is either (0) or (1).
- ullet In other words, ${\mathcal M}$ is monomial.

Proof of (1), basic affine case.

- Let $\mathcal{O}_Y = \mathbb{C}[x_1, \dots, x_n, u_1, \dots, u_m]$ and assume $\mathcal{M} = \mathcal{D}(\mathcal{M})$.
- The operators

$$1, u_1 \frac{\partial}{\partial u_1}, \dots, u_l \frac{\partial}{\partial u_l}$$

commute and have distinct systems of eigenvalues on the eigenspaces $u \mathbb{C}[x_1, \dots, x_n]$, for distinct monomials u.

- Therefore $\mathcal{M}=\oplus u\mathcal{M}_u$ with ideals $\mathcal{M}_u\subset \mathbb{C}[x_1,\ldots,x_n]$ stable under derivatives,
- so each \mathcal{M}_u is either (0) or (1).
- ullet In other words, ${\mathcal M}$ is monomial.

The general case requires more commutative algebra.

• In cahracteristic 0, if $\operatorname{logord}_p(\mathcal{I}) = a < \infty$, then $\mathcal{D}^{\leq a-1}\mathcal{I}$ contains an element x with derivative 1, a maximal contact element.

- In cahracteristic 0, if $\operatorname{logord}_p(\mathcal{I}) = a < \infty$, then $\mathcal{D}^{\leq a-1}\mathcal{I}$ contains an element x with derivative 1, a maximal contact element.
- Carefully applying induction on dimension to an ideal on $\{x=0\}$ gives order reduction (Encinas–Villamayor, Bierstone–Milman, Włodarczyk):

- In cahracteristic 0, if $\operatorname{logord}_p(\mathcal{I}) = a < \infty$, then $\mathcal{D}^{\leq a-1}\mathcal{I}$ contains an element x with derivative 1, a maximal contact element.
- Carefully applying induction on dimension to an ideal on $\{x=0\}$ gives order reduction (Encinas–Villamayor, Bierstone–Milman, Włodarczyk):

Proposition (... ℵ-T-W)

Let $\mathcal I$ be an ideal on a logarithmically smooth Y with

$$\max_{p} \mathsf{logord}_{p}(\mathcal{I}) = a.$$

- In cahracteristic 0, if $\log \operatorname{ord}_p(\mathcal{I}) = a < \infty$, then $\mathcal{D}^{\leq a-1}\mathcal{I}$ contains an element x with derivative 1, a maximal contact element.
- Carefully applying induction on dimension to an ideal on $\{x=0\}$ gives order reduction (Encinas–Villamayor, Bierstone–Milman, Włodarczyk):

Proposition (... ℵ-T-W)

Let $\mathcal I$ be an ideal on a logarithmically smooth Y with

$$\max_{p} \operatorname{logord}_{p}(\mathcal{I}) = a.$$

There is a functorial logarithmic morphism $Y_1 \to Y$, with Y_1 logarithmically smooth, such that $\mathcal{IO}_{Y'} = \mathcal{M} \cdot \mathcal{I}_1$ with \mathcal{M} an invertible monomial ideal and

$$\max_{p} \operatorname{logord}_{p}(\mathcal{I}_{1}) < a.$$

Arbitrary B

(Work in progress)

Main result (ℵ-T-W)

Let $Y \to B$ a logarithmically smooth morphism of logarithmically smooth schemes, $\mathcal{I} \subset \mathcal{O}_Y$ an ideal. There is a log morphism $B' \to B$ and functorial log morphism $Y' \to Y$, with $Y' \to B'$ logarithmically smooth, and $\mathcal{IO}_{Y'}$ an invertible monomial ideal.

 This is done by relative order reduction, using relative logarithmic derivatives.

Arbitrary B

(Work in progress)

Main result (ℵ-T-W)

Let $Y \to B$ a logarithmically smooth morphism of logarithmically smooth schemes, $\mathcal{I} \subset \mathcal{O}_Y$ an ideal. There is a log morphism $B' \to B$ and functorial log morphism $Y' \to Y$, with $Y' \to B'$ logarithmically smooth, and $\mathcal{I}\mathcal{O}_{Y'}$ an invertible monomial ideal.

 This is done by relative order reduction, using relative logarithmic derivatives.

Definition

Write $\mathcal{D}_{Y/B}^{\leq a}$ for the sheaf of relative logarithmic differential operators of order $\leq a$. The relative logarithmic order of an ideal \mathcal{I} is the minimum a such that $\mathcal{D}_{Y/B}^{\leq a}\mathcal{I}=(1)$.

The new step

• $\mathcal{M}:=\mathcal{D}^{\infty}_{Y/B}\mathcal{I}$ is an ideal which is monomial along the fibers.

The new step

- $\mathcal{M}:=\mathcal{D}^{\infty}_{Y/B}\mathcal{I}$ is an ideal which is monomial along the fibers.
- ullet relord $_p(\mathcal{I})=\infty$ if and only if $\mathcal{M}:=\mathcal{D}_{Y/B}^\infty\mathcal{I}$ is a nonunit ideal.

The new step

- $\mathcal{M}:=\mathcal{D}^{\infty}_{Y/B}\mathcal{I}$ is an ideal which is monomial along the fibers.
- ullet relord $_p(\mathcal{I})=\infty$ if and only if $\mathcal{M}:=\mathcal{D}_{Y/B}^\infty\mathcal{I}$ is a nonunit ideal.

Monomialization Theorem [ℵ-T-W]

Let $Y \to B$ a logarithmically smooth morphism of logarithmically smooth schemes, $\mathcal{M} \subset \mathcal{O}_Y$ an ideal with $\mathcal{D}_{Y/B}\mathcal{M} = \mathcal{M}$. There is a log morphism $B' \to B$ with saturated pullback $Y' \to B'$, such that $\mathcal{M}\mathcal{O}_{Y'}$ a monomial ideal.

After this one can proceed as in the case "dim B = 0".

Proof of Monomialization Theorem, special case

Let
$$Y = \operatorname{Spec} \mathbb{C}[u, v] \to B = \operatorname{Spec} \mathbb{C}[w]$$
 with $w = uv$, and $\mathcal{M} = (f)$.

Proof of Monomialization Theorem, special case

Let $Y = \operatorname{Spec} \mathbb{C}[u, v] \to B = \operatorname{Spec} \mathbb{C}[w]$ with w = uv, and $\mathcal{M} = (f)$.

Proof in this special case.

• Every monomial is either $u^{\alpha}w^{k}$ or $v^{\alpha}w^{k}$.

Proof of Monomialization Theorem, special case

Let $Y = \operatorname{Spec} \mathbb{C}[u, v] \to B = \operatorname{Spec} \mathbb{C}[w]$ with w = uv, and $\mathcal{M} = (f)$.

Proof in this special case.

- Every monomial is either $u^{\alpha}w^{k}$ or $v^{\alpha}w^{k}$.
- Once again the operators $1, u \frac{\partial}{\partial u} v \frac{\partial}{\partial v}$ commute and have different eigenvalues on u^{α}, v^{α} .

Let $Y = \operatorname{Spec} \mathbb{C}[u, v] \to B = \operatorname{Spec} \mathbb{C}[w]$ with w = uv, and $\mathcal{M} = (f)$.

Proof in this special case.

- Every monomial is either $u^{\alpha}w^{k}$ or $v^{\alpha}w^{k}$.
- Once again the operators 1, $u \frac{\partial}{\partial u} v \frac{\partial}{\partial v}$ commute and have different eigenvalues on u^{α} , v^{α} .
- Expanding $f = \sum u^{\alpha} f_{\alpha} + \sum v^{\beta} f_{\beta}$, the condition $\mathcal{M} = \mathcal{D}_{Y/B} \mathcal{M}$ gives that only one term survives,

Let $Y = \operatorname{Spec} \mathbb{C}[u, v] \to B = \operatorname{Spec} \mathbb{C}[w]$ with w = uv, and $\mathcal{M} = (f)$.

Proof in this special case.

- Every monomial is either $u^{\alpha}w^{k}$ or $v^{\alpha}w^{k}$.
- Once again the operators 1, $u \frac{\partial}{\partial u} v \frac{\partial}{\partial v}$ commute and have different eigenvalues on u^{α} , v^{α} .
- Expanding $f = \sum u^{\alpha} f_{\alpha} + \sum v^{\beta} f_{\beta}$, the condition $\mathcal{M} = \mathcal{D}_{Y/B} \mathcal{M}$ gives that only one term survives,
- say $f = u^{\alpha} f_{\alpha}$, with $f_{\alpha} \in \mathbb{C}[w]$.

Let $Y = \operatorname{Spec} \mathbb{C}[u, v] \to B = \operatorname{Spec} \mathbb{C}[w]$ with w = uv, and $\mathcal{M} = (f)$.

Proof in this special case.

- Every monomial is either $u^{\alpha}w^{k}$ or $v^{\alpha}w^{k}$.
- Once again the operators 1, $u \frac{\partial}{\partial u} v \frac{\partial}{\partial v}$ commute and have different eigenvalues on u^{α} , v^{α} .
- Expanding $f = \sum u^{\alpha} f_{\alpha} + \sum v^{\beta} f_{\beta}$, the condition $\mathcal{M} = \mathcal{D}_{Y/B} \mathcal{M}$ gives that only one term survives,
- say $f = u^{\alpha} f_{\alpha}$, with $f_{\alpha} \in \mathbb{C}[w]$.
- Blowing up (f_{α}) on B has the effect of making it monomial, so f becomes monomial.

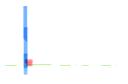
Let $Y = \operatorname{Spec} \mathbb{C}[u, v] \to B = \operatorname{Spec} \mathbb{C}[w]$ with w = uv, and $\mathcal{M} = (f)$.

Proof in this special case.

- Every monomial is either $u^{\alpha}w^{k}$ or $v^{\alpha}w^{k}$.
- Once again the operators $1, u \frac{\partial}{\partial u} v \frac{\partial}{\partial v}$ commute and have different eigenvalues on u^{α}, v^{α} .
- Expanding $f = \sum u^{\alpha} f_{\alpha} + \sum v^{\beta} f_{\beta}$, the condition $\mathcal{M} = \mathcal{D}_{Y/B} \mathcal{M}$ gives that only one term survives,
- say $f = u^{\alpha} f_{\alpha}$, with $f_{\alpha} \in \mathbb{C}[w]$.
- Blowing up (f_{α}) on B has the effect of making it monomial, so f becomes monomial.

The general case is surprisingly subtle.

- Consider $Y_1 = \operatorname{Spec} \mathbb{C}[u, x]$ and $D = \{u = 0\}$.
- Let $\mathcal{I} = (u^2, x^2)$.
- If one blows up (u, x) the ideal is principalized:



- Consider $Y_1 = \operatorname{Spec} \mathbb{C}[u, x]$ and $D = \{u = 0\}$.
- Let $\mathcal{I} = (u^2, x^2)$.
- If one blows up (u, x) the ideal is principalized:

- Consider $Y_1 = \operatorname{Spec} \mathbb{C}[u, x]$ and $D = \{u = 0\}$.
- Let $\mathcal{I} = (u^2, x^2)$.
- If one blows up (u, x) the ideal is principalized:

- on the *u*-chart Spec $\mathbb{C}[u,x']$ with x=x'u we have $\mathcal{IO}_{Y_1'}=(u^2)$,
- on the x-chart Spec $\mathbb{C}[u',x]$ with u'=xu' we have $\mathcal{IO}_{Y'}=(x^2)$,
- which is exceptional hence monomial.

- Consider $Y_1 = \operatorname{Spec} \mathbb{C}[u, x]$ and $D = \{u = 0\}$.
- Let $\mathcal{I} = (u^2, x^2)$.
- If one blows up (u, x) the ideal is principalized:

- on the *u*-chart Spec $\mathbb{C}[u,x']$ with x=x'u we have $\mathcal{IO}_{Y'_1}=(u^2)$,
- on the x-chart Spec $\mathbb{C}[u',x]$ with u'=xu' we have $\mathcal{IO}_{Y'}=(x^2)$,
- which is exceptional hence monomial.
- This is in fact the only functorial admissible blowing up.

- Consider $Y_2 = \operatorname{Spec} \mathbb{C}[v, x]$ and $D = \{v = 0\}$.
- Let $\mathcal{I} = (v, x^2)$.

- Consider $Y_2 = \operatorname{Spec} \mathbb{C}[v, x]$ and $D = \{v = 0\}$.
- Let $\mathcal{I} = (v, x^2)$.
- Example 1 is the pullback of this via the log smooth $v = u^2$.
- Functoriality says: we need to blow up an ideal whose pullback is (u, x).

- Consider $Y_2 = \operatorname{Spec} \mathbb{C}[v, x]$ and $D = \{v = 0\}$.
- Let $\mathcal{I} = (v, x^2)$.
- Example 1 is the pullback of this via the log smooth $v = u^2$.
- Functoriality says: we need to blow up an ideal whose pullback is (u, x).
- This means we need to blow up $(v^{1/2}, x)$.

- Consider $Y_2 = \operatorname{Spec} \mathbb{C}[v, x]$ and $D = \{v = 0\}$.
- Let $\mathcal{I} = (v, x^2)$.
- Example 1 is the pullback of this via the log smooth $v = u^2$.
- Functoriality says: we need to blow up an ideal whose pullback is (u, x).
- This means we need to blow up $(v^{1/2}, x)$.
- What is this? What is its blowup?

Kummer ideals

Definition

• A Kummer monomial is a monomial in the Kummer-étale topology of Y (like $v^{1/2}$).

Kummer ideals

Definition

- A Kummer monomial is a monomial in the Kummer-étale topology of Y (like $v^{1/2}$).
- A Kummer monomial ideal is a monomial ideal in the Kummer-étale topology of Y.

Kummer ideals

Definition

- A Kummer monomial is a monomial in the Kummer-étale topology of Y (like $v^{1/2}$).
- A Kummer monomial ideal is a monomial ideal in the Kummer-étale topology of Y.
- A Kummer center is the sum of a Kummer monomial ideal and the ideal of a log smooth subscheme.
- Locally $(x_1, \ldots, x_k, u_1^{1/d}, \ldots u_\ell^{1/d})$.

Proposition

Proposition

Let $\mathcal J$ be a Kummer center on a logarithmically smooth Y. There is a universal proper birational $Y' \to Y$ such that Y' is logarithmically smooth and $\mathcal J\mathcal O_{Y'}$ is an invertible ideal.

Example 0

 $Y = \operatorname{Spec} \mathbb{C}[v]$, with toroidal structure associated to $D = \{v = 0\}$, and $\mathcal{J} = (v^{1/2})$.

Proposition

Let $\mathcal J$ be a Kummer center on a logarithmically smooth Y. There is a universal proper birational $Y' \to Y$ such that Y' is logarithmically smooth and $\mathcal J\mathcal O_{Y'}$ is an invertible ideal.

Example 0

 $Y = \operatorname{Spec} \mathbb{C}[v]$, with toroidal structure associated to $D = \{v = 0\}$, and $\mathcal{J} = (v^{1/2})$.

• There is no log scheme Y' satisfying the proposition.

Proposition

Let $\mathcal J$ be a Kummer center on a logarithmically smooth Y. There is a universal proper birational $Y' \to Y$ such that Y' is logarithmically smooth and $\mathcal J\mathcal O_{Y'}$ is an invertible ideal.

Example 0

 $Y = \operatorname{Spec} \mathbb{C}[v]$, with toroidal structure associated to $D = \{v = 0\}$, and $\mathcal{J} = (v^{1/2})$.

- There is no log scheme Y' satisfying the proposition.
- There is a stack $Y' = Y(\sqrt{D})$, the Cadman–Vistoli root stack, satisfying the proposition!

Example 2 concluded

- Consider $Y_2 = \operatorname{Spec} \mathbb{C}[v, x]$ and $D = \{v = 0\}$.
- Let $\mathcal{I} = (v, x^2)$ and $\mathcal{J} = (v^{1/2}, x)$.

Example 2 concluded

- Consider $Y_2 = \operatorname{Spec} \mathbb{C}[v, x]$ and $D = \{v = 0\}$.
- Let $\mathcal{I} = (v, x^2)$ and $\mathcal{J} = (v^{1/2}, x)$.
- associated blowing up $Y' \rightarrow Y_2$ with charts:
 - ▶ $Y'_x := \operatorname{Spec} \mathbb{C}[v, x, v']/(v'x^2 = v)$, where $v' = v/x^2$ (nonsingular scheme).
 - ★ Exceptional x = 0, now monomial.
 - ★ $\mathcal{I} = (v, x^2)$ transformed into (x^2) , invertible monomial ideal.
 - * Kummer ideal $(v^{1/2}, x)$ transformed into monomial ideal (x).

Example 2 concluded

- Consider $Y_2 = \operatorname{Spec} \mathbb{C}[v, x]$ and $D = \{v = 0\}$.
- Let $\mathcal{I} = (v, x^2)$ and $\mathcal{J} = (v^{1/2}, x)$.
- associated blowing up $Y' \rightarrow Y_2$ with charts:
 - ▶ $Y'_x := \operatorname{Spec} \mathbb{C}[v, x, v']/(v'x^2 = v)$, where $v' = v/x^2$ (nonsingular scheme).
 - ★ Exceptional x = 0, now monomial.
 - * $\mathcal{I} = (v, x^2)$ transformed into (x^2) , invertible monomial ideal.
 - ***** Kummer ideal $(v^{1/2}, x)$ transformed into monomial ideal (x).
 - ▶ The $v^{1/2}$ -chart:
 - * stack quotient $X'_{v^{1/2}} := [\operatorname{Spec} \mathbb{C}[w, y]/\mu_2]$,
 - * where y = x/w and $\mu_2 = \{\pm 1\}$ acts via $(w, y) \mapsto (-w, -y)$.
 - ★ Exceptional w = 0 (monomial).
 - ★ (v, x^2) transformed into invertible monomial ideal $(v) = (w^2)$.
 - ★ $(v^{1/2}, x)$ transformed into invertible monomial ideal (w).

Let $\mathcal J$ be a Kummer center on a logarithmically smooth Y. There is a universal proper birational $Y' \to Y$ such that Y' is a logarithmically smooth stack and $\mathcal J\mathcal O_{Y'}$ is an invertible ideal.

• Choose a stack \tilde{Y} with coarse moduli space Y such that $\tilde{\mathcal{J}}:=\mathcal{JO}_{\tilde{Y}}$ is an ideal.

- Choose a stack \tilde{Y} with coarse moduli space Y such that $\tilde{\mathcal{J}}:=\mathcal{JO}_{\tilde{Y}}$ is an ideal.
- Let $\tilde{Y}' \to \tilde{Y}$ be the blowup of $\tilde{\mathcal{J}}$, with exceptional E.

- Choose a stack \tilde{Y} with coarse moduli space Y such that $\tilde{\mathcal{J}}:=\mathcal{JO}_{\tilde{Y}}$ is an ideal.
- Let $\tilde{Y}' \to \tilde{Y}$ be the blowup of $\tilde{\mathcal{J}}$, with exceptional E.
- Let $\tilde{Y}' \to B\mathbb{G}_m$ be the classifying morphism of \mathcal{I}_E .

- Choose a stack \tilde{Y} with coarse moduli space Y such that $\tilde{\mathcal{J}}:=\mathcal{JO}_{\tilde{Y}}$ is an ideal.
- Let $\tilde{Y}' \to \tilde{Y}$ be the blowup of $\tilde{\mathcal{J}}$, with exceptional E.
- Let $\tilde{Y}' o B\mathbb{G}_m$ be the classifying morphism of \mathcal{I}_E .
- ullet Y' is the relative coarse moduli space of $ilde{Y}' o Y imes \mathcal{B}\mathbb{G}_m$.

- Choose a stack \tilde{Y} with coarse moduli space Y such that $\tilde{\mathcal{J}}:=\mathcal{JO}_{\tilde{Y}}$ is an ideal.
- ullet Let $ilde{Y}' o ilde{Y}$ be the blowup of $ilde{\mathcal{J}}$, with exceptional E.
- ullet Let $ilde{Y}' o B\mathbb{G}_m$ be the classifying morphism of \mathcal{I}_E .
- ullet Y' is the relative coarse moduli space of $ilde{Y}' o Y imes B\mathbb{G}_m$.
- One shows this is independent of choices.