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Resolution of singularities

Definition

A resolution of singularities X ′ → X is a modificationa with X ′ nonsingular
inducing an isomorphism over the smooth locus of X .

aproper birational map

Theorem (Hironaka 1964)

A variety X over a field of characteristic 0 admits a resolution of
singularities X ′ → X, so that the exceptional locus E ⊂ X ′ is a simple
normal crossings divisor.a

aCodimension 1, smooth components meeting transversally

Always characteristic 0 . . .
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Resolution of families: dimB = 1

Question

When are the singularities of a morphism X → B simple?

If dimB = 1 the simplest one can have by modifying X is t =
∏

xaii ,

and if one also allows base change, can have t =
∏

xi .
[Kempf–Knudsen–Mumford–Saint-Donat 1973]

Question

What makes these special?

Abramovich Resolving singularities of varieties and families July 2018 4 / 25



Resolution of families: dimB = 1

Question

When are the singularities of a morphism X → B simple?

If dimB = 1 the simplest one can have by modifying X is t =
∏

xaii ,

and if one also allows base change, can have t =
∏

xi .
[Kempf–Knudsen–Mumford–Saint-Donat 1973]

Question

What makes these special?

Abramovich Resolving singularities of varieties and families July 2018 4 / 25



Resolution of families: dimB = 1

Question

When are the singularities of a morphism X → B simple?

If dimB = 1 the simplest one can have by modifying X is t =
∏

xaii ,

and if one also allows base change, can have t =
∏

xi .
[Kempf–Knudsen–Mumford–Saint-Donat 1973]

Question

What makes these special?

Abramovich Resolving singularities of varieties and families July 2018 4 / 25



Log smooth schemes and log smooth morphisms

A toric variety is a normal variety on which T = (C∗)n acts
algebraically with a dense free orbit.

Zariski locally defined by equations between monomials.

A variety X with divisor D is toroidal or log smooth if étale locally it
looks like a toric variety Xσ with its toric divisor Xσ r T .

Étale locally it is defined by equations between monomials.

A morphism X → Y is toroidal or log smooth if étale locally it looks
like a torus equivariant morphism of toric varieties.

The inverse image of a monomial is a monomial.
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Resolution of families: higher dimensional base

Question

When are the singularities of a morphism X → B simple?

The best one can hope for, after base change, is a semistable morphism:

Definition (ℵ-Karu 2000)

A log smooth morphism, with B smooth, is semistable if locally

t1 = x1 · · · xl1
...

...

tm = x
lm−1+1

· · · xm

In particular log smooth.
Similar definition by Berkovich, all following de Jong.
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The semistable reduction problem

Conjecture [ℵ-Karu]

Let X → B be a dominant morphism of varieties.

(Loose) There is an alteration B1 → B and a modification
X1 → (X ×B B1)main such that X1 → B1 is semistable.

(Tight) If the geometric generic fiber Xη̄ is smooth, such X1 → B1

can be found with Xη̄ unchanged.

One wants the tight version in order to compactify smooth families.

I’ll describe progress towards that.

Major early results by [KKMS 1973], [de Jong 1997].

Wonderful results in positive and mixed characteristics by de Jong,
Gabber, Illusie and Temkin.
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Toroidalization and weak semistable reduction

Back to characteristic 0

Theorem (Toroidalization, ℵ-Karu 2000, ℵ-K-Denef 2013)

There is a modification B1 → B and a modification X1 → (X ×B B1)main

such that X1 → B1 is log smooth and flat.

Theorem (Weak semistable reduction, ℵ-Karu 2000)

There is an alteration B1 → B and a modification X1 → (X ×B B1)main

such that X1 → B1 is log smooth, flat, with reduced fibers.

Passing from weak semistable reduction to semistable reduction is a
purely combinatorial problem [ℵ-Karu 2000],

proven by [Karu 2000] for families of surfaces and threefolds, and

whose restriction to rank-1 valuation rings is proven in a preprint by
[Karim Adiprasito - Gaku Liu - Igor Pak - Michael Temkin].
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Applications of weak semistable reduction

(with a whole lot of more input)

Theorem (Karu 2000; K-SB 97, Alexeev 94, BCHM 11)

The moduli space of stable smoothable varieties is projective.

Theorem (Viehweg-Zuo 2004)

The moduli space of canonically polarized manifolds is Brody hyperbolic.

Theorem (Fujino 2017)

Nakayama’s numerical logarithmic Kodaira dimension is subadditive in
families X → B with generic fiber F :

κσ(X ,DX ) ≥ κσ(F ,DF ) + κσ(B,DB).
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Main result

The following result is work-in-progress.

Main result (Functorial toroidalization, ℵ-Temkin-W lodarczyk)

Let X → B be a dominant log morphism.

There are log modifications B1 → B and X1 → (X ×B B1)main such
that X1 → B1 is log smooth and flat;

this is compatible with log base change B ′ → B;

this is functorial, up to base change, with log smooth X ′′ → X .

This implies the tight version of the results of semistable reduction type.
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In virtue of functoriality

Theorem (Temkin)

Resolution of singularities holds for excellent schemes, complex spaces,
nonarchimedean spaces, p-adic spaces, formal spaces and for stacks.

This is a consequence of resolution for varieties and schemes,
functorial for smooth morphisms (submersions). Moreover

W lodarczyk showed that if one seriously looks for a resolution functor,
one is led to a resolution theorem.

Our main result will lead to this generality on families.

Current application of our main result:

Theorem (Deng 2018)

The moduli space of minimal complex projective manifolds of general type
is Kobayashi hyperbolic.
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dimB = 0: log resolution via principalization
To resolve log singularities, one embeds X in a log smooth Y . . .

. . . which can be done locally.
One reduces to principalization of IX (Hironaka, Villamayor,
Bierstone–Milman).

Theorem (Principalization . . .ℵ-T-W)

Let I be an ideal on a log smooth Y . There is a functorial logarithmic
morphism Y ′ → Y , with Y ′ logarithmically smooth, and IOY ′ an
invertible monomial ideal.

Figure: The ideal (u2, x2)

and the result of blowing up the origin, I2
E .

Here u is a monomial but x is not.
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Logarithmic order

Principalization is done by order reduction, using logarithmic derivatives.

for a monomial u we use u ∂
∂u .

for other variables x use ∂
∂x .

Definition

Write D≤a for the sheaf of logarithmic differential operators of order ≤ a.
The logarithmic order of an ideal I is the minimum a such that
D≤aI = (1).

Take u, v monomials, x free variable, p the origin.
logordp(u2, x) = 1 (since ∂

∂x x = 1)
logordp(u2, x2) = 2 logordp(v , x2) = 2
logordp(v + u) =∞ since D≤1I = D≤2I = · · · = (u, v).
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The logarithmic order of an ideal I is the minimum a such that
D≤aI = (1).

Take u, v monomials, x free variable, p the origin.
logordp(u2, x) = 1 (since ∂

∂x x = 1)
logordp(u2, x2) = 2 logordp(v , x2) = 2
logordp(v + u) =

∞ since D≤1I = D≤2I = · · · = (u, v).
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The monomial part of an ideal

Definition

M(I) is the minimal monomial ideal containing I.

Proposition (Kollár, ℵ-T-W)

(1) In cahracteristic 0, M(I) = D∞(I). In particular
maxp logordp(I) =∞ if and only if M(I) 6= 1.

(2) Let Y0 → Y be the normalized blowup of M(I). Then
M :=M(I)OY0 =M(IOY0), and it is an invertible monomial ideal,
and so IOY0 = I0 · M with maxp logordp(I0) <∞.

(1)⇒(2)

DY0 is the pullback of DY , so (2) follows from (1) since the ideals have
the same generators.
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The monomial part of an ideal - proof

Proof of (1), basic affine case.

Let OY = C[x1, . . . , xn, u1, . . . , um] and assume M = D(M).

The operators

1, u1
∂

∂u1
, . . . , ul

∂

∂ul

commute and have distinct systems of eigenvalues on the eigenspaces
uC[x1, . . . , xn], for distinct monomials u.

Therefore M = ⊕uMu with ideals Mu ⊂ C[x1, . . . , xn] stable under
derivatives,

so each Mu is either (0) or (1).

In other words, M is monomial.

♠

The general case requires more commutative algebra.
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dimB = 0: sketch of argument

In cahracteristic 0, if logordp(I) = a <∞, then D≤a−1I contains an
element x with derivative 1, a maximal contact element.

Carefully applying induction on dimension to an ideal on {x = 0}
gives order reduction (Encinas–Villamayor, Bierstone–Milman,
W lodarczyk):

Proposition (. . .ℵ-T-W)

Let I be an ideal on a logarithmically smooth Y with

max
p

logordp(I) = a.

There is a functorial logarithmic morphism Y1 → Y , with Y1

logarithmically smooth, such that IOY ′ =M · I1 with M an invertible
monomial ideal and

max
p

logordp(I1) < a.
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Arbitrary B

(Work in progress)

Main result (ℵ-T-W)

Let Y → B a logarithmically smooth morphism of logarithmically smooth
schemes, I ⊂ OY an ideal. There is a log morphism B ′ → B and
functorial log morphism Y ′ → Y , with Y ′ → B ′ logarithmically smooth,
and IOY ′ an invertible monomial ideal.

This is done by relative order reduction, using relative logarithmic
derivatives.

Definition

Write D≤aY /B for the sheaf of relative logarithmic differential operators of
order ≤ a. The relative logarithmic order of an ideal I is the minimum a
such that D≤aY /BI = (1).
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The new step

M := D∞Y /BI is an ideal which is monomial along the fibers.

relordp(I) =∞ if and only if M := D∞Y /BI is a nonunit ideal.

Monomialization Theorem [ℵ-T-W]

Let Y → B a logarithmically smooth morphism of logarithmically smooth
schemes, M⊂ OY an ideal with DY /BM =M. There is a log morphism
B ′ → B with saturated pullback Y ′ → B ′, such that MOY ′ a monomial
ideal.

After this one can proceed as in the case “dimB = 0”.
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Proof of Monomialization Theorem, special case

Let Y = SpecC[u, v ]→ B = SpecC[w ] with w = uv , and M = (f ).

Proof in this special case.

Every monomial is either uαwk or vαwk .

Once again the operators 1, u ∂
∂u − v ∂

∂v commute and have different
eigenvalues on uα, vα.

Expanding f =
∑

uαfα +
∑

vβfβ, the condition M = DY /BM gives
that only one term survives,

say f = uαfα, with fα ∈ C[w ].

Blowing up (fα) on B has the effect of making it monomial, so f
becomes monomial.

♠

The general case is surprisingly subtle.
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Order reduction: Example 1

Consider Y1 = SpecC[u, x ] and D = {u = 0}.
Let I = (u2, x2).

If one blows up (u, x) the ideal is principalized:

I on the u-chart SpecC[u, x ′] with x = x ′u we have IOY ′
1

= (u2),
I on the x-chart SpecC[u′, x ] with u′ = xu′ we have IOY ′ = (x2),
I which is exceptional hence monomial.

This is in fact the only functorial admissible blowing up.
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Order reduction: Example 2

Consider Y2 = SpecC[v , x ] and D = {v = 0}.
Let I = (v , x2).

Example 1 is the pullback of this via the log smooth v = u2.

Functoriality says: we need to blow up an ideal whose pullback is
(u, x).

This means we need to blow up (v1/2, x).

What is this? What is its blowup?
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Kummer ideals

Definition

A Kummer monomial is a monomial in the Kummer-étale topology of
Y (like v1/2).

A Kummer monomial ideal is a monomial ideal in the Kummer-étale
topology of Y .

A Kummer center is the sum of a Kummer monomial ideal and the
ideal of a log smooth subscheme.

Locally (x1, . . . , xk , u
1/d
1 , . . . u

1/d
` ).
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1/d
` ).
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Blowing up Kummer centers

Proposition

Let J be a Kummer center on a logarithmically smooth Y . There is a
universal proper birational Y ′ → Y such that Y ′ is logarithmically smooth
and JOY ′ is an invertible ideal.

Example 0

Y = SpecC[v ], with toroidal structure associated to D = {v = 0}, and
J = (v1/2).

There is no log scheme Y ′ satisfying the proposition.

There is a stack Y ′ = Y (
√
D), the Cadman–Vistoli root stack,

satisfying the proposition!
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Example 2 concluded

Consider Y2 = SpecC[v , x ] and D = {v = 0}.
Let I = (v , x2) and J = (v1/2, x).

associated blowing up Y ′ → Y2 with charts:
I Y ′

x := SpecC[v , x , v ′]/(v ′x2 = v), where v ′ = v/x2 (nonsingular
scheme).

F Exceptional x = 0, now monomial.
F I = (v , x2) transformed into (x2), invertible monomial ideal.
F Kummer ideal (v 1/2, x) transformed into monomial ideal (x).

I The v1/2-chart:
F stack quotient X ′

v1/2 :=
[
SpecC[w , y ]

/
µ2

]
,

F where y = x/w and µ2 = {±1} acts via (w , y) 7→ (−w ,−y).
F Exceptional w = 0 (monomial).
F (v , x2) transformed into invertible monomial ideal (v) = (w 2).
F (v 1/2, x) transformed into invertible monomial ideal (w).
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Proof of proposition

Let J be a Kummer center on a logarithmically smooth Y . There is a
universal proper birational Y ′ → Y such that Y ′ is a logarithmically
smooth stack and JOY ′ is an invertible ideal.

Choose a stack Ỹ with coarse moduli space Y such that J̃ := JOỸ
is an ideal.

Let Ỹ ′ → Ỹ be the blowup of J̃ , with exceptional E .

Let Ỹ ′ → BGm be the classifying morphism of IE .

Y ′ is the relative coarse moduli space of Ỹ ′ → Y × BGm.

One shows this is independent of choices. ♠
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One shows this is independent of choices. ♠

Abramovich Resolving singularities of varieties and families July 2018 25 / 25



Proof of proposition

Let J be a Kummer center on a logarithmically smooth Y . There is a
universal proper birational Y ′ → Y such that Y ′ is a logarithmically
smooth stack and JOY ′ is an invertible ideal.
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