Resolving singularities of varieties and families

Dan Abramovich Brown University Joint work with Michael Temkin and Jarosław Włodarczyk

Rio de Janeiro August 7, 2018

On singularities

Singularities are beautiful.

Why should we "get rid of them"?

Answer 1: to study singularities.

Answer 2: to study the structure of varieties.

Singular and smooth points

Definition

 $\{f(x_1,\ldots,x_n)=0\}$ is singular at p if $\frac{\partial f}{\partial x_i}(p)=0$ for all i. Otherwise smooth.

In other words, if smooth, $\{f=0\}$ defines a submanifold of complex codimension 1.

In codimension c, the set $\{f_1 = \cdots = f_k = 0\}$ is smooth when $d(f_1, \ldots, f_k)$ has constant rank c.

What is resolution of singularities?

Definition

A resolution of singularities $X' \to X$ is a modification^a with X' nonsingular inducing an isomorphism over the smooth locus of X.

^aproper birational map. For instance, blowing up.

Theorem (Hironaka 1964)

A variety X over a field of characteristic 0 admits a resolution of singularities $X' \to X$, so that the critical locus $E \subset X'$ is a simple normal crossings divisor.^a

 a Codim. 1, smooth components meeting transversally - as simple as possible

Answer 1: Example of invariant - Stepanov's theorem

If $X' \to X$ a resolution with critical $E \subset X'$ a simple normal crossings divisor, define $\Delta(E)$ to be the dual complex of E.

Theorem (Stepanov 2006)

The simple homotopy type of $\Delta(E)$ is independent of the resolution $X' \to X$.

Also work by Danilov, Payne, Thuillier, Harper...

Answer 2: Example of structure result: compactifications

"Working with noncompact spaces is like trying to keep change with holes in your pockets"

Angelo Vistoli

Corollary (Hironaka)

A smooth quasiprojective variety X^0 has a smooth projective compactification X with $D=X\setminus X^0$ a simple normal crossings divisor.

Resolution of families: $\dim B = 1$

Key Question

When are the singularities of a morphism $X \to B$ simple?

- ullet If dim B=1 the simplest one can have by modifying X is $t=\prod x_i^{a_i}$,
- and if one also allows base change $t = s^k$, can have $s = \prod x_i$. [Kempf–Knudsen–Mumford–Saint-Donat 1973]

Question

What makes these special?

Log smooth schemes and log smooth morphisms

- A toric variety is a normal variety on which $T = (\mathbb{C}^*)^n$ acts algebraically with a dense free orbit.
- Zariski locally defined by equations between monomials.
- A variety X with divisor D is toroidal or \log smooth if étale locally it looks like a toric variety X_{σ} with its toric divisor $X_{\sigma} \setminus T$.
- Étale locally it is defined by equations between monomials.
- A morphism $X \to Y$ is toroidal or \log smooth if étale locally it looks like a torus equivariant morphism of toric varieties.
- The inverse image of a monomial ¹ is a monomial.

¹defining equation of part of D_Y

Resolution of families: higher dimensional base

Question

When are the singularities of a morphism $X \to B$ simple?

The best one can hope for, after base change, is a semistable morphism:

Definition (ℵ-Karu 2000)

A log smooth morphism, with B smooth, is semistable if locally

$$t_1 = x_1 \cdots x_{l_1}$$

$$\vdots \quad \vdots$$

$$t_m = x_{l_{m-1}+1} \cdots x_{l_m}$$

In particular log smooth.

Similar definition by Berkovich, all inspired by de Jong.

Ultimate goal: the semistable reduction problem

Conjecture [ℵ-Karu]

Let $X \to B$ be a dominant morphism of varieties.

- (Loose) There is a base change^a $B_1 \to B$ and a modification $X_1 \to (X \times_B B_1)_{\text{main}}$ such that $X_1 \to B_1$ is semistable.
- (Tight) If the geometric generic fiber $X_{\bar{\eta}}$ is smooth, such $X_1 \to B_1$ can be found with $X_{\bar{\eta}}$ unchanged.

^aAlteration: Proper, surjective, generically finite

- One wants the tight version in order to compactify smooth families.
- I'll describe progress towards that.
- Major early results by [KKMS 1973], [de Jong 1997].
- Wonderful results in positive and mixed characteristics by de Jong, Gabber, Illusie and Temkin.

Toroidalization and weak semistable reduction

This is key to what's known:

Theorem (Toroidalization, ℵ-Karu 2000, ℵ-K-Denef 2013)

There is a modification $B_1 \to B$ and a modification $X_1 \to (X \times_B B_1)_{main}$ such that $X_1 \to B_1$ is log smooth and flat.

Theorem (Weak semistable reduction, ℵ-Karu 2000)

There is a base change $B_1 \to B$ and a modification $X_1 \to (X \times_B B_1)_{main}$ such that $X_1 \to B_1$ is log smooth, flat, with reduced fibers.

- Passing from weak semistable reduction to semistable reduction is a purely combinatorial problem [ℵ-Karu 2000],
- proven by [Karu 2000] for families of surfaces and threefolds, and
- whose restriction to rank-1 valuation rings is proven in a preprint by [Karim Adiprasito - Gaku Liu - Igor Pak - Michael Temkin].

Applications of weak semistable reduction

This is already useful for studying families:

Theorem (Karu 2000; K-SB 97, Alexeev 94, BCHM 11)

The moduli space of stable smoothable varieties is projective^a.

^ain particular bounded and proper

Theorem (Viehweg-Zuo 2004)

The moduli space of canonically polarized manifolds is Brody hyperbolic.

Theorem (Fujino 2017)

Nakayama's numerical logarithmic Kodaira dimension is subadditive in families $X \to B$ with generic fiber F:

$$\kappa_{\sigma}(X, D_X) \ge \kappa_{\sigma}(F, D_F) + \kappa_{\sigma}(B, D_B).$$

Main result

The following result is work-in-progress.

Main result (Functorial toroidalization, ℵ-Temkin-Włodarczyk)

Let $X \to B$ be a dominant morphism.

- There are modifications $B_1 \to B$ and $X_1 \to (X \times_B B_1)_{main}$ such that $X_1 \to B_1$ is log smooth and flat;
- this is compatible with base change $B' \to B$;
- this is functorial, up to base change, with log smooth $X'' \to X$.

This implies the tight version of the results of semistable reduction type. Application:

Theorem (Deng 2018)

The moduli space of minimal complex projective manifolds of general type is Kobayashi hyperbolic.

$\dim B = 0$: log resolution via principalization

- To resolve \log singularities, one embeds X in a \log smooth Y...
- ... which can be done locally.
- One reduces to principalization of \mathcal{I}_X (Hironaka, Villamayor, Bierstone–Milman).

Theorem (Principalization . . . ℵ-T-W)

Let $\mathcal I$ be an ideal on a log smooth Y. There is a functorial logarithmic morphism $Y' \to Y$, with Y' logarithmically smooth, and $\mathcal I\mathcal O_{Y'}$ an invertible monomial ideal.

Figure: The ideal (u^2, x^2) and the result of blowing up the origin, \mathcal{I}_E^2 . Here u is a monomial but x is not.

Logarithmic order

Principalization is done by order reduction, using logarithmic derivatives.

- for a monomial u we use $u\frac{\partial}{\partial u}$.
- for other variables x use $\frac{\partial}{\partial x}$.

Definition

Write $\mathcal{D}^{\leq a}$ for the sheaf of logarithmic differential operators of order $\leq a$. The logarithmic order of an ideal \mathcal{I} is the minimum a such that $\mathcal{D}^{\leq a}\mathcal{I}=(1)$.

Take u, v monomials, x free variable, p the origin. $\begin{aligned} \log & \operatorname{ord}_p(u^2, x) = \mathbf{1} & (\operatorname{since} \ \frac{\partial}{\partial x} x = 1) \\ \log & \operatorname{ord}_p(u^2, x^2) = \mathbf{2} & \log & (\operatorname{ord}_p(v, x^2) = \mathbf{2} \\ \log & \operatorname{ord}_p(v + u) = \infty & \operatorname{since} \ \mathcal{D}^{\leq 1} \mathcal{I} = \mathcal{D}^{\leq 2} \mathcal{I} = \cdots = (u, v). \end{aligned}$

Key new ingredient: The monomial part of an ideal

Definition

 $\mathcal{M}(\mathcal{I})$ is the minimal monomial ideal containing \mathcal{I} .

Proposition (Kollár, ℵ-T-W)

- (1) In characteristic 0, $\mathcal{M}(\mathcal{I}) = \mathcal{D}^{\infty}(\mathcal{I})$. In particular $\max_{p} \mathsf{logord}_{p}(\mathcal{I}) = \infty$ if and only if $\mathcal{M}(\mathcal{I}) \neq 1$.
- (2) Let $Y_0 \to Y$ be the normalized blowup of $\mathcal{M}(\mathcal{I})$. Then $\mathcal{M} := \mathcal{M}(\mathcal{I})\mathcal{O}_{Y_0} = \mathcal{M}(\mathcal{I}\mathcal{O}_{Y_0})$, and it is an invertible monomial ideal, and so $\mathcal{I}\mathcal{O}_{Y_0} = \mathcal{I}_0 \cdot \mathcal{M}$ with $\max_p \mathsf{logord}_p(\mathcal{I}_0) < \infty$.

$(1) \Rightarrow (2)$

 \mathcal{D}_{Y_0} is the pullback of \mathcal{D}_Y , so (2) follows from (1) since the ideals have the same generators.

The monomial part of an ideal - proof

Proof of (1), basic affine case.

- Let $\mathcal{O}_Y = \mathbb{C}[x_1, \dots, x_n, u_1, \dots, u_m]$ and assume $\mathcal{M} = \mathcal{D}(\mathcal{M})$.
- The operators

$$1, u_1 \frac{\partial}{\partial u_1}, \dots, u_l \frac{\partial}{\partial u_l}$$

commute and have distinct systems of eigenvalues on the eigenspaces $u \mathbb{C}[x_1, \dots, x_n]$, for distinct monomials u.

- Therefore $\mathcal{M}=\oplus u\mathcal{M}_u$ with ideals $\mathcal{M}_u\subset \mathbb{C}[x_1,\ldots,x_n]$ stable under derivatives,
- so each \mathcal{M}_u is either (0) or (1).
- ullet In other words, ${\mathcal M}$ is monomial.

The general case requires more commutative algebra.

$\dim B = 0$: sketch of argument

- In characteristic 0, if $logord_p(\mathcal{I}) = a < \infty$, then $\mathcal{D}^{\leq a-1}\mathcal{I}$ contains an element x with derivative 1, a maximal contact element.
- Carefully applying induction on dimension to an ideal on $\{x=0\}$ gives order reduction (Encinas–Villamayor, Bierstone–Milman, Włodarczyk):

Proposition (... ℵ-T-W)

Let \mathcal{I} be an ideal on a logarithmically smooth Y with

$$\max_{p} \operatorname{logord}_{p}(\mathcal{I}) = a.$$

There is a functorial logarithmic morphism $Y_1 \to Y$, with Y_1 logarithmically smooth, such that $\mathcal{IO}_{Y'} = \mathcal{M} \cdot \mathcal{I}_1$ with \mathcal{M} an invertible monomial ideal and

$$\max_p \operatorname{logord}_p(\mathcal{I}_1) < a.$$

Thank you for your attention!

Adendum 1. Arbitrary B

(Work in progress)

Main result (ℵ-T-W)

Let $Y \to B$ a logarithmically smooth morphism of logarithmically smooth schemes, $\mathcal{I} \subset \mathcal{O}_Y$ an ideal. There is a log morphism $B' \to B$ and functorial log morphism $Y' \to Y$, with $Y' \to B'$ logarithmically smooth, and $\mathcal{I}\mathcal{O}_{Y'}$ an invertible monomial ideal.

 This is done by relative order reduction, using relative logarithmic derivatives.

Definition

Write $\mathcal{D}_{Y/B}^{\leq a}$ for the sheaf of relative logarithmic differential operators of order $\leq a$. The relative logarithmic order of an ideal \mathcal{I} is the minimum a such that $\mathcal{D}_{Y/B}^{\leq a}\mathcal{I}=(1)$.

Adendum 1. The new step

- relord_p(\mathcal{I}) = ∞ if and only if $\mathcal{M} := \mathcal{D}_{Y/B}^{\infty} \mathcal{I}$ is a nonunit ideal which is monomial along the fibers.
- Equivalently $\mathcal{M} = \mathcal{D}_{Y/B}\mathcal{M}$ is not the unit ideal.

Monomialization Theorem [ℵ-T-W]

Let $Y \to B$ a logarithmically smooth morphism of logarithmically smooth schemes, $\mathcal{M} \subset \mathcal{O}_Y$ an ideal with $\mathcal{D}_{Y/B}\mathcal{M} = \mathcal{M}$. There is a log morphism $B' \to B$ with saturated pullback $Y' \to B'$, and $\mathcal{M}\mathcal{O}_{Y'}$ a monomial ideal.

After this one can proceed as in the case "dim B = 0".

Adendum 1. Proof of Monomialization, special case

Let $Y = \operatorname{Spec} \mathbb{C}[u, v] \to B = \operatorname{Spec} \mathbb{C}[w]$ with w = uv, and $\mathcal{M} = (f)$.

Proof in this special case.

- Every monomial is either $u^{\alpha}w^{k}$ or $v^{\alpha}w^{k}$.
- Once again the operators $1, u \frac{\partial}{\partial u} v \frac{\partial}{\partial v}$ commute and have different eigenvalues on u^{α} , v^{α} .
- Exanding $f = \sum u^{\alpha} f_{\alpha} + \sum v^{\beta} f_{\beta}$, the condition $\mathcal{M} = \mathcal{D}_{Y/B} \mathcal{M}$ gives that only one term survives.
- say $f = u^{\alpha} f_{\alpha}$, with $f_{\alpha} \in \mathbb{C}[w]$.
- Blowing up (f_{α}) on B has the effect of making it monomial, so f becomes monomial.

The general case is surprisingly subtle.

Adendum 1. In virtue of functoriality

Theorem (Temkin)

Resolution of singularities holds for excellent schemes, complex spaces, nonarchimedean spaces, p-adic spaces, formal spaces and for stacks.

- This is a consequence of resolution for varieties and schemes, functorial for smooth morphisms (submersions). Moreover
- Włodarczyk showed that if one seriously looks for a resolution functor, one is led to a resolution theorem.

Adendum 2. Order reduction: Example 1

- Consider $Y_1 = \operatorname{Spec} \mathbb{C}[u, x]$ and $D = \{u = 0\}$.
- Let $\mathcal{I} = (u^2, x^2)$.
- If one blows up (u, x) the ideal is principalized:

- ▶ on the *u*-chart Spec $\mathbb{C}[u, x']$ with x = x'u we have $\mathcal{IO}_{Y'_i} = (u^2)$,
- on the x-chart Spec $\mathbb{C}[u',x]$ with u'=xu' we have $\mathcal{IO}_{Y'}=(x^2)$,
- which is exceptional hence monomial.
- This is in fact the only functorial admissible blowing up.

Adendum 2. Order reduction: Example 2

- Consider $Y_2 = \operatorname{Spec} \mathbb{C}[v, x]$ and $D = \{v = 0\}$.
- Let $\mathcal{I} = (v, x^2)$.
- Example 1 is the pullback of this via $v = u^2$.
- Functoriality says: we need to blow up an ideal whose pullback is (u, x).
- This means we need to blow up $(v^{1/2}, x)$.
- What is this? What is its blowup?

Adendum 2. Kummer ideals

Definition

- A Kummer monomial is a monomial in the Kummer-étale topology of Y (like $v^{1/2}$).
- A Kummer monomial ideal is a monomial ideal in the Kummer-étale topology of Y.
- A Kummer center is the sum of a Kummer monomial ideal and the ideal of a log smooth subscheme.
- Locally $(x_1, \ldots, x_k, u_1^{1/d}, \ldots u_\ell^{1/d})$.

Adendum 2. Blowing up Kummer centers

Proposition

Let $\mathcal J$ be a Kummer center on a logarithmically smooth Y. There is a universal proper birational $Y' \to Y$ such that Y' is logarithmically smooth and $\mathcal J\mathcal O_{Y'}$ is an invertible ideal.

Example 0

 $Y = \operatorname{Spec} \mathbb{C}[v]$, with toroidal structure associated to $D = \{v = 0\}$, and $\mathcal{J} = (v^{1/2})$.

- There is no log scheme Y' satisfying the proposition.
- There is a stack $Y' = Y(\sqrt{D})$, the Cadman–Vistoli root stack, satisfying the proposition!

Adendum 2. Example 2 concluded

- Consider $Y_2 = \operatorname{Spec} \mathbb{C}[v, x]$ and $D = \{v = 0\}$.
- Let $\mathcal{I} = (v, x^2)$ and $\mathcal{J} = (v^{1/2}, x)$.
- associated blowing up $Y' \rightarrow Y_2$ with charts:
 - ▶ $Y'_x := \operatorname{Spec} \mathbb{C}[v, x, v']/(v'x^2 = v)$, where $v' = v/x^2$ (nonsingular scheme).
 - ★ Exceptional x = 0, now monomial.
 - * $\mathcal{I} = (v, x^2)$ transformed into (x^2) , invertible monomial ideal.
 - * Kummer ideal $(v^{1/2}, x)$ transformed into monomial ideal (x).
 - ▶ The $v^{1/2}$ -chart:
 - * stack quotient $X'_{v^{1/2}} := \lceil \operatorname{Spec} \mathbb{C}[w, y] / \mu_2 \rceil$,
 - * where y = x/w and $\mu_2 = \{\pm 1\}$ acts via $(w, y) \mapsto (-w, -y)$.
 - ★ Exceptional w = 0 (monomial).
 - ★ (v, x^2) transformed into invertible monomial ideal $(v) = (w^2)$.
 - * $(v^{1/2}, x)$ transformed into invertible monomial ideal (w).

Adendum 2. Proof of proposition

Let $\mathcal J$ be a Kummer center on a logarithmically smooth Y. There is a universal proper birational $Y' \to Y$ such that Y' is logarithmically smooth and $\mathcal J\mathcal O_{Y'}$ is an invertible ideal.

- There is a stack \tilde{Y} with coarse moduli space Y such that $\tilde{\mathcal{J}}:=\mathcal{JO}_{\tilde{Y}}$ is an ideal.
- ullet Let $ilde{Y}'
 ightarrow ilde{Y}$ be the blowup of $ilde{\mathcal{J}}$ with exceptional E.
- Let $\tilde{Y}' \to B\mathbb{G}_m$ be the classifying morphism.
- ullet Y' is the relative coarse moduli space of $ilde{Y}' o Y imes B\mathbb{G}_m$.
- One shows this is independent of choices.