Resolving singularities of varieties and families

Rio de Janeiro
August 7, 2018

On singularities

Zitrus: $x^{2}+z^{2}=y^{3}(1-y)^{3}$

Kolibri: $x^{2}=y^{2} z^{2}+z^{3}$

Daisy: $\left(x^{2}-y^{3}\right)^{2}=\left(z^{2}-y^{2}\right)^{3}$ Real figures by Herwig Hauser, https://imaginary.org/gallery/herwig-hauser-classic

Singularities are beautiful.
Why should we "get rid of them"?
Answer 1: to study singularities.
Answer 2: to study the structure of varieties.

Singular and smooth points

Definition

$\left\{f\left(x_{1}, \ldots, x_{n}\right)=0\right\}$ is singular at p if $\frac{\partial f}{\partial x_{i}}(p)=0$ for all i.
Otherwise smooth.
In other words, if smooth, $\{f=0\}$ defines a submanifold of complex codimension 1.

In codimension c, the set $\left\{f_{1}=\cdots=f_{k}=0\right\}$ is smooth when $d\left(f_{1}, \ldots, f_{k}\right)$ has constant rank c.

What is resolution of singularities?

Definition

A resolution of singularities $X^{\prime} \rightarrow X$ is a modification ${ }^{a}$ with X^{\prime} nonsingular inducing an isomorphism over the smooth locus of X.
${ }^{a}$ proper birational map. For instance, blowing up.
Theorem (Hironaka 1964)
A variety X over a field of characteristic 0 admits a resolution of singularities $X^{\prime} \rightarrow X$, so that the critical locus $E \subset X^{\prime}$ is a simple normal crossings divisor. ${ }^{\text {a }}$
${ }^{a}$ Codim. 1, smooth components meeting transversally - as simple as possible

Always characteristic $0 \ldots$

Answer 1: Example of invariant - Stepanov's theorem If $X^{\prime} \rightarrow X$ a resolution with critical $E \subset X^{\prime}$ a simple normal crossings divisor, define $\Delta(E)$ to be the dual complex of E.

Theorem (Stepanov 2006)

The simple homotopy type of $\Delta(E)$ is independent of the resolution $X^{\prime} \rightarrow X$.

Also work by Danilov, Payne, Thuillier, Harper. . .

Answer 2: Example of structure result: compactifications

"Working with noncompact spaces is like trying to keep change with holes in your pockets"

Angelo Vistoli

Corollary (Hironaka)

A smooth quasiprojective variety X^{0} has a smooth projective compactification X with $D=X \backslash X^{0}$ a simple normal crossings divisor.

Resolution of families: $\operatorname{dim} B=1$

Key Question

When are the singularities of a morphism $X \rightarrow B$ simple?

- If $\operatorname{dim} B=1$ the simplest one can have by modifying X is $t=\prod x_{i}^{a_{i}}$,
- and if one also allows base change $t=s^{k}$, can have $s=\prod x_{i}$. [Kempf-Knudsen-Mumford-Saint-Donat 1973]

Question

What makes these special?

Log smooth schemes and log smooth morphisms

- A toric variety is a normal variety on which $T=\left(\mathbb{C}^{*}\right)^{n}$ acts algebraically with a dense free orbit.
- Zariski locally defined by equations between monomials.
- A variety X with divisor D is toroidal or log smooth if étale locally it looks like a toric variety X_{σ} with its toric divisor $X_{\sigma} \backslash T$.
- Étale locally it is defined by equations between monomials.
- A morphism $X \rightarrow Y$ is toroidal or log smooth if étale locally it looks like a torus equivariant morphism of toric varieties.
- The inverse image of a monomial ${ }^{1}$ is a monomial.

Resolution of families: higher dimensional base

Question

When are the singularities of a morphism $X \rightarrow B$ simple?
The best one can hope for, after base change, is a semistable morphism:
Definition (\aleph-Karu 2000)
A log smooth morphism, with B smooth, is semistable if locally

$$
\begin{aligned}
t_{1} & =x_{1} \cdots x_{1} \\
\vdots & \vdots \\
t_{m} & =x_{l_{m-1}+1} \cdots x_{l_{m}}
\end{aligned}
$$

In particular log smooth.
Similar definition by Berkovich, all inspired by de Jong.

Ultimate goal: the semistable reduction problem

Conjecture [\aleph-Karu]

Let $X \rightarrow B$ be a dominant morphism of varieties.

- (Loose) There is a base change ${ }^{a} B_{1} \rightarrow B$ and a modification $X_{1} \rightarrow\left(X \times_{B} B_{1}\right)_{\text {main }}$ such that $X_{1} \rightarrow B_{1}$ is semistable.
- (Tight) If the geometric generic fiber $X_{\bar{\eta}}$ is smooth, such $X_{1} \rightarrow B_{1}$ can be found with $X_{\bar{\eta}}$ unchanged.
${ }^{\text {a }}$ Alteration: Proper, surjective, generically finite
- One wants the tight version in order to compactify smooth families.
- I'll describe progress towards that.
- Major early results by [KKMS 1973], [de Jong 1997].
- Wonderful results in positive and mixed characteristics by de Jong, Gabber, Illusie and Temkin.

Toroidalization and weak semistable reduction

This is key to what's known:
Theorem (Toroidalization, \aleph-Karu 2000, $\aleph-K-D e n e f ~ 2013) ~$
There is a modification $B_{1} \rightarrow B$ and a modification $X_{1} \rightarrow\left(X \times_{B} B_{1}\right)_{\text {main }}$ such that $X_{1} \rightarrow B_{1}$ is log smooth and flat.

Theorem (Weak semistable reduction, \aleph-Karu 2000)
There is a base change $B_{1} \rightarrow B$ and a modification $X_{1} \rightarrow\left(X \times_{B} B_{1}\right)_{\text {main }}$ such that $X_{1} \rightarrow B_{1}$ is log smooth, flat, with reduced fibers.

- Passing from weak semistable reduction to semistable reduction is a purely combinatorial problem [\aleph-Karu 2000],
- proven by [Karu 2000] for families of surfaces and threefolds, and
- whose restriction to rank-1 valuation rings is proven in a preprint by [Karim Adiprasito - Gaku Liu - Igor Pak - Michael Temkin].

Applications of weak semistable reduction

This is already useful for studying families:
Theorem (Karu 2000; K-SB 97, Alexeev 94, BCHM 11)
The moduli space of stable smoothable varieties is projective ${ }^{a}$.
${ }^{a}$ in particular bounded and proper

Theorem (Viehweg-Zuo 2004)
The moduli space of canonically polarized manifolds is Brody hyperbolic.

Theorem (Fujino 2017)
Nakayama's numerical logarithmic Kodaira dimension is subadditive in families $X \rightarrow B$ with generic fiber F:

$$
\kappa_{\sigma}\left(X, D_{X}\right) \geq \kappa_{\sigma}\left(F, D_{F}\right)+\kappa_{\sigma}\left(B, D_{B}\right)
$$

Main result

The following result is work-in-progress.
Main result (Functorial toroidalization, \aleph-Temkin-Włodarczyk)
Let $X \rightarrow B$ be a dominant morphism.

- There are modifications $B_{1} \rightarrow B$ and $X_{1} \rightarrow\left(X \times_{B} B_{1}\right)_{\text {main }}$ such that $X_{1} \rightarrow B_{1}$ is log smooth and flat;
- this is compatible with base change $B^{\prime} \rightarrow B$;
- this is functorial, up to base change, with \log smooth $X^{\prime \prime} \rightarrow X$.

This implies the tight version of the results of semistable reduction type. Application:

Theorem (Deng 2018)

The moduli space of minimal complex projective manifolds of general type is Kobayashi hyperbolic.

$\operatorname{dim} B=0$: \log resolution via principalization

- To resolve log singularities, one embeds X in a \log smooth $Y \ldots$
- ... which can be done locally.
- One reduces to principalization of \mathcal{I}_{X} (Hironaka, Villamayor, Bierstone-Milman).

Theorem (Principalization ... §-T-W)

Let \mathcal{I} be an ideal on a log smooth Y. There is a functorial logarithmic morphism $Y^{\prime} \rightarrow Y$, with Y^{\prime} logarithmically smooth, and $\mathcal{I} \mathcal{O}_{Y^{\prime}}$ an invertible monomial ideal.

Figure: The ideal $\left(u^{2}, x^{2}\right)$ and the result of blowing up the origin, \mathcal{I}_{E}^{2}. Here u is a monomial but x is not.

Logarithmic order

Principalization is done by order reduction, using logarithmic derivatives.

- for a monomial u we use $u \frac{\partial}{\partial u}$.
- for other variables x use $\frac{\partial}{\partial x}$.

Definition

Write $\mathcal{D}^{\leq a}$ for the sheaf of logarithmic differential operators of order $\leq a$. The logarithmic order of an ideal \mathcal{I} is the minimum a such that $\mathcal{D}^{\leq}{ }^{\mathrm{a}} \mathcal{I}=(1)$.

Take u, v monomials, x free variable, p the origin.
$\operatorname{logord}_{p}\left(u^{2}, x\right)=1 \quad\left(\right.$ since $\left.\frac{\partial}{\partial x} x=1\right)$
$\operatorname{logord}_{p}\left(u^{2}, x^{2}\right)=2 \quad \operatorname{logord}_{p}\left(v, x^{2}\right)=2$
$\operatorname{logord}_{p}(v+u)=\infty \quad$ since $\mathcal{D}^{\leq 1} \mathcal{I}=\mathcal{D}^{\leq 2} \mathcal{I}=\cdots=(u, v)$.

Key new ingredient: The monomial part of an ideal

Definition

$\mathcal{M}(\mathcal{I})$ is the minimal monomial ideal containing \mathcal{I}.
Proposition (Kollár, \aleph-T-W)
(1) In characteristic $0, \mathcal{M}(\mathcal{I})=\mathcal{D}^{\infty}(\mathcal{I})$. In particular $\max _{p} \operatorname{logord}_{p}(\mathcal{I})=\infty$ if and only if $\mathcal{M}(\mathcal{I}) \neq 1$.
(2) Let $Y_{0} \rightarrow Y$ be the normalized blowup of $\mathcal{M}(\mathcal{I})$. Then $\mathcal{M}:=\mathcal{M}(\mathcal{I}) \mathcal{O}_{Y_{0}}=\mathcal{M}\left(\mathcal{I} \mathcal{O}_{Y_{0}}\right)$, and it is an invertible monomial ideal, and so $\mathcal{I} \mathcal{O}_{Y_{0}}=\mathcal{I}_{0} \cdot \mathcal{M}$ with $\max _{p} \operatorname{logord}_{p}\left(\mathcal{I}_{0}\right)<\infty$.
(1) \Rightarrow (2)
$\mathcal{D}_{Y_{0}}$ is the pullback of \mathcal{D}_{Y}, so (2) follows from (1) since the ideals have the same generators.

The monomial part of an ideal - proof

Proof of (1), basic affine case.

- Let $\mathcal{O}_{Y}=\mathbb{C}\left[x_{1}, \ldots, x_{n}, u_{1}, \ldots, u_{m}\right]$ and assume $\mathcal{M}=\mathcal{D}(\mathcal{M})$.
- The operators

$$
1, u_{1} \frac{\partial}{\partial u_{1}}, \ldots, u_{l} \frac{\partial}{\partial u_{l}}
$$

commute and have distinct systems of eigenvalues on the eigenspaces $u \mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$, for distinct monomials u.

- Therefore $\mathcal{M}=\oplus u \mathcal{M}_{u}$ with ideals $\mathcal{M}_{u} \subset \mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$ stable under derivatives,
- so each \mathcal{M}_{u} is either (0) or (1).
- In other words, \mathcal{M} is monomial.

The general case requires more commutative algebra.

$\operatorname{dim} B=0$: sketch of argument

- In characteristic 0 , if $\operatorname{logord}_{p}(\mathcal{I})=a<\infty$, then $\mathcal{D}^{\leq a-1} \mathcal{I}$ contains an element x with derivative 1 , a maximal contact element.
- Carefully applying induction on dimension to an ideal on $\{x=0\}$ gives order reduction (Encinas-Villamayor, Bierstone-Milman, Włodarczyk):

Proposition (...ふ-T-W)

Let \mathcal{I} be an ideal on a logarithmically smooth Y with

$$
\max _{p} \operatorname{logord}_{p}(\mathcal{I})=a .
$$

There is a functorial logarithmic morphism $Y_{1} \rightarrow Y$, with Y_{1} logarithmically smooth, such that $\mathcal{I} \mathcal{O}_{Y^{\prime}}=\mathcal{M} \cdot \mathcal{I}_{1}$ with \mathcal{M} an invertible monomial ideal and

$$
\max _{p} \operatorname{logord}_{p}\left(\mathcal{I}_{1}\right)<a .
$$

Thank you for your attention!

Adendum 1. Arbitrary B

(Work in progress)

Main result (\aleph-T-W)

Let $Y \rightarrow B$ a logarithmically smooth morphism of logarithmically smooth schemes, $\mathcal{I} \subset \mathcal{O}_{Y}$ an ideal. There is a log morphism $B^{\prime} \rightarrow B$ and functorial log morphism $Y^{\prime} \rightarrow Y$, with $Y^{\prime} \rightarrow B^{\prime}$ logarithmically smooth, and $\mathcal{I} \mathcal{O}_{Y^{\prime}}$ an invertible monomial ideal.

- This is done by relative order reduction, using relative logarithmic derivatives.

Definition

Write $\mathcal{D}_{Y / B}^{\leq a}$ for the sheaf of relative logarithmic differential operators of order $\leq a$. The relative logarithmic order of an ideal \mathcal{I} is the minimum a such that $\mathcal{D}_{Y}^{\leq a} / B^{\mathcal{I}}=(1)$.

Adendum 1. The new step

- $\operatorname{relord}_{p}(\mathcal{I})=\infty$ if and only if $\mathcal{M}:=\mathcal{D}_{Y / B}^{\infty} \mathcal{I}$ is a nonunit ideal which is monomial along the fibers.
- Equivalently $\mathcal{M}=\mathcal{D}_{Y / B} \mathcal{M}$ is not the unit ideal.

Monomialization Theorem [$\aleph-\mathrm{T}-\mathrm{W}$]

Let $Y \rightarrow B$ a logarithmically smooth morphism of logarithmically smooth schemes, $\mathcal{M} \subset \mathcal{O}_{Y}$ an ideal with $\mathcal{D}_{Y / B} \mathcal{M}=\mathcal{M}$. There is a log morphism $B^{\prime} \rightarrow B$ with saturated pullback $Y^{\prime} \rightarrow B^{\prime}$, and $\mathcal{M} \mathcal{O}_{Y^{\prime}}$ a monomial ideal.

After this one can proceed as in the case " $\operatorname{dim} B=0$ ".

Adendum 1. Proof of Monomialization, special case

Let $Y=\operatorname{Spec} \mathbb{C}[u, v] \rightarrow B=\operatorname{Spec} \mathbb{C}[w]$ with $w=u v$, and $\mathcal{M}=(f)$.
Proof in this special case.

- Every monomial is either $u^{\alpha} w^{k}$ or $v^{\alpha} w^{k}$.
- Once again the operators $1, u \frac{\partial}{\partial u}-v \frac{\partial}{\partial v}$ commute and have different eigenvalues on u^{α}, v^{α}.
- Exanding $f=\sum u^{\alpha} f_{\alpha}+\sum v^{\beta} f_{\beta}$, the condition $\mathcal{M}=\mathcal{D}_{Y / B} \mathcal{M}$ gives that only one term survives,
- say $f=u^{\alpha} f_{\alpha}$, with $f_{\alpha} \in \mathbb{C}[w]$.
- Blowing up $\left(f_{\alpha}\right)$ on B has the effect of making it monomial, so f becomes monomial.

The general case is surprisingly subtle.

Adendum 1. In virtue of functoriality

Theorem (Temkin)

Resolution of singularities holds for excellent schemes, complex spaces, nonarchimedean spaces, p-adic spaces, formal spaces and for stacks.

- This is a consequence of resolution for varieties and schemes, functorial for smooth morphisms (submersions). Moreover
- Włodarczyk showed that if one seriously looks for a resolution functor, one is led to a resolution theorem.

Adendum 2. Order reduction: Example 1

- Consider $Y_{1}=\operatorname{Spec} \mathbb{C}[u, x]$ and $D=\{u=0\}$.
- Let $\mathcal{I}=\left(u^{2}, x^{2}\right)$.
- If one blows up (u, x) the ideal is principalized:

- on the u-chart $\operatorname{Spec} \mathbb{C}\left[u, x^{\prime}\right]$ with $x=x^{\prime} u$ we have $\mathcal{I} \mathcal{O}_{Y_{1}^{\prime}}=\left(u^{2}\right)$,
- on the x-chart $\operatorname{Spec} \mathbb{C}\left[u^{\prime}, x\right]$ with $u^{\prime}=x u^{\prime}$ we have $\mathcal{I} \mathcal{O}_{Y^{\prime}}=\left(x^{2}\right)$,
- which is exceptional hence monomial.
- This is in fact the only functorial admissible blowing up.

Adendum 2. Order reduction: Example 2

- Consider $Y_{2}=\operatorname{Spec} \mathbb{C}[v, x]$ and $D=\{v=0\}$.
- Let $\mathcal{I}=\left(v, x^{2}\right)$.
- Example 1 is the pullback of this via $v=u^{2}$.
- Functoriality says: we need to blow up an ideal whose pullback is (u, x).
- This means we need to blow up $\left(v^{1 / 2}, x\right)$.
- What is this? What is its blowup?

Adendum 2. Kummer ideals

Definition

- A Kummer monomial is a monomial in the Kummer-étale topology of Y (like $v^{1 / 2}$).
- A Kummer monomial ideal is a monomial ideal in the Kummer-étale topology of Y.
- A Kummer center is the sum of a Kummer monomial ideal and the ideal of a log smooth subscheme.
- Locally $\left(x_{1}, \ldots, x_{k}, u_{1}^{1 / d}, \ldots u_{\ell}^{1 / d}\right)$.

Adendum 2. Blowing up Kummer centers

Proposition

Let \mathcal{J} be a Kummer center on a logarithmically smooth Y. There is a universal proper birational $Y^{\prime} \rightarrow Y$ such that Y^{\prime} is logarithmically smooth and $\mathcal{J O}_{Y^{\prime}}$ is an invertible ideal.

Example 0

$Y=\operatorname{Spec} \mathbb{C}[v]$, with toroidal structure associated to $D=\{v=0\}$, and $\mathcal{J}=\left(v^{1 / 2}\right)$.

- There is no \log scheme Y^{\prime} satisfying the proposition.
- There is a stack $Y^{\prime}=Y(\sqrt{D})$, the Cadman-Vistoli root stack, satisfying the proposition!

Adendum 2. Example 2 concluded

- Consider $Y_{2}=\operatorname{Spec} \mathbb{C}[v, x]$ and $D=\{v=0\}$.
- Let $\mathcal{I}=\left(v, x^{2}\right)$ and $\mathcal{J}=\left(v^{1 / 2}, x\right)$.
- associated blowing up $Y^{\prime} \rightarrow Y_{2}$ with charts:
- $Y_{x}^{\prime}:=\operatorname{Spec} \mathbb{C}\left[v, x, v^{\prime}\right] /\left(v^{\prime} x^{2}=v\right)$, where $v^{\prime}=v / x^{2}$ (nonsingular scheme).
\star Exceptional $x=0$, now monomial.
$\star \mathcal{I}=\left(v, x^{2}\right)$ transformed into $\left(x^{2}\right)$, invertible monomial ideal.
\star Kummer ideal $\left(v^{1 / 2}, x\right)$ transformed into monomial ideal (x).
- The $v^{1 / 2}$-chart:
\star stack quotient $X_{v^{1 / 2}}^{\prime}:=\left[\operatorname{Spec} \mathbb{C}[w, y] / \mu_{2}\right]$,
\star where $y=x / w$ and $\mu_{2}=\{ \pm 1\}$ acts via $(w, y) \mapsto(-w,-y)$.
\star Exceptional $w=0$ (monomial).
$\star \quad\left(v, x^{2}\right)$ transformed into invertible monomial ideal $(v)=\left(w^{2}\right)$.
$\star\left(v^{1 / 2}, x\right)$ transformed into invertible monomial ideal (w).

Adendum 2. Proof of proposition

Let \mathcal{J} be a Kummer center on a logarithmically smooth Y. There is a universal proper birational $Y^{\prime} \rightarrow Y$ such that Y^{\prime} is logarithmically smooth and $\mathcal{J} \mathcal{O}_{Y^{\prime}}$ is an invertible ideal.

- There is a stack \tilde{Y} with coarse moduli space Y such that $\tilde{\mathcal{J}}:=\mathcal{J O}_{\tilde{Y}}$ is an ideal.
- Let $\tilde{Y}^{\prime} \rightarrow \tilde{Y}$ be the blowup of $\tilde{\mathcal{J}}$ with exceptional E.
- Let $\tilde{Y}^{\prime} \rightarrow B \mathbb{G}_{m}$ be the classifying morphism.
- Y^{\prime} is the relative coarse moduli space of $\tilde{Y}^{\prime} \rightarrow Y \times B \mathbb{G}_{m}$.
- One shows this is independent of choices.

