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What is resolution of singularities?

Definition
A resolution of singularities X’ — X is a modification? with X’ nonsingular
inducing an isomorphism over the smooth locus of X.

“proper birational map.  For instance, blowing up.
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What is resolution of singularities?

Definition
A resolution of singularities X’ — X is a modification? with X’ nonsingular
inducing an isomorphism over the smooth locus of X.

“proper birational map.  For instance, blowing up.

Theorem (Hironaka 1964)

A variety X over a field of characteristic 0 admits a resolution of
singularities X' — X, so that the critical locus E C X' is a simple normal
crossings divisor.?

?Codim. 1, smooth components meeting transversally - as simple as possible

Always characteristic O ...
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Compactifications

“Working with noncompact spaces is like trying to keep change with holes
in your pockets”

Angelo Vistoli
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Compactifications

“Working with noncompact spaces is like trying to keep change with holes
in your pockets”

Angelo Vistoli

Corollary (Hironaka)

A smooth quasiprojective variety X° has a smooth projective
compactification X with D = X ~. X° a simple normal crossings divisor.
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Compactifications

“Working with noncompact spaces is like trying to keep change with holes
in your pockets”

Angelo Vistoli

Corollary (Hironaka)

A smooth quasiprojective variety X° has a smooth projective
compactification X with D = X ~. X° a simple normal crossings divisor.
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Resolution of families: dmB =1
Key Question

When are the singularities of a morphism X — B simple?

o = £ DA
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Resolution of families: dmB =1
Key Question

When are the singularities of a morphism X — B simple?

Theorem (Kempf-Knudsen—Mumford—Saint-Donat 1973)
e Ifdim B =1 by modifying X one can get t =[] x",
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Resolution of families: dmB =1
Key Question

When are the singularities of a morphism X — B simple?

Theorem (Kempf-Knudsen—Mumford—Saint-Donat 1973)
e Ifdim B =1 by modifying X one can get t =[] x",
o With base change t = sk, can have s = [Ixi.
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Resolution of families: dm B =1

Key Question
When are the singularities of a morphism X — B simple?

Theorem (Kempf-Knudsen—Mumford—Saint-Donat 1973)
e Ifdim B =1 by modifying X one can get t =[] x",

o With base change t = sk, can have s = [Ixi.

_/‘\’\_/
_‘\/
————
Question
What makes these special? J
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Log smooth schemes and log smooth morphisms

@ A toric variety is a normal variety on which T = (C*)" acts
algebraically with a dense free orbit.
o Zariski locally defined by equations between monomials.

1
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Log smooth schemes and log smooth morphisms

@ A toric variety is a normal variety on which T = (C*)" acts
algebraically with a dense free orbit.

o Zariski locally defined by equations between monomials.

@ A variety X with divisor D is toroidal or log smooth if étale locally it
looks like a toric variety X, with its toric divisor X, ~ T.

o Etale locally it is defined by equations between monomials.

1
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Log smooth schemes and log smooth morphisms

A toric variety is a normal variety on which T = (C*)" acts
algebraically with a dense free orbit.

Zariski locally defined by equations between monomials.

A variety X with divisor D is toroidal or log smooth if étale locally it
looks like a toric variety X, with its toric divisor X, ~. T.

Etale locally it is defined by equations between monomials.

A morphism X — Y is toroidal or log smooth if étale locally it looks
like a torus equivariant morphism of toric varieties.

@ The inverse image of a monomial ! is a monomial.

defining equation of part of Dy
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Resolution of families: higher dimensional base

When are the singularities of a morphism X — B simple?

Question J

The best one can hope for, after base change, is a semistable morphism:

Definition (X-Karu 2000)

A log smooth morphism, with B smooth, is semistable if locally it is a
product of one-parameter semistable families.

tlle...xll

tm = X ©°°

In particular log smooth.
Similar definition by Berkovich, all inspired by de Jong.
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Semistable reduction

Theorem (Many credits to be specified)

Let m: X — B be a dominant morphism of varieties in characteristic 0.
Let B° C B be the locus where 7 is smooth. There is an alteration?

By — B and a modification X1 — (X X g B1)main, which is trivial over B®,
such that X1 — Bj is semistable.

Abramovich Moduli techniques in resolution of singularitie: February 12, 2019 7 /25




Semistable reduction

Theorem (Many credits to be specified)

Let w : X — B be a dominant morphism of varieties in characteristic 0.
Let B° C B be the locus where 7 is smooth. There is an alteration?

By — B and a modification X1 — (X X g B1)main, which is trivial over B®,
such that X1 — Bj is semistable.

“Proper, surjective, generically finite

@ One wants the tight result, with triviality over B° in order to
compactify smooth families.
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Semistable reduction

Theorem (Many credits to be specified)

Let w : X — B be a dominant morphism of varieties in characteristic 0.
Let B° C B be the locus where 7 is smooth. There is an alteration?

By — B and a modification X1 — (X X g B1)main, which is trivial over B®,
such that X1 — By is semistable.

“Proper, surjective, generically finite

@ One wants the tight result, with triviality over B° in order to
compactify smooth families.

@ Some of this is work in preparation.
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Semistable reduction

Theorem (Many credits to be specified)

Let w : X — B be a dominant morphism of varieties in characteristic 0.
Let B° C B be the locus where 7 is smooth. There is an alteration?

By — B and a modification X1 — (X X g B1)main, which is trivial over B®,
such that X1 — By is semistable.

“Proper, surjective, generically finite

@ One wants the tight result, with triviality over B° in order to
compactify smooth families.

@ Some of this is work in preparation.

e Major early results by [KKMS 1973], [de Jong 1997].
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Semistable reduction

Theorem (Many credits to be specified)

Let w : X — B be a dominant morphism of varieties in characteristic 0.
Let B° C B be the locus where 7 is smooth. There is an alteration?

By — B and a modification X1 — (X X g B1)main, which is trivial over B®,
such that X1 — By is semistable.

“Proper, surjective, generically finite

@ One wants the tight result, with triviality over B° in order to
compactify smooth families.

@ Some of this is work in preparation.
e Major early results by [KKMS 1973], [de Jong 1997].

@ Wonderful results in positive and mixed characteristics by de Jong,
Gabber, lllusie and Temkin.
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Toroidalization and weak semistable reduction
Key results in characteristic 0:

Theorem (Toroidalization, X-Karu 2000, R-K-Denef 2013)

There is a modification By — B and a modification X1 — (X X g B1)main
such that X1 — By is log smooth and flat.

Theorem (Weak semistable reduction, R-Karu 2000)

There is an alteration By — By and a modification Xo — (X1 X g, B2),
trivial over By, such that Xo — B» is log smooth, flat, with reduced fibers.

v
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Toroidalization and weak semistable reduction

Key results in characteristic 0:

Theorem (Toroidalization, RX-Karu 2000, R-K-Denef 2013)

There is a modification By — B and a modification X1 — (X X g B1)main
such that X1 — By is log smooth and flat.

Theorem (Weak semistable reduction, R-Karu 2000)

There is an alteration By — By and a modification Xo — (X1 X g, B2),
trivial over By, such that Xo — B» is log smooth, flat, with reduced fibers.

v

Theorem (Semistable reduction, Adiprasito-Liu-Temkin 2018)

There is an alteration B3 — B> and a modification X3 — (X2 X g, B3),
trivial over B3, such that X3 — Bz is semistable.
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Toroidalization and weak semistable reduction

Key results in characteristic O:

Theorem (Toroidalization, RX-Karu 2000, R-K-Denef 2013)

There is a modification By — B and a modification X1 — (X X g B1)main
such that X1 — By is log smooth and flat.

Theorem (Weak semistable reduction, R-Karu 2000)

There is an alteration By — By and a modification Xo — (X1 X g, B2),
trivial over By, such that Xo — B» is log smooth, flat, with reduced fibers.

v

Theorem (Semistable reduction, Adiprasito-Liu-Temkin 2018)

There is an alteration B3 — B> and a modification X3 — (X2 X g, B3),
trivial over B3, such that X3 — Bz is semistable.

Passing from toroidalization to weak semistable reduction to semistable
reduction was a purely combinatorial question [R-Karu 2000].
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Applications of loose semistable reduction

This is already useful for studying families:

Theorem (Karu 2000; K-SB 97, Alexeev 94, BCHM 11)

The moduli space of stable smoothable varieties is projective?.

%in particular bounded and proper
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Applications of loose semistable reduction
This is already useful for studying families:

Theorem (Karu 2000; K-SB 97, Alexeev 94, BCHM 11)

The moduli space of stable smoothable varieties is projective?.

%in particular bounded and proper

Theorem (Viehweg-Zuo 2004)

The moduli space of canonically polarized manifolds is Brody hyperbolic.
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Applications of loose semistable reduction

This is already useful for studying families:

Theorem (Karu 2000; K-SB 97, Alexeev 94, BCHM 11)

The moduli space of stable smoothable varieties is projective?.

%in particular bounded and proper

Theorem (Viehweg-Zuo 2004)

The moduli space of canonically polarized manifolds is Brody hyperbolic.

Theorem (Fujino 2017)

Nakayama's numerical logarithmic Kodaira dimension is subadditive in
families X — B with generic fiber F:

ko(X, Dx) > ko(F, DF) + k(B, Dg).
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Main result

The following result is work-in-progress.

Main result (Functorial toroidalization, R-Temkin-Wtodarczyk)
Let X — B be a dominant morphism.

@ There are modifications B; — B and X1 — (X Xg Bi)main such that
X1 — Bj is log smooth and flat;

@ this is compatible with base change B’ — B;

e this is functorial, up to base change, with log smooth X" — X.

Corollary

Tight semistable reduction holds in characteristic 0.
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Main result
The following result is work-in-progress.

Main result (Functorial toroidalization, R-Temkin-Wtodarczyk)
Let X — B be a dominant morphism.

@ There are modifications B; — B and X1 — (X Xg Bi)main such that
X1 — Bj is log smooth and flat;

@ this is compatible with base change B’ — B;
e this is functorial, up to base change, with log smooth X" — X.

Corollary

Tight semistable reduction holds in characteristic 0.

Application:
Theorem (Deng 2018)

The moduli space of minimal complex projective manifolds of general type
is Kobayashi hyperbolic.

v
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dim B = 0: log resolution via principalization

@ To resolve log singularities, one embeds X in a log smooth Y. ..

o & = E DA
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dim B = 0: log resolution via principalization

@ To resolve log singularities, one embeds X in a log smooth Y. ..
@ ...which can be done locally.
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dim B = 0: log resolution via principalization
@ To resolve log singularities, one embeds X in a log smooth Y. ..
@ ...which can be done locally.

@ One reduces to principalization of Zx (Hironaka, Villamayor,
Bierstone-Milman).

Theorem (Principalization ... R-T-W)

Let T be an ideal on a log smooth Y. There is a functorial logarithmic

morphism Y' — Y, with Y’ logarithmically smooth, and ZOvy: an
invertible monomial ideal.
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dim B = 0: log resolution via principalization
@ To resolve log singularities, one embeds X in a log smooth Y. ..
@ ...which can be done locally.

@ One reduces to principalization of Zx (Hironaka, Villamayor,
Bierstone-Milman).

Theorem (Principalization ... R-T-W)

Let T be an ideal on a log smooth Y. There is a functorial logarithmic

morphism Y' — Y, with Y’ logarithmically smooth, and ZOvy: an
invertible monomial ideal.

Figure: The ideal (u?, x2)
Here u is a monomial but x is not.
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dim B = 0: log resolution via principalization
@ To resolve log singularities, one embeds X in a log smooth Y. ..
@ ...which can be done locally.

@ One reduces to principalization of Zx (Hironaka, Villamayor,
Bierstone—Milman).

Theorem (Principalization ... R-T-W)

Let T be an ideal on a log smooth Y. There is a functorial logarithmic

morphism Y' — Y, with Y’ logarithmically smooth, and ZOvy: an
invertible monomial ideal.

Figure: The ideal (u?, x?) and the result of blowing up the origin, Z2.

Here u is a monomial but x is not.
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Logarithmic order

Principalization is done by order reduction, using logarithmic derivatives.

o)

@ for a monomial u we use Uz,

Jé)

o for other variables x use Fx

Abramovich Moduli techniques in resolution of singularitie: February 12, 2019 12 /25



Logarithmic order

Principalization is done by order reduction, using logarithmic derivatives.
o for a monomial u we use u%.
o for other variables x use 8%.
Definition

Write D=2 for the sheaf of logarithmic differential operators of order < a.

Abramovich Moduli techniques in resolution of singularitie: February 12, 2019 12 /25



Logarithmic order

Principalization is done by order reduction, using logarithmic derivatives.

@ for a monomial u we use u%.

o for other variables x use 8%.
Definition
Write D=2 for the sheaf of logarithmic differential operators of order < a.
The logarithmic order of an ideal Z is the minimum a such that
DT = (1).
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Logarithmic order

Principalization is done by order reduction, using logarithmic derivatives.

@ for a monomial u we use u%.
o)

o for other variables x use Bx:
Definition

Write D=2 for the sheaf of logarithmic differential operators of order < a.

The logarithmic order of an ideal Z is the minimum a such that
DT = (1).

Take u, v monomials, x free variable, p the origin.
logord ,(u?, x) =
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Logarithmic order

Principalization is done by order reduction, using logarithmic derivatives.

@ for a monomial u we use u%.
o)

o for other variables x use Bx:
Definition

Write D=2 for the sheaf of logarithmic differential operators of order < a.

The logarithmic order of an ideal Z is the minimum a such that
DT = (1).

Take u, v monomials, x free variable, p the origin.
logord ,(u?,x) = 1 (since a%x =1)
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Logarithmic order

Principalization is done by order reduction, using logarithmic derivatives.
o for a monomial u we use u%.
o for other variables x use 8%.

Definition

Write D=2 for the sheaf of logarithmic differential operators of order < a.

The logarithmic order of an ideal Z is the minimum a such that
DT = (1).

Take u, v monomials, x free variable, p the origin.
logord ,(u?,x) = 1 (since 8%)( =1)
logord ,(u?, x?) =
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Logarithmic order

Principalization is done by order reduction, using logarithmic derivatives.

@ for a monomial u we use u%.
o)

o for other variables x use Bx:
Definition
Write D=2 for the sheaf of logarithmic differential operators of order < a.

The logarithmic order of an ideal Z is the minimum a such that
DT = (1).

Take u, v monomials, x free variable, p the origin.
logord ,(u?,x) = 1 (since 8%)( =1)
logord ,(u?, x?) = 2 logord (v, x?) =
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Logarithmic order

Principalization is done by order reduction, using logarithmic derivatives.

@ for a monomial u we use u%.
o)

o for other variables x use Bx:
Definition

Write D=2 for the sheaf of logarithmic differential operators of order < a.

The logarithmic order of an ideal Z is the minimum a such that
DT = (1).

Take u, v monomials, x free variable, p the origin.
logord ,(u?,x) = 1 (since 8%)( =1)

logord ,(u?, x?) = 2 logord (v, x?) = 2
logord,(v + u) =
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Logarithmic order

Principalization is done by order reduction, using logarithmic derivatives.

@ for a monomial u we use u%.
o)

o for other variables x use Bx:
Definition

Write D=2 for the sheaf of logarithmic differential operators of order < a.

The logarithmic order of an ideal Z is the minimum a such that
DT = (1).

Take u, v monomials, x free variable, p the origin.

logord ,(u?,x) = 1 (since a%x =1)
logord ,(u?, x?) = 2 logord (v, x?) = 2
logord,(v + u) = oo since DSIZ = D=2 = ... = (u, v).
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dim B = 0: sketch of argument, logord < co

e In characteristic 0, if logord,(Z) = a < oo, then D=?"1T contains an
element x with derivative 1, a maximal contact element.
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dim B = 0: sketch of argument, logord < co

@ In characteristic 0, if Iogordp(I) = a < 0o, then D=2~17 contains an
element x with derivative 1, a maximal contact element.

o Carefully applying induction on dimension to an ideal on {x = 0}
gives order reduction (Encinas—Villamayor, Bierstone—Milman,
Whtodarczyk):
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dim B = 0: sketch of argument, logord < co

@ In characteristic 0, if Iogordp(I) = a < 0o, then D=2~17 contains an
element x with derivative 1, a maximal contact element.

o Carefully applying induction on dimension to an ideal on {x = 0}
gives order reduction (Encinas—Villamayor, Bierstone—Milman,
Wihodarczyk):

Proposition (...N-T-W)
Let T be an ideal on a logarithmically smooth Y with

| d,(Z) = a.
msxogorp() a

V.
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dim B = 0: sketch of argument, logord < co

@ In characteristic 0, if Iogordp(I) = a < 0o, then D=2~17 contains an
element x with derivative 1, a maximal contact element.

o Carefully applying induction on dimension to an ideal on {x = 0}
gives order reduction (Encinas—Villamayor, Bierstone—Milman,
Wihodarczyk):

Proposition (...N-T-W)
Let T be an ideal on a logarithmically smooth Y with

| d,(Z) = a.
m;;axogorp() a

There is a functorial logarithmic morphism Y1 — Y, with Y
logarithmically smooth, such that ZOy: = M - I; with M an invertible
monomial ideal and

max logord,(Z1) < a.

V.
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Order reduction: Example 1

o Consider Y7 = SpecC[u, x] and D = {u = 0}.
o Let T = (u?, x?).

o If one blows up (u, x) the ideal is principalized:

l
k
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Order reduction: Example 1

o Consider Y7 = SpecC[u, x] and D = {u = 0}.
o Let T = (u?, x?).
o If one blows up (u, x) the ideal is principalized:

B B

!
[ 8 \
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Order reduction: Example 1

o Consider Y7 = SpecC[u, x] and D = {u = 0}.
o Let T = (u?, x?).
o If one blows up (u, x) the ideal is principalized:

!
i \

> on the u-chart Spec C[u, x'] with x = x'u we have ZOy,; = (uv?),
» on the x-chart Spec C[v/, x| with v’ = xu’ we have ZOy/ = (x?),
» which is exceptional hence monomial.
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Order reduction: Example 1

o Consider Y7 = SpecC[u, x] and D = {u = 0}.
o Let T = (u?, x?).
o If one blows up (u, x) the ideal is principalized:

!
i \

> on the u-chart Spec C[u, x'] with x = x'u we have ZOy,; = (uv?),
» on the x-chart Spec C[v/, x| with v’ = xu’ we have ZOy/ = (x?),
» which is exceptional hence monomial.

@ This is in fact the only functorial admissible blowing up.
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Order reduction: Example 2

o Consider Y2 = SpecC[v, x] and D = {v = 0}.
o Let 7 = (v,x?)

o = £ DA
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Order reduction: Example 2

o Consider Y2 = SpecC[v, x] and D = {v = 0}.

o Let 7= (v,x?).

@ Example 1 is the pullback of this via the log smooth v = u?.
o

Functoriality says: we need to blow up an ideal whose pullback is
(u,x).
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Order reduction: Example 2

Consider Y2 = SpecC[v, x] and D = {v = 0}.

Let T = (v, x?).

Example 1 is the pullback of this via the log smooth v = u?.
Functoriality says: we need to blow up an ideal whose pullback is
(u, x).

This means we need to blow up (v/2, x).
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Order reduction: Example 2

Consider Y2 = SpecC[v, x] and D = {v = 0}.

Let T = (v, x?).

Example 1 is the pullback of this via the log smooth v = u?.
Functoriality says: we need to blow up an ideal whose pullback is
(u, x).

This means we need to blow up (v/2, x).

What is this? What is its blowup?
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Kummer ideals

Definition
Y (like v1/2).

@ A Kummer monomial is a monomial in the Kummer-étale topology of

o F = = Qe
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Kummer ideals

Definition
@ A Kummer monomial is a monomial in the Kummer-étale topology of
Y (like v1/?).
o A Kummer monomial ideal is a monomial ideal in the Kummer-étale
topology of Y.
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Kummer ideals

Definition
@ A Kummer monomial is a monomial in the Kummer-étale topology of
Y (like v1/?).
@ A Kummer monomial ideal is a monomial ideal in the Kummer-étale
topology of Y.

@ A Kummer center is the sum of a Kummer monomial ideal and the
ideal of a log smooth subscheme.

1/d 1/d
o Locally (xl,...,xk,ul/ ,...u/ ).

Abramovich Moduli techniques in resolution of singularitie: February 12, 2019 16 / 25



Blowing up Kummer centers

Proposition

Let J be a Kummer center on a logarithmically smooth Y. There is a

universal proper birational Y' — Y such that Y’ is logarithmically smooth
and J Oy is an invertible ideal.

Abramovich Moduli techniques in resolution of singularitie: February 12, 2019 17 /25



Blowing up Kummer centers

Proposition

Let J be a Kummer center on a logarithmically smooth Y. There is a
universal proper birational Y' — Y such that Y' is logarithmically smooth
and J Oy is an invertible ideal.

Example 0

Y = SpecCJv], with toroidal structure associated to D = {v = 0}, and
J = (vl/z).
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Blowing up Kummer centers

Proposition

Let J be a Kummer center on a logarithmically smooth Y. There is a
universal proper birational Y' — Y such that Y' is logarithmically smooth
and J Oy is an invertible ideal.

Example 0

Y = SpecCJv], with toroidal structure associated to D = {v = 0}, and
J = (vl/z).

@ There is no log scheme Y’ satisfying the proposition.

Abramovich Moduli techniques in resolution of singularitie: February 12, 2019 17 /25



Blowing up Kummer centers

Proposition

Let J be a Kummer center on a logarithmically smooth Y. There is a
universal proper birational Y' — Y such that Y' is logarithmically smooth
and J Oy is an invertible ideal.

Example 0

Y = SpecCJv], with toroidal structure associated to D = {v = 0}, and
J = (vl/z).

@ There is no log scheme Y’ satisfying the proposition.

@ There is a stack Y’ = Y(v/D), the Cadman-Vistoli root stack,
satisfying the proposition!
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Example 2 concluded

o Consider Y, = SpecC|v, x] and D = {v = 0}.
o Let Z = (v,x?) and J = (v/2,x).

o & E DA
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Example 2 concluded

o Consider Y, = SpecC|v, x] and D = {v = 0}.
o Let Z=(v,x?) and J = (v¥/?,x).
@ associated blowing up Y’ — Y5 with charts:
» Y/ :=SpecC|v, x, V'] /(v'x® = v), where v/ = v/x? (nonsingular
scheme).

* Exceptional x = 0, now monomial.
* T = (v, x?) transformed into (x?), invertible monomial ideal.
* Kummer ideal (v'/2, x) transformed into monomial ideal (x).
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Example 2 concluded

e Consider Y, = SpecC|[v, x] and D = {v = 0}.
o Let ZT=(v,x?) and J = (v'/2,x).
@ associated blowing up Y’ — Y5 with charts:
» Y/ :=SpecC|v, x, V'] /(v'x® = v), where v/ = v/x? (nonsingular
scheme).
* Exceptional x = 0, now monomial.
* T = (v, x?) transformed into (x?), invertible monomial ideal.
* Kummer ideal (v'/2, x) transformed into monomial ideal (x).
» The v/%-chart:
* stack quotient X/, := [Spec C[w, y]/u2],
where y = x/w and pz = {£1} acts via (w,y) — (—w, —y).
Exceptional w = 0 (monomial).
(v, x?) transformed into invertible monomial ideal (v) = (w?).
(v'/2,x) transformed into invertible monomial ideal (w).

* % % %
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Proof of proposition

Let J be a Kummer center on a logarithmically smooth Y. There is a
universal proper birational Y’ — Y such that Y’ is a logarithmically
smooth stack and J Oy~ is an invertible ideal.
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Proof of proposition

Let J be a Kummer center on a logarithmically smooth Y. There is a
universal proper birational Y’ — Y such that Y’ is a logarithmically
smooth stack and J Oy~ is an invertible ideal.

o Choose a stack Y with coarse moduli space Y such that J := JOy
is an ideal.
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Proof of proposition

Let J be a Kummer center on a logarithmically smooth Y. There is a
universal proper birational Y’ — Y such that Y’ is a logarithmically
smooth stack and J Oy~ is an invertible ideal.

o Choose a stack Y with coarse moduli space Y such that J := JOy
is an ideal.

o Let Y/ — Y be the blowup of 7, with exceptional E.

Abramovich Moduli techniques in resolution of singularitie

February 12, 2019 19 / 25



Proof of proposition

Let J be a Kummer center on a logarithmically smooth Y. There is a
universal proper birational Y’ — Y such that Y’ is a logarithmically
smooth stack and J Oy~ is an invertible ideal.

@ Choose a stack Y with coarse moduli space Y such that J := JOy
is an ideal.

o Let Y/ — Y be the blowup of 7, with exceptional E.
o Let Y/ — BG,, be the classifying morphism of Zg.
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Proof of proposition

Let J be a Kummer center on a logarithmically smooth Y. There is a
universal proper birational Y’ — Y such that Y’ is a logarithmically
smooth stack and J Oy~ is an invertible ideal.

@ Choose a stack Y with coarse moduli space Y such that J := JOy
is an ideal.

o Let Y/ — Y be the blowup of 7, with exceptional E.
o Let Y/ — BG,, be the classifying morphism of Zg.
o Y is the relative coarse moduli space of Y/ — Y x BGn,.
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Proof of proposition

Let J be a Kummer center on a logarithmically smooth Y. There is a
universal proper birational Y’ — Y such that Y’ is a logarithmically
smooth stack and J Oy~ is an invertible ideal.

@ Choose a stack Y with coarse moduli space Y such that J := JOy
is an ideal.

o Let Y/ — Y be the blowup of 7, with exceptional E.
o Let Y/ — BG,, be the classifying morphism of Zg.
o Y is the relative coarse moduli space of Y/ — Y x BGn,.

@ One shows this is independent of choices. &
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Key new ingredient: The monomial part of an ideal
Definition

M(Z) is the minimal monomial ideal containing Z.

o = £ DA
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Key new ingredient: The monomial part of an ideal

Definition

M(Z) is the minimal monomial ideal containing Z.

Proposition (Kollar, X-T-W)

(1) In characteristic 0, M(Z) = D>°(Z). In particular
max, logord ,(Z) = oo if and only if M(T) # 1.
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Key new ingredient: The monomial part of an ideal

Definition

M(Z) is the minimal monomial ideal containing Z.

Proposition (Kollar, X-T-W)

(1) In characteristic 0, M(Z) = D>°(Z). In particular
max, logord ,(Z) = oo if and only if M(T) # 1.

(2) Let Yo — Y be the normalized blowup of M(ZI).
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Key new ingredient: The monomial part of an ideal

Definition

M(Z) is the minimal monomial ideal containing Z.

Proposition (Kollar, X-T-W)
(1) In characteristic 0, M(Z) = D>°(Z). In particular
max, logord ,(Z) = oo if and only if M(T) # 1.
(2) Let Yo — Y be the normalized blowup of M(Z). Then
M = M(Z)Oy, = M(ZOy,), and it is an invertible monomial ideal,
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Key new ingredient: The monomial part of an ideal

Definition

M(Z) is the minimal monomial ideal containing Z.

Proposition (Kollar, X-T-W)

(1) In characteristic 0, M(Z) = D>°(Z). In particular
max, logord ,(Z) = oo if and only if M(T) # 1.

(2) Let Yo — Y be the normalized blowup of M(Z). Then

M = M(Z)Oy, = M(ZOy,), and it is an invertible monomial ideal,
and so IOy, = Iy - M with max, logord ,(Zg) < oo.
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Key new ingredient: The monomial part of an ideal

Definition

M(Z) is the minimal monomial ideal containing Z.

Proposition (Kollar, X-T-W)

(1) In characteristic 0, M(Z) = D>°(Z). In particular
max, logord ,(Z) = oo if and only if M(T) # 1.

(2) Let Yo — Y be the normalized blowup of M(Z). Then

M = M(Z)Oy, = M(ZOy,), and it is an invertible monomial ideal,
and so IOy, = Iy - M with max, logord ,(Zg) < oo.

(1)=(2)

Dy, is the pullback of Dy, so (2) follows from (1) since the ideals have
the same generators.
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The monomial part of an ideal - proof

Proof of (1), basic affine case.
o Let Oy =Clxq,...,Xn, U1, .., U] and assume M = D(M).

Abramovich Moduli techniques in resolution of singularitie: February 12, 2019 21 /25



The monomial part of an ideal - proof

Proof of (1), basic affine case.
o Let Oy =Clxq,...,Xn, U1, .., U] and assume M = D(M).

@ The operators

1 0

U=y U=

) 8U1’ ) /6U/

commute and have distinct systems of eigenvalues on the eigenspaces
uC[xi,...,x,], for distinct monomials u.
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The monomial part of an ideal - proof

Proof of (1), basic affine case.
o Let Oy =Clxq,...,Xn, U1, .., U] and assume M = D(M).

@ The operators

1, u1—,...,u/i
oup ouy
commute and have distinct systems of eigenvalues on the eigenspaces
uC[xi,...,x,], for distinct monomials u.
@ Therefore M = GuM,, with ideals M, C C|[xq, ..., x,] stable under

derivatives,
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The monomial part of an ideal - proof

Proof of (1), basic affine case.
o Let Oy =Clxq,...,Xn, U1, .., U] and assume M = D(M).

@ The operators

1, u1—,...,u/i
oup ouy
commute and have distinct systems of eigenvalues on the eigenspaces
uC[xi,...,x,], for distinct monomials u.
@ Therefore M = GuM,, with ideals M, C C|[xq, ..., x,] stable under
derivatives,

so each M, is either (0) or (1).
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The monomial part of an ideal - proof

Proof of (1), basic affine case.

Let Oy = C[x1,...,Xn, U1, ..., Un| and assume M = D(M).
The operators

1, 01— ui
5 laul)-"7 /6U/

commute and have distinct systems of eigenvalues on the eigenspaces
uC[xi,...,x,], for distinct monomials u.

Therefore M = GuM,, with ideals M, C C[xq, ..., x,] stable under
derivatives,

so each M, is either (0) or (1).

In other words, M is monomial.
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The monomial part of an ideal - proof

Proof of (1), basic affine case.

o Let Oy =Clxq,...,Xn, U1, .., U] and assume M = D(M).

@ The operators

1, u1i .. u/i
our’ "7 Oy
commute and have distinct systems of eigenvalues on the eigenspaces
uClxi, ..., xn], for distinct monomials u.
@ Therefore M = GuM,, with ideals M, C C[xq,
derivatives,

@ so each M, is either (0) or (1).

@ In other words, M is monomial.

..., Xp] stable under

v
The general case requires more commutative algebra.
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Arbitrary B
(Work in progress)
Main result (N-T-W)

Let Y — B a logarithmically smooth morphism of logarithmically smooth
schemes, Z C Oy an ideal. There is a log morphism B’ — B and
functorial log morphism Y’ — Y, with Y/ — B’ logarithmically smooth,
and ZOy: an invertible monomial ideal.

@ This is done by relative order reduction, using relative logarithmic
derivatives.
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Arbitrary B
(Work in progress)
Main result (R-T-W)

Let Y — B a logarithmically smooth morphism of logarithmically smooth
schemes, Z C Oy an ideal. There is a log morphism B’ — B and
functorial log morphism Y’ — Y, with Y’ — B’ logarithmically smooth,
and ZOy: an invertible monomial ideal.

@ This is done by relative order reduction, using relative logarithmic
derivatives.

Definition
Write D)S,QB for the sheaf of relative logarithmic differential operators of

order < a. The relative logarithmic order of an ideal Z is the minimum a

such that D\S,;BI = (1).
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The new step

o M= D?,O/BI is an ideal which is monomial along the fibers.

o & = E DA
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The new step

o M= D?,O/BI is an ideal which is monomial along the fibers.

e relord,(Z) = oo if and only if M := DY/gZ is a nonunit ideal.
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The new step

o M= Df,O/BI is an ideal which is monomial along the fibers.

e relord,(Z) = oo if and only if M := DY/gZ is a nonunit ideal.

Monomialization Theorem [R-T-W]

Let Y — B a logarithmically smooth morphism of logarithmically smooth
schemes, M C Oy an ideal with Dy ;g M = M. There is a log morphism
B’ — B with saturated pullback Y’ — B’, such that MOy a monomial
ideal.

After this one can proceed as in the case “dim B = 0".
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Proof of Monomialization Theorem, special case

Let Y = SpecC[u, v] — B = Spec C[w] with w = uv, and M = (f).
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Proof of Monomialization Theorem, special case

Let Y = SpecC[u, v] — B = Spec C[w] with w = uv, and M = (f).

Proof in this special case.

e Every monomial is either u®w* or ve@wk.

Abramovich Moduli techniques in resolution of singularitie: February 12, 2019 24 / 25



Proof of Monomialization Theorem, special case

Let Y = SpecC[u, v] — B = Spec C[w] with w = uv, and M = (f).

Proof in this special case.

e Every monomial is either u®w* or ve@wk.
@ Once again the operators 1, u% — v% commute and have different

eigenvalues on u®, v¥.
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Proof of Monomialization Theorem, special case

Let Y = SpecClu, v] — B = Spec C[w] with w = uv, and M = (f).

Proof in this special case.

e Every monomial is either u®w* or ve@wk.

@ Once again the operators 1, u% — v% commute and have different
eigenvalues on u®, v¥.

e Expanding f =Y u“f, + > vﬁfg, the condition M =Dy ;g M gives
that only one term survives,
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Proof of Monomialization Theorem, special case

Let Y = SpecClu, v] — B = Spec C[w] with w = uv, and M = (f).

Proof in this special case.

e Every monomial is either u®w* or ve@wk.

@ Once again the operators 1, u% — v% commute and have different
eigenvalues on u®, v¥.

e Expanding f =Y u“f, + > vﬁfg, the condition M = Dy ;g M gives
that only one term survives,

e say f = u“f,, with f, € Clw].
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Proof of Monomialization Theorem, special case

Let Y = SpecClu, v] — B = Spec C[w] with w = uv, and M = (f).

Proof in this special case.

e Every monomial is either u®w* or ve@wk.

@ Once again the operators 1, u% — v% commute and have different

eigenvalues on u®, v¥.

e Expanding f =Y u“f, + > vﬁff;, the condition M = Dy ;g M gives
that only one term survives,

e say f = u“f,, with f, € Clw].

@ Blowing up (f,) on B has the effect of making it monomial, so f
becomes monomial.
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Proof of Monomialization Theorem, special case

Let Y = SpecClu, v] — B = Spec C[w] with w = uv, and M = (f).

Proof in this special case.

e Every monomial is either u®w* or ve@wk.

@ Once again the operators 1, u% — v% commute and have different

eigenvalues on u®, v¥.

e Expanding f =Y u“f, + > vﬁfﬁ, the condition M = Dy ;g M gives
that only one term survives,

e say f = u“f,, with f, € Clw].

@ Blowing up (f,) on B has the effect of making it monomial, so f
becomes monomial.

The general case is surprisingly subtle.
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Thank you for your attention!

o & = E DA
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