Singularities and their resolutions

Dan Abramovich Brown University

September 26, 2019

On Singularities - Part 1

$$x^{2} + z^{2} = y^{3}(1-y)^{3}$$
 $y^{2}z^{2} + z^{3} - x^{2} = 0$ $(x^{2} - y^{3})^{2} - (z^{2} - y^{2})^{3} = 0$

These are singularities. Look awful, don't they? Let's get rid of them! (without losing information) - that's resolution of singularities

Algebraic geometry

- My subject: algebraic geometry
 The geometry of sets defined by polynomial equations.
- More specifically: The geometry of subsets $V \subset \mathbb{C}^n$ defined by polynomial equations:

$$V = \{(z_1, \dots, z_n) | f_1(z_1, \dots, z_n) = \dots = f_k(z_1, \dots, z_n) = 0\},$$
 with $f_i \in \mathbb{C}[z_1, \dots, z_n].$

with $i_i \in \mathbb{C}[z_1, \dots, z_n]$.

These sets are called algebraic varieties.¹

Examples of algebraic varieties

- $0 \ V = \{x = y = 0\} \subset \mathbb{C}^2$: a point.
- 1 If $a, b \neq 0, 0, c \in \mathbb{C}$, let $V = \{ax + by + c = 0\}$: a line.
- 2 for $R \in \mathbb{C}$ let $V = \{x^2 + y^2 = R^2\}$.

All my pictures are of $V(\mathbb{R})$ - the real solutions of the equations. The subject involves geometry, algebra, algebra, number theory, even calculus . . .

Singular and smooth points

The examples above are smooth.

The quintessential example is the graph w = F(x, y, z).

Definition

$$\{V = f(x_1, \dots, x_n) = 0\}$$
 is singular at p if $\frac{\partial f}{\partial x_i}(p) = 0$ for all i , namely $\nabla f(p) = 0$.

Otherwise smooth^a.

 a In other words, $\{f=0\}$ defines a manifold of complex codimension 1.

The implicit function theorem says: $\{f = 0\}$ is smooth if and only if locally it looks like a graph.

do the circle

(In codimension c, the singular locus of $\{f_1 = \cdots = f_k = 0\}$ is the set of points where $d(f_1, \ldots, f_k)$ has rank < c.)

Examples of singularities

$$y^2 = x^3 + x^2$$

board

$$x^2 = y^2 z$$

board

Looks like in general it might be hard to find the singularities. There is a theorem saying that it is.

Resolution of singularities

Definition

A resolution of singularities $X' \to X$ is a modification^a with X' nonsingular inducing an isomorphism over the smooth locus of X.

Theorem (Hironaka 1964)

A complex algebraic variety X admits a resolution of singularities $X' \to X$, so that the critical locus $E \subset X'$ is a simple normal crossings divisor.^a

^aCodimension 1, smooth components meeting transversally

^aproper birational map

Examples of resolutions

$$V = \{y^2 = x^2(x+1)\}\$$

- ▶ Write t = y/x,
- so $t^2 = x + 1$, and $x = t^2 1$
- so $y = xt = t^3 t$.
- get a map $t \mapsto (t^2 1, t^3 t)$ with image V.

$$V = \{x^2 = y^2 z\}$$

- ▶ Write t = x/y,
- ightharpoonup so $z=t^2$,
- ightharpoonup and x = yt.
- ▶ get a map $(y, t) \mapsto (yt, y, t^2)$ with image V.

On singularities - Part 2

$$x^{2} + z^{2} = y^{3}(1 - y)^{3} y^{2}z^{2} + z^{3} - x^{2} = 0 (x^{2} - y^{3})^{2} - (z^{2} - y^{2})^{3} = 0$$

zitrus kolibri daisy figrures by Herwig Hauser, https://imaginary.org/gallery/herwig-hauser-classic

Singularities are beautiful.

Why should we "get rid of them"? try this

https://imaginary.org/gallery/herwig-hauser-classic

Example: Stepanov's theorem

If $X' \to X$ a resolution with $E \subset X'$ a simple normal crossings divisor, define $\Delta(E)$ to be the dual complex of E.

Theorem (Stepanov 2006)

The simple homotopy type of $\Delta(E)$ is independent of the resolution $X' \to X$.

Also work by Danilov, Payne, Thuillier, Harper...

Past, present and future

- Alicia Harper was a PhD student at Brown who generalized
 Stepanov's theorem, answering a question in a paper of Prof. Chan.
- Jonghyun Lee is a Brown undergraduate coding a resolution algorithm appearing in one of my papers.
- Stephen Obinna and Ming-Hao Quek are PhD students at Brown who will prove a generalization of that paper.

The end

Thank you for your attention