Singularities and their resolutions

Dan Abramovich Brown University

September 26, 2019

$$x^2 + z^2 = y^3 (1 - y)^3$$

3

<ロ> (日) (日) (日) (日) (日)

$$x^{2} + z^{2} = y^{3}(1 - y)^{3}$$
 $y^{2}z^{2} + z^{3} - x^{2} = 0$

3

<ロ> (日) (日) (日) (日) (日)

$x^{2} + z^{2} = y^{3}(1 - y)^{3}$ $y^{2}z^{2} + z^{3} - x^{2} = 0$ $(x^{2} - y^{3})^{2} - (z^{2} - y^{2})^{3} = 0$

These are singularities.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

$x^{2} + z^{2} = y^{3}(1 - y)^{3}$ $y^{2}z^{2} + z^{3} - x^{2} = 0$ $(x^{2} - y^{3})^{2} - (z^{2} - y^{2})^{3} = 0$

These are singularities. Look awful, don't they?

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

$x^{2} + z^{2} = y^{3}(1 - y)^{3}$ $y^{2}z^{2} + z^{3} - x^{2} = 0$ $(x^{2} - y^{3})^{2} - (z^{2} - y^{2})^{3} = 0$

These are singularities. Look awful, don't they? Let's get rid of them!

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

$x^{2} + z^{2} = y^{3}(1 - y)^{3}$ $y^{2}z^{2} + z^{3} - x^{2} = 0$ $(x^{2} - y^{3})^{2} - (z^{2} - y^{2})^{3} = 0$

These are singularities. Look awful, don't they? Let's get rid of them! (without losing information) - that's resolution of singularities

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

• My subject: algebraic geometry

The geometry of sets defined by polynomial equations.

• My subject: algebraic geometry

The geometry of sets defined by polynomial equations.

• More specifically: The geometry of subsets $V \subset \mathbb{C}^n$ defined by polynomial equations:

• My subject: algebraic geometry

The geometry of sets defined by polynomial equations.

More specifically: The geometry of subsets V ⊂ Cⁿ defined by polynomial equations:

$$V = \{(z_1, \dots, z_n) | f_1(z_1, \dots, z_n) = \dots = f_k(z_1, \dots, z_n) = 0\},$$

with $f_i \in \mathbb{C}[z_1, \dots, z_n].$

1

• My subject: algebraic geometry

The geometry of sets defined by polynomial equations.

More specifically: The geometry of subsets V ⊂ Cⁿ defined by polynomial equations:

$$V = \{(z_1, \ldots, z_n) | f_1(z_1, \ldots, z_n) = \cdots = f_k(z_1, \ldots, z_n) = 0\},\$$

with $f_i \in \mathbb{C}[z_1, \ldots, z_n]$.

• These sets are called algebraic varieties.¹

0
$$V = \{x = y = 0\} \subset \mathbb{C}^2$$
: a point.

3

< 17 ▶

э

0
$$V = \{x = y = 0\} \subset \mathbb{C}^2$$
: a point.
1 If $a, b \neq 0, 0, c \in \mathbb{C}$, let $V = \{ax + by + c = 0\}$: a line.

- ∢ ≣ →

3

0
$$V = \{x = y = 0\} \subset \mathbb{C}^2$$
: a point.
1 If $a, b \neq 0, 0, c \in \mathbb{C}$, let $V = \{ax + by + c = 0\}$: a line.
2 for $R \in \mathbb{C}$ let $V = \{x^2 + y^2 = R^2\}$.

3

< 17 ▶

э

0
$$V = \{x = y = 0\} \subset \mathbb{C}^2$$
: a point.
1 If $a, b \neq 0, 0, c \in \mathbb{C}$, let $V = \{ax + by + c = 0\}$: a line.
2 for $R \in \mathbb{C}$ let $V = \{x^2 + y^2 = R^2\}$.

All my pictures are of $V(\mathbb{R})$ - the real solutions of the equations.

0
$$V = \{x = y = 0\} \subset \mathbb{C}^2$$
: a point.
1 If $a, b \neq 0, 0, c \in \mathbb{C}$, let $V = \{ax + by + c = 0\}$: a line.
2 for $R \in \mathbb{C}$ let $V = \{x^2 + y^2 = R^2\}$.

All my pictures are of $V(\mathbb{R})$ - the real solutions of the equations. The subject involves geometry

0
$$V = \{x = y = 0\} \subset \mathbb{C}^2$$
: a point.
1 If $a, b \neq 0, 0, c \in \mathbb{C}$, let $V = \{ax + by + c = 0\}$: a line.
2 for $R \in \mathbb{C}$ let $V = \{x^2 + y^2 = R^2\}$.

All my pictures are of $V(\mathbb{R})$ - the real solutions of the equations. The subject involves geometry, algebra

0
$$V = \{x = y = 0\} \subset \mathbb{C}^2$$
: a point.
1 If $a, b \neq 0, 0, c \in \mathbb{C}$, let $V = \{ax + by + c = 0\}$: a line.
2 for $R \in \mathbb{C}$ let $V = \{x^2 + y^2 = R^2\}$.

All my pictures are of $V(\mathbb{R})$ - the real solutions of the equations. The subject involves geometry, algebra, algebra

0
$$V = \{x = y = 0\} \subset \mathbb{C}^2$$
: a point.
1 If $a, b \neq 0, 0, c \in \mathbb{C}$, let $V = \{ax + by + c = 0\}$: a line.
2 for $R \in \mathbb{C}$ let $V = \{x^2 + y^2 = R^2\}$.

All my pictures are of $V(\mathbb{R})$ - the real solutions of the equations. The subject involves geometry, algebra, algebra, number theory

0
$$V = \{x = y = 0\} \subset \mathbb{C}^2$$
: a point.
1 If $a, b \neq 0, 0, c \in \mathbb{C}$, let $V = \{ax + by + c = 0\}$: a line.
2 for $R \in \mathbb{C}$ let $V = \{x^2 + y^2 = R^2\}$.

All my pictures are of $V(\mathbb{R})$ - the real solutions of the equations. The subject involves geometry, algebra, algebra, number theory, even calculus ...

The examples above are smooth.

< 一型

э

The examples above are smooth.

The quintessential example is the graph w = F(x, y, z).

3

4 E b

< 67 ▶

The examples above are smooth.

The quintessential example is the graph w = F(x, y, z).

Definition

 $\{V = f(x_1, ..., x_n) = 0\}$ is singular at p if $\frac{\partial f}{\partial x_i}(p) = 0$ for all i, namely $\nabla f(p) = 0$. Otherwise smooth^a.

- 3

The examples above are smooth.

The quintessential example is the graph w = F(x, y, z).

Definition

 $\{V = f(x_1, \dots, x_n) = 0\}$ is singular at p if $\frac{\partial f}{\partial x_i}(p) = 0$ for all i, namely $\nabla f(p) = 0$. Otherwise smooth^a.

^aIn other words, $\{f = 0\}$ defines a manifold of complex codimension 1.

The examples above are smooth.

The quintessential example is the graph w = F(x, y, z).

Definition

 $\{V = f(x_1, ..., x_n) = 0\}$ is singular at p if $\frac{\partial f}{\partial x_i}(p) = 0$ for all i, namely $\nabla f(p) = 0$. Otherwise smooth^a.

^aIn other words, $\{f = 0\}$ defines a manifold of complex codimension 1.

The implicit function theorem says: $\{f = 0\}$ is smooth if and only if locally it looks like a graph.

do the circle

・ 同 ト ・ ヨ ト ・ ヨ ト ・ ヨ

The examples above are smooth.

The quintessential example is the graph w = F(x, y, z).

Definition

 $\{V = f(x_1, ..., x_n) = 0\}$ is singular at p if $\frac{\partial f}{\partial x_i}(p) = 0$ for all i, namely $\nabla f(p) = 0$. Otherwise smooth^a.

^aIn other words, $\{f = 0\}$ defines a manifold of complex codimension 1.

The implicit function theorem says: $\{f = 0\}$ is smooth if and only if locally it looks like a graph.

do the circle

= 900

(In codimension c, the singular locus of $\{f_1 = \cdots = f_k = 0\}$ is the set of points where $d(f_1, \ldots, f_k)$ has rank < c.)

(日) (同) (日) (日) (日)

۵

 $y^2 = x^3 + x^2$

board

3

۵

 $y^2 = x^3 + x^2$

board

 $x^2 = y^2 z$

board

- 34

۲

$$y^2 = x^3 + x^2$$

board

$$x^2 = y^2 z$$

board

Looks like in general it might be hard to find the singularities.

< 67 ▶

3

۲

$$y^2 = x^3 + x^2$$

board

$$x^2 = y^2 z$$

board

Looks like in general it might be hard to find the singularities. There is a theorem saying that it is.

Resolution of singularities

Definition

A resolution of singularities $X' \to X$ is a modification^{*a*} with X' nonsingular inducing an isomorphism over the smooth locus of X.

^aproper birational map

Resolution of singularities

Definition

A resolution of singularities $X' \to X$ is a modification^a with X' nonsingular inducing an isomorphism over the smooth locus of X.

^aproper birational map

Theorem (Hironaka 1964)

A complex algebraic variety X admits a resolution of singularities $X' \to X$, so that the critical locus $E \subset X'$ is a simple normal crossings divisor.^a

^aCodimension 1, smooth components meeting transversally

۲

$$V = \{y^2 = x^2(x+1)\}$$

イロト イ団ト イヨト イヨト

3

۰

 $V = \{y^2 = x^2(x+1)\}$

• Write
$$t = y/x$$
,

- 34

۰

 $V = \{y^2 = x^2(x+1)\}$

- 34

۰

 $V = \{y^2 = x^2(x+1)\}$

- 2

۲

$$V = \{y^2 = x^2(x+1)\}$$

• Write
$$t = y/x$$
,
• so $t^2 = x + 1$, and $x = t^2 - 1$
• so $y = xt = t^3 - t$.
• get a map $t \mapsto (t^2 - 1, t^3 - t)$ with image V .

3

イロト イヨト イヨト イヨト

۲

۲

$$V = \{y^2 = x^2(x+1)\}$$

• Write
$$t = y/x$$
,
• so $t^2 = x + 1$, and $x = t^2 - 1$
• so $y = xt = t^3 - t$.
• get a map $t \mapsto (t^2 - 1, t^3 - t)$ with image V .

$$V = \{x^2 = y^2 z\}$$

.

Abramovich

3

<ロ> (日) (日) (日) (日) (日)

۰

۲

$$V = \{y^2 = x^2(x+1)\}$$

▶ Write
$$t = y/x$$
,
▶ so $t^2 = x + 1$, and $x = t^2 - 1$
▶ so $y = xt = t^3 - t$.
▶ get a map $t \mapsto (t^2 - 1, t^3 - t)$ with image V .

$$V = \{x^2 = y^2 z\}$$

• Write t = x/y,

3

۰

۲

$$V = \{y^2 = x^2(x+1)\}$$

Write
$$t = y/x$$
,
so $t^2 = x + 1$, and $x = t^2 - 1$
so $y = xt = t^3 - t$.
get a map $t \mapsto (t^2 - 1, t^3 - t)$ with image V

$$V = \{x^2 = y^2 z\}$$

3

۰

۲

$$V = \{y^2 = x^2(x+1)\}$$

▶ Write
$$t = y/x$$
,
▶ so $t^2 = x + 1$, and $x = t^2 - 1$
▶ so $y = xt = t^3 - t$.
▶ get a map $t \mapsto (t^2 - 1, t^3 - t)$ with image V .

$$V = \{x^2 = y^2 z\}$$

- 2

۲

۲

$$V = \{y^2 = x^2(x+1)\}$$

▶ Write
$$t = y/x$$
,
▶ so $t^2 = x + 1$, and $x = t^2 - 1$
▶ so $y = xt = t^3 - t$.
▶ get a map $t \mapsto (t^2 - 1, t^3 - t)$ with image V .

$$V = \{x^2 = y^2 z\}$$

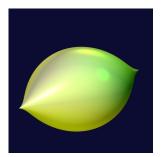
• get a map $(y, t) \mapsto (yt, y, t^2)$ with image V.

(日) (四) (王) (王) (王)

$$x^2 + z^2 = y^3(1 - y)^3$$

3

$$x^2 + z^2 = y^3(1 - y)^3$$



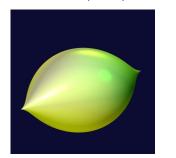
zitrus figrures by Herwig Hauser, https://imaginary.org/gallery/herwig-hauser-classic

Abramovich

3

- 4 週 1 - 4 三 1 - 4 三 1

$$x^{2} + z^{2} = y^{3}(1 - y)^{3}$$
 $y^{2}z^{2} + z^{3} - x^{2} = 0$



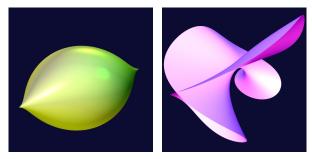
zitrus figrures by Herwig Hauser, https://imaginary.org/gallery/herwig-hauser-classic

Abramovich

3

- 4 週 1 - 4 三 1 - 4 三 1

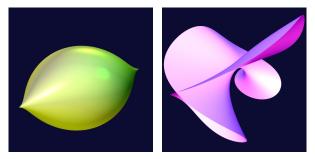
$$x^{2} + z^{2} = y^{3}(1 - y)^{3}$$
 $y^{2}z^{2} + z^{3} - x^{2} = 0$



zitrus kolibri figrures by Herwig Hauser, https://imaginary.org/gallery/herwig-hauser-classic

イロト イヨト イヨト イヨト

$$x^{2} + z^{2} = y^{3}(1 - y)^{3}$$
 $y^{2}z^{2} + z^{3} - x^{2} = 0$ $(x^{2} - y^{3})^{2} - (z^{2} - y^{2})^{3} = 0$

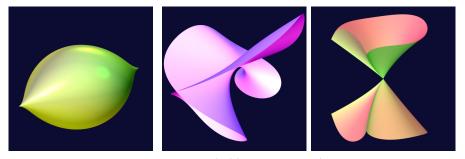


zitrus kolibri figrures by Herwig Hauser, https://imaginary.org/gallery/herwig-hauser-classic

Abramovich

イロト イヨト イヨト イヨト

$$x^{2} + z^{2} = y^{3}(1 - y)^{3}$$
 $y^{2}z^{2} + z^{3} - x^{2} = 0$ $(x^{2} - y^{3})^{2} - (z^{2} - y^{2})^{3} = 0$

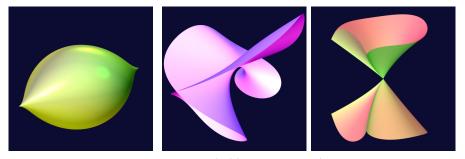


 $\frac{zitrus}{figrures by Herwig Hauser, https://imaginary.org/gallery/herwig-hauser-classic}$

э

<ロ> (日) (日) (日) (日) (日)

$$x^{2} + z^{2} = y^{3}(1 - y)^{3}$$
 $y^{2}z^{2} + z^{3} - x^{2} = 0$ $(x^{2} - y^{3})^{2} - (z^{2} - y^{2})^{3} = 0$



zitrus kolibri daisy figrures by Herwig Hauser, https://imaginary.org/gallery/herwig-hauser-classic

Singularities are beautiful.

$$x^{2} + z^{2} = y^{3}(1 - y)^{3}$$
 $y^{2}z^{2} + z^{3} - x^{2} = 0$ $(x^{2} - y^{3})^{2} - (z^{2} - y^{2})^{3} = 0$

zitrus kolibri daisy

Singularities are beautiful. Why should we "get rid of them"?

3 🖌 🖌 3

< /⊒ > <

$$x^{2} + z^{2} = y^{3}(1 - y)^{3}$$
 $y^{2}z^{2} + z^{3} - x^{2} = 0$ $(x^{2} - y^{3})^{2} - (z^{2} - y^{2})^{3} = 0$

zitrus kolibri daisy

Singularities are beautiful. Why should we "get rid of them"? try this https://imaginary.org/gallery/herwig-hauser-classic

3 D (3 D)

< 口 > < 同 >

If $X' \to X$ a resolution with $E \subset X'$ a simple normal crossings divisor, define $\Delta(E)$ to be the dual complex of E.

프 에 에 프 어

If $X' \to X$ a resolution with $E \subset X'$ a simple normal crossings divisor, define $\Delta(E)$ to be the dual complex of E.

If $X' \to X$ a resolution with $E \subset X'$ a simple normal crossings divisor, define $\Delta(E)$ to be the dual complex of E.

If $X' \to X$ a resolution with $E \subset X'$ a simple normal crossings divisor, define $\Delta(E)$ to be the dual complex of E.

Theorem (Stepanov 2006)

The simple homotopy type of $\Delta(E)$ is independent of the resolution $X' \to X$.

Also work by Danilov, Payne, Thuillier, Harper...

• Alicia Harper was a PhD student at Brown who generalized Stepanov's theorem, answering a question in a paper of Prof. Chan.

Past, present and future

- Alicia Harper was a PhD student at Brown who generalized Stepanov's theorem, answering a question in a paper of Prof. Chan.
- Jonghyun Lee is a Brown undergraduate coding a resolution algorithm appearing in one of my papers.

- Alicia Harper was a PhD student at Brown who generalized Stepanov's theorem, answering a question in a paper of Prof. Chan.
- Jonghyun Lee is a Brown undergraduate coding a resolution algorithm appearing in one of my papers.
- Stephen Obinna and Ming-Hao Quek are PhD students at Brown who will prove a generalization of that paper.

Thank you for your attention

A B F A B F

- ∢ ⊢⊒ →

э