Singularities and their resolutions

Dan Abramovich
Brown University

September 26, 2019

On Singularities - Part 1

$$
x^{2}+z^{2}=y^{3}(1-y)^{3}
$$

On Singularities - Part 1

$$
x^{2}+z^{2}=y^{3}(1-y)^{3} \quad y^{2} z^{2}+z^{3}-x^{2}=0
$$

On Singularities - Part 1

$$
x^{2}+z^{2}=y^{3}(1-y)^{3} \quad y^{2} z^{2}+z^{3}-x^{2}=0 \quad\left(x^{2}-y^{3}\right)^{2}-\left(z^{2}-y^{2}\right)^{3}=0
$$

These are singularities.

On Singularities - Part 1

$x^{2}+z^{2}=y^{3}(1-y)^{3} \quad y^{2} z^{2}+z^{3}-x^{2}=0 \quad\left(x^{2}-y^{3}\right)^{2}-\left(z^{2}-y^{2}\right)^{3}=0$
These are singularities. Look awful, don't they?

On Singularities - Part 1

$x^{2}+z^{2}=y^{3}(1-y)^{3} \quad y^{2} z^{2}+z^{3}-x^{2}=0 \quad\left(x^{2}-y^{3}\right)^{2}-\left(z^{2}-y^{2}\right)^{3}=0$
These are singularities. Look awful, don't they?
Let's get rid of them!

On Singularities - Part 1

$x^{2}+z^{2}=y^{3}(1-y)^{3} \quad y^{2} z^{2}+z^{3}-x^{2}=0 \quad\left(x^{2}-y^{3}\right)^{2}-\left(z^{2}-y^{2}\right)^{3}=0$
These are singularities. Look awful, don't they?
Let's get rid of them! (without losing information) - that's resolution of singularities

Algebraic geometry

- My subject: algebraic geometry

The geometry of sets defined by polynomial equations.

Algebraic geometry

- My subject: algebraic geometry

The geometry of sets defined by polynomial equations.

- More specifically: The geometry of subsets $V \subset \mathbb{C}^{n}$ defined by polynomial equations:

Algebraic geometry

- My subject: algebraic geometry

The geometry of sets defined by polynomial equations.

- More specifically: The geometry of subsets $V \subset \mathbb{C}^{n}$ defined by polynomial equations:

$$
V=\left\{\left(z_{1}, \ldots, z_{n}\right) \mid f_{1}\left(z_{1}, \ldots, z_{n}\right)=\cdots=f_{k}\left(z_{1}, \ldots, z_{n}\right)=0\right\}
$$

with $f_{i} \in \mathbb{C}\left[z_{1}, \ldots, z_{n}\right]$.

Algebraic geometry

- My subject: algebraic geometry

The geometry of sets defined by polynomial equations.

- More specifically: The geometry of subsets $V \subset \mathbb{C}^{n}$ defined by polynomial equations:

$$
V=\left\{\left(z_{1}, \ldots, z_{n}\right) \mid f_{1}\left(z_{1}, \ldots, z_{n}\right)=\cdots=f_{k}\left(z_{1}, \ldots, z_{n}\right)=0\right\}
$$

with $f_{i} \in \mathbb{C}\left[z_{1}, \ldots, z_{n}\right]$.

- These sets are called algebraic varieties. ${ }^{1}$

Examples of algebraic varieties

$$
0 V=\{x=y=0\} \subset \mathbb{C}^{2}: \text { a point. }
$$

Examples of algebraic varieties

$0 V=\{x=y=0\} \subset \mathbb{C}^{2}$: a point.
1 If $a, b \neq 0,0, c \in \mathbb{C}$, let $V=\{a x+b y+c=0\}$: a line.

Examples of algebraic varieties

$0 V=\{x=y=0\} \subset \mathbb{C}^{2}$: a point.
1 If $a, b \neq 0,0, c \in \mathbb{C}$, let $V=\{a x+b y+c=0\}$: a line.
2 for $R \in \mathbb{C}$ let $V=\left\{x^{2}+y^{2}=R^{2}\right\}$.

Examples of algebraic varieties

$0 V=\{x=y=0\} \subset \mathbb{C}^{2}$: a point.
1 If $a, b \neq 0,0, c \in \mathbb{C}$, let $V=\{a x+b y+c=0\}$: a line.
2 for $R \in \mathbb{C}$ let $V=\left\{x^{2}+y^{2}=R^{2}\right\}$.
All my pictures are of $V(\mathbb{R})$ - the real solutions of the equations.

Examples of algebraic varieties

$0 V=\{x=y=0\} \subset \mathbb{C}^{2}$: a point.
1 If $a, b \neq 0,0, c \in \mathbb{C}$, let $V=\{a x+b y+c=0\}$: a line.
2 for $R \in \mathbb{C}$ let $V=\left\{x^{2}+y^{2}=R^{2}\right\}$.
All my pictures are of $V(\mathbb{R})$ - the real solutions of the equations.
The subject involves geometry

Examples of algebraic varieties

$0 V=\{x=y=0\} \subset \mathbb{C}^{2}$: a point.
1 If $a, b \neq 0,0, c \in \mathbb{C}$, let $V=\{a x+b y+c=0\}$: a line.
2 for $R \in \mathbb{C}$ let $V=\left\{x^{2}+y^{2}=R^{2}\right\}$.
All my pictures are of $V(\mathbb{R})$ - the real solutions of the equations.
The subject involves geometry, algebra

Examples of algebraic varieties

$0 V=\{x=y=0\} \subset \mathbb{C}^{2}$: a point.
1 If $a, b \neq 0,0, c \in \mathbb{C}$, let $V=\{a x+b y+c=0\}$: a line.
2 for $R \in \mathbb{C}$ let $V=\left\{x^{2}+y^{2}=R^{2}\right\}$.
All my pictures are of $V(\mathbb{R})$ - the real solutions of the equations.
The subject involves geometry, algebra, algebra

Examples of algebraic varieties

$0 V=\{x=y=0\} \subset \mathbb{C}^{2}$: a point.
1 If $a, b \neq 0,0, c \in \mathbb{C}$, let $V=\{a x+b y+c=0\}$: a line.
2 for $R \in \mathbb{C}$ let $V=\left\{x^{2}+y^{2}=R^{2}\right\}$.
All my pictures are of $V(\mathbb{R})$ - the real solutions of the equations.
The subject involves geometry, algebra, algebra, number theory

Examples of algebraic varieties

$0 V=\{x=y=0\} \subset \mathbb{C}^{2}$: a point.
1 If $a, b \neq 0,0, c \in \mathbb{C}$, let $V=\{a x+b y+c=0\}$: a line.
2 for $R \in \mathbb{C}$ let $V=\left\{x^{2}+y^{2}=R^{2}\right\}$.
All my pictures are of $V(\mathbb{R})$ - the real solutions of the equations.
The subject involves geometry, algebra, algebra, number theory, even calculus ...

Singular and smooth points

The examples above are smooth.

Singular and smooth points

The examples above are smooth. The quintessential example is the graph $w=F(x, y, z)$.

Singular and smooth points

The examples above are smooth.
The quintessential example is the graph $w=F(x, y, z)$.

Definition

$\left\{V=f\left(x_{1}, \ldots, x_{n}\right)=0\right\}$ is singular at p if $\frac{\partial f}{\partial x_{i}}(p)=0$ for all i, namely $\nabla f(p)=0$.
Otherwise smooth ${ }^{\text {a }}$.

Singular and smooth points

The examples above are smooth.
The quintessential example is the graph $w=F(x, y, z)$.

Definition

$\left\{V=f\left(x_{1}, \ldots, x_{n}\right)=0\right\}$ is singular at p if $\frac{\partial f}{\partial x_{i}}(p)=0$ for all i, namely $\nabla f(p)=0$.
Otherwise smooth ${ }^{\text {a }}$.
${ }^{a}$ In other words, $\{f=0\}$ defines a manifold of complex codimension 1.

Singular and smooth points

The examples above are smooth.
The quintessential example is the graph $w=F(x, y, z)$.

Definition

$\left\{V=f\left(x_{1}, \ldots, x_{n}\right)=0\right\}$ is singular at p if $\frac{\partial f}{\partial x_{i}}(p)=0$ for all i, namely $\nabla f(p)=0$.
Otherwise smooth ${ }^{\text {a }}$.
${ }^{a}$ In other words, $\{f=0\}$ defines a manifold of complex codimension 1.
The implicit function theorem says: $\{f=0\}$ is smooth if and only if locally it looks like a graph.

Singular and smooth points

The examples above are smooth.
The quintessential example is the graph $w=F(x, y, z)$.

Definition

$\left\{V=f\left(x_{1}, \ldots, x_{n}\right)=0\right\}$ is singular at p if $\frac{\partial f}{\partial x_{i}}(p)=0$ for all i, namely $\nabla f(p)=0$.
Otherwise smooth ${ }^{\text {a }}$.
${ }^{a}$ In other words, $\{f=0\}$ defines a manifold of complex codimension 1.
The implicit function theorem says: $\{f=0\}$ is smooth if and only if locally it looks like a graph.
(In codimension c, the singular locus of $\left\{f_{1}=\cdots=f_{k}=0\right\}$ is the set of points where $d\left(f_{1}, \ldots, f_{k}\right)$ has rank $<c$.)

Examples of singularities

$$
y^{2}=x^{3}+x^{2}
$$

Examples of singularities

$$
y^{2}=x^{3}+x^{2}
$$

$$
x^{2}=y^{2} z
$$

Examples of singularities

$$
y^{2}=x^{3}+x^{2}
$$

$$
x^{2}=y^{2} z
$$

Looks like in general it might be hard to find the singularities.

Examples of singularities

$$
y^{2}=x^{3}+x^{2}
$$

$$
x^{2}=y^{2} z
$$

Looks like in general it might be hard to find the singularities. There is a theorem saying that it is.

Resolution of singularities

Definition

A resolution of singularities $X^{\prime} \rightarrow X$ is a modification ${ }^{a}$ with X^{\prime} nonsingular inducing an isomorphism over the smooth locus of X.

[^0]
Resolution of singularities

Definition

A resolution of singularities $X^{\prime} \rightarrow X$ is a modification ${ }^{a}$ with X^{\prime} nonsingular inducing an isomorphism over the smooth locus of X.
${ }^{a}$ proper birational map

Theorem (Hironaka 1964)

A complex algebraic variety X admits a resolution of singularities $X^{\prime} \rightarrow X$, so that the critical locus $E \subset X^{\prime}$ is a simple normal crossings divisor. ${ }^{\text {a }}$

[^1]
Examples of resolutions

$$
V=\left\{y^{2}=x^{2}(x+1)\right\}
$$

Examples of resolutions

$$
V=\left\{y^{2}=x^{2}(x+1)\right\}
$$

- Write $t=y / x$,

Examples of resolutions

$$
V=\left\{y^{2}=x^{2}(x+1)\right\}
$$

- Write $t=y / x$,
- so $t^{2}=x+1$, and $x=t^{2}-1$

Examples of resolutions

$$
V=\left\{y^{2}=x^{2}(x+1)\right\}
$$

- Write $t=y / x$,
- so $t^{2}=x+1$, and $x=t^{2}-1$
- so $y=x t=t^{3}-t$.

Examples of resolutions

$$
V=\left\{y^{2}=x^{2}(x+1)\right\}
$$

- Write $t=y / x$,
- so $t^{2}=x+1$, and $x=t^{2}-1$
- so $y=x t=t^{3}-t$.
- get a map $t \mapsto\left(t^{2}-1, t^{3}-t\right)$ with image V.

Examples of resolutions

$$
V=\left\{y^{2}=x^{2}(x+1)\right\}
$$

- Write $t=y / x$,
- so $t^{2}=x+1$, and $x=t^{2}-1$
- so $y=x t=t^{3}-t$.
- get a map $t \mapsto\left(t^{2}-1, t^{3}-t\right)$ with image V.

$$
V=\left\{x^{2}=y^{2} z\right\}
$$

Examples of resolutions

$$
V=\left\{y^{2}=x^{2}(x+1)\right\}
$$

- Write $t=y / x$,
- so $t^{2}=x+1$, and $x=t^{2}-1$
- so $y=x t=t^{3}-t$.
- get a map $t \mapsto\left(t^{2}-1, t^{3}-t\right)$ with image V.

$$
V=\left\{x^{2}=y^{2} z\right\}
$$

- Write $t=x / y$,

Examples of resolutions

$$
V=\left\{y^{2}=x^{2}(x+1)\right\}
$$

- Write $t=y / x$,
- so $t^{2}=x+1$, and $x=t^{2}-1$
- so $y=x t=t^{3}-t$.
- get a map $t \mapsto\left(t^{2}-1, t^{3}-t\right)$ with image V.

$$
V=\left\{x^{2}=y^{2} z\right\}
$$

- Write $t=x / y$,
- so $z=t^{2}$,

Examples of resolutions

$$
V=\left\{y^{2}=x^{2}(x+1)\right\}
$$

- Write $t=y / x$,
- so $t^{2}=x+1$, and $x=t^{2}-1$
- so $y=x t=t^{3}-t$.
- get a map $t \mapsto\left(t^{2}-1, t^{3}-t\right)$ with image V.

$$
V=\left\{x^{2}=y^{2} z\right\}
$$

- Write $t=x / y$,
- so $z=t^{2}$,
- and $x=y t$.

Examples of resolutions

$$
V=\left\{y^{2}=x^{2}(x+1)\right\}
$$

- Write $t=y / x$,
- so $t^{2}=x+1$, and $x=t^{2}-1$
- so $y=x t=t^{3}-t$.
- get a map $t \mapsto\left(t^{2}-1, t^{3}-t\right)$ with image V.

$$
V=\left\{x^{2}=y^{2} z\right\}
$$

- Write $t=x / y$,
- so $z=t^{2}$,
- and $x=y t$.
- get a map $(y, t) \mapsto\left(y t, y, t^{2}\right)$ with image V.

On singularities - Part 2

$$
x^{2}+z^{2}=y^{3}(1-y)^{3}
$$

On singularities - Part 2

$$
x^{2}+z^{2}=y^{3}(1-y)^{3}
$$

zitrus
figrures by Herwig Hauser, https://imaginary.org/gallery/herwig-hauser-classic

On singularities - Part 2

$$
x^{2}+z^{2}=y^{3}(1-y)^{3} \quad y^{2} z^{2}+z^{3}-x^{2}=0
$$

zitrus
figrures by Herwig Hauser, https://imaginary.org/gallery/herwig-hauser-classic

On singularities - Part 2

$$
x^{2}+z^{2}=y^{3}(1-y)^{3} \quad y^{2} z^{2}+z^{3}-x^{2}=0
$$

zitrus

kolibri
figrures by Herwig Hauser, https://imaginary.org/gallery/herwig-hauser-classic

On singularities - Part 2

$$
x^{2}+z^{2}=y^{3}(1-y)^{3} \quad y^{2} z^{2}+z^{3}-x^{2}=0 \quad\left(x^{2}-y^{3}\right)^{2}-\left(z^{2}-y^{2}\right)^{3}=0
$$

zitrus

kolibri
figrures by Herwig Hauser, https://imaginary.org/gallery/herwig-hauser-classic

On singularities - Part 2

$$
x^{2}+z^{2}=y^{3}(1-y)^{3} \quad y^{2} z^{2}+z^{3}-x^{2}=0 \quad\left(x^{2}-y^{3}\right)^{2}-\left(z^{2}-y^{2}\right)^{3}=0
$$

zitrus

kolibri

daisy
figrures by Herwig Hauser, https://imaginary.org/gallery/herwig-hauser-classic

On singularities - Part 2

$$
x^{2}+z^{2}=y^{3}(1-y)^{3} \quad y^{2} z^{2}+z^{3}-x^{2}=0 \quad\left(x^{2}-y^{3}\right)^{2}-\left(z^{2}-y^{2}\right)^{3}=0
$$

zitrus

kolibri

daisy
figrures by Herwig Hauser, https://imaginary.org/gallery/herwig-hauser-classic
Singularities are beautiful.

On singularities - Part 2

$$
x^{2}+z^{2}=y^{3}(1-y)^{3} \quad y^{2} z^{2}+z^{3}-x^{2}=0 \quad\left(x^{2}-y^{3}\right)^{2}-\left(z^{2}-y^{2}\right)^{3}=0
$$

zitrus

kolibri

daisy
figrures by Herwig Hauser, https://imaginary.org/gallery/herwig-hauser-classic
Singularities are beautiful.
Why should we "get rid of them"?

On singularities - Part 2

$$
x^{2}+z^{2}=y^{3}(1-y)^{3} \quad y^{2} z^{2}+z^{3}-x^{2}=0 \quad\left(x^{2}-y^{3}\right)^{2}-\left(z^{2}-y^{2}\right)^{3}=0
$$

zitrus

kolibri

daisy
figrures by Herwig Hauser, https://imaginary.org/gallery/herwig-hauser-classic
Singularities are beautiful.
Why should we "get rid of them"? try this https://imaginary.org/gallery/herwig-hauser-classic

Example: Stepanov's theorem

If $X^{\prime} \rightarrow X$ a resolution with $E \subset X^{\prime}$ a simple normal crossings divisor, define $\Delta(E)$ to be the dual complex of E.

Example: Stepanov's theorem

If $X^{\prime} \rightarrow X$ a resolution with $E \subset X^{\prime}$ a simple normal crossings divisor, define $\Delta(E)$ to be the dual complex of E.

Example: Stepanov's theorem

If $X^{\prime} \rightarrow X$ a resolution with $E \subset X^{\prime}$ a simple normal crossings divisor, define $\Delta(E)$ to be the dual complex of E.

Example: Stepanov's theorem

If $X^{\prime} \rightarrow X$ a resolution with $E \subset X^{\prime}$ a simple normal crossings divisor, define $\Delta(E)$ to be the dual complex of E.

Theorem (Stepanov 2006)
The simple homotopy type of $\Delta(E)$ is independent of the resolution $X^{\prime} \rightarrow X$.

Also work by Danilov, Payne, Thuillier, Harper. . .

Past, present and future

- Alicia Harper was a PhD student at Brown who generalized Stepanov's theorem, answering a question in a paper of Prof. Chan.

Past, present and future

- Alicia Harper was a PhD student at Brown who generalized Stepanov's theorem, answering a question in a paper of Prof. Chan.
- Jonghyun Lee is a Brown undergraduate coding a resolution algorithm appearing in one of my papers.

Past, present and future

- Alicia Harper was a PhD student at Brown who generalized Stepanov's theorem, answering a question in a paper of Prof. Chan.
- Jonghyun Lee is a Brown undergraduate coding a resolution algorithm appearing in one of my papers.
- Stephen Obinna and Ming-Hao Quek are PhD students at Brown who will prove a generalization of that paper.

The end

Thank you for your attention

[^0]: ${ }^{a}$ proper birational map

[^1]: ${ }^{\text {a }}$ Codimension 1 , smooth components meeting transversally

