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Resolution of singularities

Definition
A resolution of singularities X’ — X is a proper birational map inducing an
isomorphism over the smooth locus of X.

Theorem (Hironaka 1964)

A variety X over a field of characteristic 0 admits a resolution of
singularities X' — X, so that the exceptional locus E C X' is a simple
normal crossings divisor.
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Resolution of singularities

Definition
A resolution of singularities X’ — X is a proper birational map inducing an
isomorphism over the smooth locus of X.

Theorem (Hironaka 1964)

A variety X over a field of characteristic 0 admits a resolution of
singularities X' — X, so that the exceptional locus E C X' is a simple
normal crossings divisor.

Always characteristic O . ..
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Resolution of singularities

A variety X over a field of characteristic 0 admits a resolution of

singularities X’ — X, so that the exceptional locus E C X’ is a simple
normal crossings divisor.

e In particular a smooth quasiprojective variety X9 has a smooth
projective compactification X with D = X ~. X% a SNCD.
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Resolution of singularities

A variety X over a field of characteristic 0 admits a resolution of
singularities X’ — X, so that the exceptional locus E C X’ is a simple
normal crossings divisor.

e In particular a smooth quasiprojective variety X° has a smooth
projective compactification X with D = X ~. X% a SNCD.

@ The pair (X, D) is logarithmically smooth, so log geometry should fit
naturally.

@ Actually in the standard proofs the divisor is a bit of a headache.
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Resolution of singularities

A variety X over a field of characteristic 0 admits a resolution of
singularities X’ — X, so that the exceptional locus E C X’ is a simple
normal crossings divisor.

e In particular a smooth quasiprojective variety X° has a smooth
projective compactification X with D = X ~. X% a SNCD.

@ The pair (X, D) is logarithmically smooth, so log geometry should fit
naturally.

@ Actually in the standard proofs the divisor is a bit of a headache.

@ No stacks?!
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Resolution does hold for stacks

Theorem (Temkin)

An excellent algebraic stack X over a field of characteristic 0 admits a
resolution of singularities X' — X.

@ This is a consequence of resolution for varieties and schemes,
functorial for smooth (actually regular) morphisms.

Abramovich (Brown) Resolving singularities in Vistoli's workshop June 4, 2018 5/22



Resolution does hold for stacks

Theorem (Temkin)

An excellent algebraic stack X over a field of characteristic 0 admits a
resolution of singularities X' — X.

@ This is a consequence of resolution for varieties and schemes,
functorial for smooth (actually regular) morphisms.

o Wiodarczyk showed that if one seriously looks for a resolution functor,
one is led to a resolution.

@ Still | want to show that stacks are part of the solution.
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Log smooth schemes and log smooth morphisms
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Log smooth schemes and log smooth morphisms

@ A variety X with divisor D is toroidal or log smooth if étale locally it
looks like a toric variety X, with its toric divisor X, ~ T.

o Etale locally it is defined by equations between monomials.

@ One records the open U = X ~. D rather than the divisor.

@ (To be honest, the log structure M — Ox associated to this open.)

@ A morphism X — Y is toroidal or log smooth if étale locally it looks

like a toric morphism.

@ The inverse image of a monomial is a monomial.
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Resolution of families

@ Let's try to simplify singularities of a family X — B.

When are the singularities of a morphism simple?

Question J
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Resolution of families

@ Let's try to simplify singularities of a family X — B.

When are the singularities of a morphism simple?

Question J

@ If dim B =1 the simplest one can have is t = fo"',

o and if one also allows base change, can have tX =[] x;, or even

t:HX,'.
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Resolution of families

@ Let’s try to simplify singularities of a family X — B.

Question J

When are the singularities of a morphism simple?

@ If dim B =1 the simplest one can have is t = fo",

e and if one also allows base change, can have t* = [ x;, or even

t:HX,'.

o Either way, it is a log smooth morphism of log smooth schemes.

@ After base change, it is an integral and saturated morphism: flat with
reduced fibers.
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Resolution of families: higher dimensional base

When are the singularities of a morphism simple?

Question J

e If dim B > 1 Karu [1999] showed that ¢t = [] x;" cannot be achieved.
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Resolution of families: higher dimensional base

Question J

When are the singularities of a morphism simple?

e If dim B > 1 Karu [1999] showed that t = [] x;" cannot be achieved.

@ The best one can hope for, after base change, is a semistable
morphism:

Definition (AK 2000)

A log smooth morphism, with B smooth, is semistable if locally

tl :Xl...Xll

tm = X141 Xm
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The semistable reduction problem

Conjecture
Let X — B be a dominant morphism of varieties.

(i) There is an alteration B; — B and a modification
X1 — (X X B B1)main such that X; — Bj is semistable.

(i) If the geometric generic fiber Xj is smooth, such X; — Bj can be
found with Xj unchanged.
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The semistable reduction problem

Conjecture
Let X — B be a dominant morphism of varieties.

(i) There is an alteration B; — B and a modification
X1 — (X X B B1)main such that X; — Bj is semistable.

(i) If the geometric generic fiber Xj is smooth, such X; — Bj can be
found with Xj unchanged.

Known results:

@ (ii) is known for families of curves in mixed characteristics [de Jong
1997]. ..

@ (ii) is known for B a curve in characteristic 0 [KKMS 1973]
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The semistable reduction problem

Conjecture
Let X — B be a dominant morphism of varieties.

(i) There is an alteration B; — B and a modification
X1 — (X X B B1)main such that X; — Bj is semistable.

(i) If the geometric generic fiber Xj is smooth, such X; — Bj can be
found with Xj unchanged.

Known results:

@ (ii) is known for families of curves in mixed characteristics [de Jong
1997]. ..

e (ii) is known for B a curve in characteristic 0 [KKMS 1973]
o (i) is known for families of threefolds in characteristic 0 [Karu 2000]

@ One wants (ii) in order to compactify smooth families.
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Toroidalization and weak semistable reduction
Back to characteristic 0
Theorem (Toroidalization, RX-Karu 2000, R-K-Denef 2013)

There is an modification By — B and a modification X1 — (X X g B1)main
such that X1 — By is log smooth and flat.

v

Theorem (Weak semistable reduction, R-Karu 2000)

There is an alteration By — B and a modification X1 — (X X g B1)main
such that X1 — By is log smooth, flat, with reduced fibers.
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Toroidalization and weak semistable reduction
Back to characteristic 0

Theorem (Toroidalization, RX-Karu 2000, R-K-Denef 2013)

There is an modification By — B and a modification X1 — (X X g B1)main
such that X1 — By is log smooth and flat.

v

Theorem (Weak semistable reduction, R-Karu 2000)

There is an alteration By — B and a modification X1 — (X X g B1)main
such that X1 — By is log smooth, flat, with reduced fibers.

@ The key is toroidalization.

@ Passing from weak semistable reduction to semistable reduction is a
purely combinatorial problem [R-Karu 2000],

@ proven by Karu for families of threefolds, and
@ whose restriction to rank-1 valuation rings is proven in a preprint by
[Adiprasito-Liu-Pak-Temkin].
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Functoriality
@ To reach (ii), Wiodarczyk says we need to work functorially.

@ We do this functorially for any log base change and for log-smooth
morphisms (Temkin).
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Functoriality

@ To reach (ii), Wiodarczyk says we need to work functorially.

@ We do this functorially for any log base change and for log-smooth
morphisms (Temkin).
Main result (R-Temkin-Wtodarczyk)
Let X — B be a dominant log morphism.

There are log modifications B; — B and X; — (X X g B1)main such that
X1 — By is log smooth and flat;

this is compatible with log base change B’ — B;

this is compatible, up to base change, with log smooth X" — X.
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Functoriality

@ To reach (ii), Wiodarczyk says we need to work functorially.

@ We do this functorially for any log base change and for log-smooth
morphisms (Temkin).
Main result (R-Temkin-Wtodarczyk)
Let X — B be a dominant log morphism.

There are log modifications B; — B and X; — (X X g B1)main such that
X1 — By is log smooth and flat;

this is compatible with log base change B’ — B;

this is compatible, up to base change, with log smooth X" — X.

@ The result would be of sufficient interest even for X — X smooth.

@ Temkin observed that this stronger functoriality leads us to the result.
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Functoriality

@ To reach (ii), Wiodarczyk says we need to work functorially.

@ We do this functorially for any log base change and for log-smooth
morphisms (Temkin).
Main result (R-Temkin-Wtodarczyk)
Let X — B be a dominant log morphism.

There are log modifications B; — B and X; — (X X g B1)main such that
X1 — By is log smooth and flat;

this is compatible with log base change B’ — B;

this is compatible, up to base change, with log smooth X" — X.

@ The result would be of sufficient interest even for X" — X smooth.
@ Temkin observed that this stronger functoriality leads us to the result.

@ A surprise is awaiting.

Abramovich (Brown) Resolving singularities in Vistoli's workshop June 4, 2018 11 /22



dim B = 0: log resolution via principalization

@ To resolve singularities, one embeds X in a log smooth Y. ..
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dim B = 0: log resolution via principalization

@ To resolve singularities, one embeds X in a log smooth Y. ..
@ ...which can be done locally.

@ Functoriality says choices do not matter.
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dim B = 0: log resolution via principalization

@ To resolve singularities, one embeds X in a log smooth Y. ..
@ ...which can be done locally.
@ Functoriality says choices do not matter.

@ One reduces to principalization of Zx.

Theorem (...N-T-W)

Let 7 be an ideal on a log smooth Y. There is a functorial logarithmic
morphism Y' — Y, with Y’ logarithmically smooth, and ZOvy: an
invertible monomial ideal.
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dim B = 0: log resolution via principalization

@ To resolve singularities, one embeds X in a log smooth Y. ..
@ ...which can be done locally.
@ Functoriality says choices do not matter.

@ One reduces to principalization of Zx.

Theorem (...N-T-W)

Let 7 be an ideal on a log smooth Y. There is a functorial logarithmic
morphism Y' — Y, with Y’ logarithmically smooth, and ZOvy: an
invertible monomial ideal.

@ This is done by order reduction,

@ achieved by blowing up admissible centers.
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Example 1

o Consider Y7 = SpecC[u,x] and D = {u = 0}.

o Let T = (u?, x?).

@ If one blows up (u, x) the ideal is principalized:
> on the u-chart Spec C[u, x'] with x = x'u we have ZOy,; = (uv?),
» on the x-chart Spec C[v/, x] with v’ = xu’ we have ZOy: = (x?),
» which is exceptional hence monomial.

@ This is in fact the only functorial admissible blowing up.

Abramovich (Brown) Resolving singularities in Vistoli's workshop June 4, 2018 13 /22



Example 2

o Consider Y2 = SpecC[v, x] and D = {v = 0}.
o Let 7= (v,x?).
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Example 2

o Consider Y2 = SpecC[v, x] and D = {v = 0}.
o Let 7= (v,x?).

@ Example 1 is the pullback of this via v = u?.
°

Functoriality says: we need to blow up an ideal whose pullback is
(u,x).
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Example 2

o Consider Y2 = SpecC[v, x] and D = {v = 0}.

o Let 7= (v,x?).

@ Example 1 is the pullback of this via v = u?.

o Functoriality says: we need to blow up an ideal whose pullback is
(u, x).

@ This means we need to blow up (v!/2, x).
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Example 2

Consider Y2 = SpecC[v, x] and D = {v = 0}.
Let T = (v, x?).

Example 1 is the pullback of this via v = u?.
Functoriality says: we need to blow up an ideal whose pullback is
(u, x).

This means we need to blow up (v/2, x).

What is this? What is its blowup?
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Kummer ideals

Definition
@ A Kummer monomial is a monomial in the Kummer-étale topology of
Y (like v1/2).
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Kummer ideals

Definition
@ A Kummer monomial is a monomial in the Kummer-étale topology of
Y (like v1/?).
@ A Kummer monomial ideal is a monomial ideal in the Kummer-étale
topology of Y.
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Kummer ideals

Definition
@ A Kummer monomial is a monomial in the Kummer-étale topology of
Y (like v1/?).
@ A Kummer monomial ideal is a monomial ideal in the Kummer-étale
topology of Y.

@ A Kummer center is the sum of a Kummer monomial ideal and the
ideal of a log smooth subscheme.
/d 1/d
u,"").

P

1
o Locally (x1,..., Xk, u]
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Kummer ideals

Definition
@ A Kummer monomial is a monomial in the Kummer-étale topology of
Y (like v1/?).
@ A Kummer monomial ideal is a monomial ideal in the Kummer-étale
topology of Y.
@ A Kummer center is the sum of a Kummer monomial ideal and the

ideal of a log smooth subscheme.
d 1/d
/ Voo u/ )-

1
o Locally (x1,..., Xk, u]

Apologies: we did not use the infinite root stack.
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Blowing up Kummer centers

Proposition

Let J be a Kummer center on a logarithmically smooth Y. There is a

universal proper birational Y' — Y such that Y’ is logarithmically smooth
and J Oy is an invertible ideal.
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Blowing up Kummer centers

Proposition

Let J be a Kummer center on a logarithmically smooth Y. There is a
universal proper birational Y' — Y such that Y' is logarithmically smooth
and J Oy is an invertible ideal.

Example 0

Y = SpecCJv], with toroidal structure associated to D = {v = 0}, and
J = (vl/z).
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Blowing up Kummer centers

Proposition

Let J be a Kummer center on a logarithmically smooth Y. There is a
universal proper birational Y' — Y such that Y' is logarithmically smooth
and J Oy is an invertible ideal.

Example 0

Y = SpecCJv], with toroidal structure associated to D = {v = 0}, and
J = (vl/z).

@ There is no log scheme Y’ satisfying the proposition.
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Blowing up Kummer centers

Proposition

Let J be a Kummer center on a logarithmically smooth Y. There is a
universal proper birational Y' — Y such that Y' is logarithmically smooth
and J Oy is an invertible ideal. |
Example 0

Y = SpecCJv], with toroidal structure associated to D = {v = 0}, and

J = (vl/z).

@ There is no log scheme Y’ satisfying the proposition.
@ There is a stack Y’ = Y(v/D), the Cadman-Vistoli root stack,
satisfying the proposition!
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Example 2 concluded

o Consider Y, = SpecC|v, x] and D = {v = 0}.
o Let Z = (v,x?) and J = (v/2,x).
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Example 2 concluded

o Consider Y, = SpecC|v, x] and D = {v = 0}.
o Let Z=(v,x?) and J = (v¥/?,x).
@ associated blowing up Y’ — Y5 with charts:
» Y/ :=SpecC|x, v, V']/(v'x? = v), where v/ = v/x? (nonsingular
scheme).

* Exceptional x = 0, now monomial.
* T = (x*,v) transformed into (x?), invertible monomial ideal.
* Kummer ideal (x, v!/?) transformed into monomial ideal (x).
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Example 2 concluded

e Consider Y, = SpecC|[v, x] and D = {v = 0}.
o Let ZT=(v,x?) and J = (v'/2,x).
@ associated blowing up Y’ — Y5 with charts:
» Y/ :=SpecC|x, v, V']/(v'x? = v), where v/ = v/x? (nonsingular
scheme).
* Exceptional x = 0, now monomial.

* T = (x*,v) transformed into (x?), invertible monomial ideal.
* Kummer ideal (x, v!/?) transformed into monomial ideal (x).
» The v/%-chart:
* stack quotient X/, := [Spec C[w, y]/u2],
where y = x/w and pz = {£1} acts via (w,y) — (—w, —y).
Exceptional w = 0 (monomial).
(x2, v) transformed into invertible monomial ideal (v) = (w?).
(x, v'/?) transformed into invertible monomial ideal (w).

* % % %
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dim B = 0: restatement

Theorem (X-T-W)

Let T be an ideal on a logarithmically smooth Y. There is a functorial
logarithmic morphism Y' — Y, with Y’ a logarithmically smooth stack,
and ZOvy: an invertible monomial ideal.
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dim B = 0: restatement

Theorem (X-T-W)

Let T be an ideal on a logarithmically smooth Y. There is a functorial

logarithmic morphism Y' — Y, with Y’ a logarithmically smooth stack,
and ZOvy: an invertible monomial ideal.

@ Working in Vistoli's workshop prepared me for this.
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dim B = 0: restatement

Theorem (X-T-W)

Let T be an ideal on a logarithmically smooth Y. There is a functorial

logarithmic morphism Y' — Y, with Y’ a logarithmically smooth stack,
and ZOvy: an invertible monomial ideal.

@ Working in Vistoli's workshop prepared me for this.

@ This is done by order reduction, using logarithmic derivatives.
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dim B = 0: restatement

Theorem (X-T-W)

Let T be an ideal on a logarithmically smooth Y. There is a functorial
logarithmic morphism Y' — Y, with Y’ a logarithmically smooth stack,
and ZOvy: an invertible monomial ideal.

@ Working in Vistoli's workshop prepared me for this.
@ This is done by order reduction, using logarithmic derivatives.
Definition

Write D=2 for the sheaf of logarithmic differential operators of order < a.
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dim B = 0: restatement

Theorem (X-T-W)

Let T be an ideal on a logarithmically smooth Y. There is a functorial
logarithmic morphism Y' — Y, with Y’ a logarithmically smooth stack,
and ZOvy: an invertible monomial ideal.

@ Working in Vistoli's workshop prepared me for this.

@ This is done by order reduction, using logarithmic derivatives.
Definition
Write D=2 for the sheaf of logarithmic differential operators of order < a.

The logarithmic order of an ideal Z is the minimum a such that
D<T = (1).
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The monomial part of an ideal

Definition J

M(Z) is the minimal monomial ideal containing Z.
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The monomial part of an ideal

Definition
M(Z) is the minimal monomial ideal containing Z.

Proposition (Kollar, X-T-W)
In cahracteristic 0, M(Z) = D*(Z). In particular max, logord ,(Z) = oo if
and only if M(Z) # 1.

v

Abramovich (Brown) Resolving singularities in Vistoli's workshop June 4, 2018 19 / 22



The monomial part of an ideal

Definition
M(Z) is the minimal monomial ideal containing Z.

Proposition (Kollar, X-T-W)

In cahracteristic 0, M(Z) = D*(Z). In particular max, logord ,(Z) = oo if
and only if M(Z) # 1.

v

Proposition (Kollar, X-T-W)

Let Yo — Y be the normalized blowup of M(Z). Then

M = M(Z)Oy, = M(ZOy,) is an invertible monomial ideal, and so
IOy, = Io - M with max;, logord,(Zo) < oc.
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dim B = 0: sketch of argument

o In cahracteristic 0, if logord,(Z) = a < oo, then D=2"!T contains an
element x with derivative 1.
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dim B = 0: sketch of argument

o In cahracteristic 0, if logord,(Z) = a < oo, then D=2"!T contains an
element x with derivative 1.

e Carefully applying induction on dimension to an ideal on {x = 0}
gives order reduction:

Proposition (X-T-W)
Let T be an ideal on a logarithmically smooth Y with

max logord .(Z) = a.
2x log o(Z)

There is a functorial logarithmic morphism Y1 — Y, with Y1
logarithmically smooth, such that ZOy: = MZ; with M an invertible
monomial ideal and

s logord,,(Z1) < a.
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Arbitrary B

Main result (R-T-W)

Let Y — B a logarithmically smooth morphism of logarithmically smooth
schemes, Z C Oy an ideal. There is a log morphism B’ — B and
functorial log morphism Y’ — Y, with Y/ — B’ logarithmically smooth,
and ZOy: an invertible monomial ideal.

@ This is done by relative order reduction, using relative logarithmic
derivatives.
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Arbitrary B

Main result (R-T-W)

Let Y — B a logarithmically smooth morphism of logarithmically smooth
schemes, Z C Oy an ideal. There is a log morphism B’ — B and
functorial log morphism Y’ — Y, with Y’ — B’ logarithmically smooth,
and ZOy: an invertible monomial ideal.

@ This is done by relative order reduction, using relative logarithmic
derivatives.

Definition
Write DéaB for the sheaf of relative logarithmic differential operators of

order < a. The relative logarithmic order of an ideal Z is the minimum a

such that DéjBI = (1).
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The new step

e relordy(Z) = oo if and only if M := DY/gZ is a nonunit monomial
ideal along the fibers.

e Equivalently M =Dy g M is not the unit ideal.
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The new step

e relordy(Z) = oo if and only if M := DY/gZ is a nonunit monomial
ideal along the fibers.

e Equivalently M =Dy g M is not the unit ideal.
N-T-W

Let Y — B a logarithmically smooth morphism of logarithmically smooth
schemes, M C Oy an ideal with Dy ;g M = M. There is a log morphism
B’ — B with saturated pullback Y’ — B’, and MOy, a monomial ideal.
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