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On machines

Machines are great,

if they have a purpose
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Resolution of singularities

Definition

A resolution of singularities X ′ → X is a proper birational map inducing an
isomorphism over the smooth locus of X .

Theorem (Hironaka 1964)

A variety X over a field of characteristic 0 admits a resolution of
singularities X ′ → X, so that the exceptional locus E ⊂ X ′ is a simple
normal crossings divisor.

Always characteristic 0 . . .
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Resolution of singularities

A variety X over a field of characteristic 0 admits a resolution of
singularities X ′ → X , so that the exceptional locus E ⊂ X ′ is a simple
normal crossings divisor.

In particular a smooth quasiprojective variety X 0 has a smooth
projective compactification X with D = X r X 0 a SNCD.

The pair (X ,D) is logarithmically smooth, so log geometry should fit
naturally.

Actually in the standard proofs the divisor is a bit of a headache.

No stacks?!
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Resolution does hold for stacks

Theorem (Temkin)

An excellent algebraic stack X over a field of characteristic 0 admits a
resolution of singularities X ′ → X.

This is a consequence of resolution for varieties and schemes,
functorial for smooth (actually regular) morphisms.

W lodarczyk showed that if one seriously looks for a resolution functor,
one is led to a resolution.

Still I want to show that stacks are part of the solution.
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Log smooth schemes and log smooth morphisms

A variety X with divisor D is toroidal or log smooth if étale locally it
looks like a toric variety Xσ with its toric divisor Xσ r T .

Étale locally it is defined by equations between monomials.

One records the open U = X r D rather than the divisor.

(To be honest, the log structure M ↪→ OX associated to this open.)

A morphism X → Y is toroidal or log smooth if étale locally it looks
like a toric morphism.

The inverse image of a monomial is a monomial.

Abramovich (Brown) Resolving singularities in Vistoli’s workshop June 4, 2018 6 / 22



Log smooth schemes and log smooth morphisms

A variety X with divisor D is toroidal or log smooth if étale locally it
looks like a toric variety Xσ with its toric divisor Xσ r T .
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Resolution of families

Let’s try to simplify singularities of a family X → B.

Question

When are the singularities of a morphism simple?

If dimB = 1 the simplest one can have is t =
∏

xaii ,

and if one also allows base change, can have tk =
∏

xi , or even
t =

∏
xi .

Either way, it is a log smooth morphism of log smooth schemes.

After base change, it is an integral and saturated morphism: flat with
reduced fibers.

Abramovich (Brown) Resolving singularities in Vistoli’s workshop June 4, 2018 7 / 22



Resolution of families

Let’s try to simplify singularities of a family X → B.

Question

When are the singularities of a morphism simple?

If dimB = 1 the simplest one can have is t =
∏

xaii ,

and if one also allows base change, can have tk =
∏

xi , or even
t =

∏
xi .

Either way, it is a log smooth morphism of log smooth schemes.

After base change, it is an integral and saturated morphism: flat with
reduced fibers.

Abramovich (Brown) Resolving singularities in Vistoli’s workshop June 4, 2018 7 / 22



Resolution of families

Let’s try to simplify singularities of a family X → B.

Question

When are the singularities of a morphism simple?

If dimB = 1 the simplest one can have is t =
∏

xaii ,

and if one also allows base change, can have tk =
∏

xi , or even
t =

∏
xi .

Either way, it is a log smooth morphism of log smooth schemes.

After base change, it is an integral and saturated morphism: flat with
reduced fibers.

Abramovich (Brown) Resolving singularities in Vistoli’s workshop June 4, 2018 7 / 22



Resolution of families: higher dimensional base

Question

When are the singularities of a morphism simple?

If dimB > 1 Karu [1999] showed that t =
∏

xaii cannot be achieved.

The best one can hope for, after base change, is a semistable
morphism:

Definition (AK 2000)

A log smooth morphism, with B smooth, is semistable if locally

t1 = x1 · · · xl1
...

...

tm = xlm−1+1 · · · xm
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The semistable reduction problem

Conjecture

Let X → B be a dominant morphism of varieties.

(i) There is an alteration B1 → B and a modification
X1 → (X ×B B1)main such that X1 → B1 is semistable.

(ii) If the geometric generic fiber Xη̄ is smooth, such X1 → B1 can be
found with Xη̄ unchanged.

Known results:

(ii) is known for families of curves in mixed characteristics [de Jong
1997]. . .

(ii) is known for B a curve in characteristic 0 [KKMS 1973]

(i) is known for families of threefolds in characteristic 0 [Karu 2000]

One wants (ii) in order to compactify smooth families.
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Toroidalization and weak semistable reduction
Back to characteristic 0

Theorem (Toroidalization, ℵ-Karu 2000, ℵ-K-Denef 2013)

There is an modification B1 → B and a modification X1 → (X ×B B1)main

such that X1 → B1 is log smooth and flat.

Theorem (Weak semistable reduction, ℵ-Karu 2000)

There is an alteration B1 → B and a modification X1 → (X ×B B1)main

such that X1 → B1 is log smooth, flat, with reduced fibers.

The key is toroidalization.

Passing from weak semistable reduction to semistable reduction is a
purely combinatorial problem [ℵ-Karu 2000],

proven by Karu for families of threefolds, and

whose restriction to rank-1 valuation rings is proven in a preprint by
[Adiprasito-Liu-Pak-Temkin].
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Functoriality

To reach (ii), W lodarczyk says we need to work functorially.

We do this functorially for any log base change and for log-smooth
morphisms (Temkin).

Main result (ℵ-Temkin-W lodarczyk)

Let X → B be a dominant log morphism.

I There are log modifications B1 → B and X1 → (X ×B B1)main such that
X1 → B1 is log smooth and flat;

I this is compatible with log base change B ′ → B;

I this is compatible, up to base change, with log smooth X ′′ → X .

The result would be of sufficient interest even for X ′′ → X smooth.

Temkin observed that this stronger functoriality leads us to the result.

A surprise is awaiting.

Abramovich (Brown) Resolving singularities in Vistoli’s workshop June 4, 2018 11 / 22



Functoriality

To reach (ii), W lodarczyk says we need to work functorially.

We do this functorially for any log base change and for log-smooth
morphisms (Temkin).

Main result (ℵ-Temkin-W lodarczyk)

Let X → B be a dominant log morphism.

I There are log modifications B1 → B and X1 → (X ×B B1)main such that
X1 → B1 is log smooth and flat;

I this is compatible with log base change B ′ → B;

I this is compatible, up to base change, with log smooth X ′′ → X .

The result would be of sufficient interest even for X ′′ → X smooth.

Temkin observed that this stronger functoriality leads us to the result.

A surprise is awaiting.

Abramovich (Brown) Resolving singularities in Vistoli’s workshop June 4, 2018 11 / 22



Functoriality

To reach (ii), W lodarczyk says we need to work functorially.

We do this functorially for any log base change and for log-smooth
morphisms (Temkin).

Main result (ℵ-Temkin-W lodarczyk)

Let X → B be a dominant log morphism.

I There are log modifications B1 → B and X1 → (X ×B B1)main such that
X1 → B1 is log smooth and flat;

I this is compatible with log base change B ′ → B;

I this is compatible, up to base change, with log smooth X ′′ → X .

The result would be of sufficient interest even for X ′′ → X smooth.

Temkin observed that this stronger functoriality leads us to the result.

A surprise is awaiting.

Abramovich (Brown) Resolving singularities in Vistoli’s workshop June 4, 2018 11 / 22



Functoriality

To reach (ii), W lodarczyk says we need to work functorially.

We do this functorially for any log base change and for log-smooth
morphisms (Temkin).

Main result (ℵ-Temkin-W lodarczyk)

Let X → B be a dominant log morphism.

I There are log modifications B1 → B and X1 → (X ×B B1)main such that
X1 → B1 is log smooth and flat;

I this is compatible with log base change B ′ → B;

I this is compatible, up to base change, with log smooth X ′′ → X .

The result would be of sufficient interest even for X ′′ → X smooth.

Temkin observed that this stronger functoriality leads us to the result.

A surprise is awaiting.

Abramovich (Brown) Resolving singularities in Vistoli’s workshop June 4, 2018 11 / 22



dimB = 0: log resolution via principalization

To resolve singularities, one embeds X in a log smooth Y . . .

. . . which can be done locally.

Functoriality says choices do not matter.

One reduces to principalization of IX .

Theorem (. . .ℵ-T-W)

Let I be an ideal on a log smooth Y . There is a functorial logarithmic
morphism Y ′ → Y , with Y ′ logarithmically smooth, and IOY ′ an
invertible monomial ideal.

This is done by order reduction,

achieved by blowing up admissible centers.
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Example 1

Consider Y1 = SpecC[u, x ] and D = {u = 0}.
Let I = (u2, x2).

If one blows up (u, x) the ideal is principalized:
I on the u-chart SpecC[u, x ′] with x = x ′u we have IOY ′

1
= (u2),

I on the x-chart SpecC[u′, x ] with u′ = xu′ we have IOY ′ = (x2),
I which is exceptional hence monomial.

This is in fact the only functorial admissible blowing up.
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Example 2

Consider Y2 = SpecC[v , x ] and D = {v = 0}.
Let I = (v , x2).

Example 1 is the pullback of this via v = u2.

Functoriality says: we need to blow up an ideal whose pullback is
(u, x).

This means we need to blow up (v1/2, x).

What is this? What is its blowup?
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Kummer ideals

Definition

A Kummer monomial is a monomial in the Kummer-étale topology of
Y (like v1/2).

A Kummer monomial ideal is a monomial ideal in the Kummer-étale
topology of Y .

A Kummer center is the sum of a Kummer monomial ideal and the
ideal of a log smooth subscheme.

Locally (x1, . . . , xk , u
1/d
1 , . . . u

1/d
` ).

Apologies: we did not use the infinite root stack.
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Blowing up Kummer centers

Proposition

Let J be a Kummer center on a logarithmically smooth Y . There is a
universal proper birational Y ′ → Y such that Y ′ is logarithmically smooth
and JOY ′ is an invertible ideal.

Example 0

Y = SpecC[v ], with toroidal structure associated to D = {v = 0}, and
J = (v1/2).

There is no log scheme Y ′ satisfying the proposition.

There is a stack Y ′ = Y (
√
D), the Cadman–Vistoli root stack,

satisfying the proposition!
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Example 2 concluded

Consider Y2 = SpecC[v , x ] and D = {v = 0}.
Let I = (v , x2) and J = (v1/2, x).

associated blowing up Y ′ → Y2 with charts:
I Y ′

x := SpecC[x , v , v ′]/(v ′x2 = v), where v ′ = v/x2 (nonsingular
scheme).

F Exceptional x = 0, now monomial.
F I = (x2, v) transformed into (x2), invertible monomial ideal.
F Kummer ideal (x , v 1/2) transformed into monomial ideal (x).

I The v1/2-chart:
F stack quotient X ′

v1/2 :=
[
SpecC[w , y ]

/
µ2

]
,

F where y = x/w and µ2 = {±1} acts via (w , y) 7→ (−w ,−y).
F Exceptional w = 0 (monomial).
F (x2, v) transformed into invertible monomial ideal (v) = (w 2).
F (x , v 1/2) transformed into invertible monomial ideal (w).
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dimB = 0: restatement

Theorem (ℵ-T-W)

Let I be an ideal on a logarithmically smooth Y . There is a functorial
logarithmic morphism Y ′ → Y , with Y ′ a logarithmically smooth stack,
and IOY ′ an invertible monomial ideal.

Working in Vistoli’s workshop prepared me for this.

This is done by order reduction, using logarithmic derivatives.

Definition

Write D≤a for the sheaf of logarithmic differential operators of order ≤ a.
The logarithmic order of an ideal I is the minimum a such that
D≤aI = (1).
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The monomial part of an ideal

Definition

M(I) is the minimal monomial ideal containing I.

Proposition (Kollár, ℵ-T-W)

In cahracteristic 0, M(I) = D∞(I). In particular maxp logordp(I) =∞ if
and only if M(I) 6= 1.

Proposition (Kollár, ℵ-T-W)

Let Y0 → Y be the normalized blowup of M(I). Then
M :=M(I)OY0 =M(IOY0) is an invertible monomial ideal, and so
IOY0 = I0 · M with maxp logordp(I0) <∞.
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dimB = 0: sketch of argument

In cahracteristic 0, if logordp(I) = a <∞, then D≤a−1I contains an
element x with derivative 1.

Carefully applying induction on dimension to an ideal on {x = 0}
gives order reduction:

Proposition (ℵ-T-W)

Let I be an ideal on a logarithmically smooth Y with

max
p

logordp(I) = a.

There is a functorial logarithmic morphism Y1 → Y , with Y1

logarithmically smooth, such that IOY ′ =MI1 with M an invertible
monomial ideal and

max
p

logordp(I1) < a.
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Arbitrary B

Main result (ℵ-T-W)

Let Y → B a logarithmically smooth morphism of logarithmically smooth
schemes, I ⊂ OY an ideal. There is a log morphism B ′ → B and
functorial log morphism Y ′ → Y , with Y ′ → B ′ logarithmically smooth,
and IOY ′ an invertible monomial ideal.

This is done by relative order reduction, using relative logarithmic
derivatives.

Definition

Write D≤aY /B for the sheaf of relative logarithmic differential operators of
order ≤ a. The relative logarithmic order of an ideal I is the minimum a
such that D≤aY /BI = (1).
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The new step

relordp(I) =∞ if and only if M := D∞Y /BI is a nonunit monomial
ideal along the fibers.

Equivalently M = DY /BM is not the unit ideal.

ℵ-T-W

Let Y → B a logarithmically smooth morphism of logarithmically smooth
schemes, M⊂ OY an ideal with DY /BM =M. There is a log morphism
B ′ → B with saturated pullback Y ′ → B ′, and MOY ′ a monomial ideal.
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