Singularities and the art of logarithmic stack maintenance

Or: resolving singularities in Vistoli's workshop

Dan Abramovich Joint work with Michael Temkin and Jarosław Włodarczyk

Brown University

University of Pisa June 4, 2018

On machines

Machines are great,

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

On machines

Machines are great, if they have a purpose

▲ 同 ▶ → 三 ▶

On machines

Machines are great, if they have a purpose

-

Definition

A resolution of singularities $X' \to X$ is a proper birational map inducing an isomorphism over the smooth locus of X.

Theorem (Hironaka 1964)

A variety X over a field of characteristic 0 admits a resolution of singularities $X' \to X$, so that the exceptional locus $E \subset X'$ is a simple normal crossings divisor.

Definition

A resolution of singularities $X' \to X$ is a proper birational map inducing an isomorphism over the smooth locus of X.

Theorem (Hironaka 1964)

A variety X over a field of characteristic 0 admits a resolution of singularities $X' \to X$, so that the exceptional locus $E \subset X'$ is a simple normal crossings divisor.

Always characteristic 0 . . .

A variety X over a field of characteristic 0 admits a resolution of singularities $X' \to X$, so that the exceptional locus $E \subset X'$ is a simple normal crossings divisor.

• In particular a smooth quasiprojective variety X^0 has a smooth projective compactification X with $D = X \setminus X^0$ a SNCD.

A variety X over a field of characteristic 0 admits a resolution of singularities $X' \to X$, so that the exceptional locus $E \subset X'$ is a simple normal crossings divisor.

- In particular a smooth quasiprojective variety X^0 has a smooth projective compactification X with $D = X \setminus X^0$ a SNCD.
- The pair (X, D) is logarithmically smooth, so log geometry should fit naturally.
- Actually in the standard proofs the divisor is a bit of a headache.

A variety X over a field of characteristic 0 admits a resolution of singularities $X' \to X$, so that the exceptional locus $E \subset X'$ is a simple normal crossings divisor.

- In particular a smooth quasiprojective variety X^0 has a smooth projective compactification X with $D = X \setminus X^0$ a SNCD.
- The pair (X, D) is logarithmically smooth, so log geometry should fit naturally.
- Actually in the standard proofs the divisor is a bit of a headache.

• No stacks?!

Resolution does hold for stacks

Theorem (Temkin)

An excellent algebraic stack X over a field of characteristic 0 admits a resolution of singularities $X' \rightarrow X$.

• This is a consequence of resolution for varieties and schemes, functorial for smooth (actually regular) morphisms.

Resolution does hold for stacks

Theorem (Temkin)

An excellent algebraic stack X over a field of characteristic 0 admits a resolution of singularities $X' \rightarrow X$.

- This is a consequence of resolution for varieties and schemes, functorial for smooth (actually regular) morphisms.
- Włodarczyk showed that if one seriously looks for a resolution functor, one is led to a resolution.
- Still I want to show that stacks are part of the solution.

Log smooth schemes and log smooth morphisms

Log smooth schemes and log smooth morphisms

- A variety X with divisor D is toroidal or log smooth if étale locally it looks like a toric variety X_σ with its toric divisor X_σ \ T.
- Étale locally it is defined by equations between monomials.
- One records the open $U = X \setminus D$ rather than the divisor.
- (To be honest, the log structure $\mathcal{M} \hookrightarrow \mathcal{O}_X$ associated to this open.)
- A morphism X → Y is toroidal or log smooth if étale locally it looks like a toric morphism.
- The inverse image of a monomial is a monomial.

Resolution of families

• Let's try to simplify singularities of a family $X \rightarrow B$.

Question

When are the singularities of a morphism simple?

Resolution of families

• Let's try to simplify singularities of a family $X \rightarrow B$.

Question

When are the singularities of a morphism simple?

- If dim B = 1 the simplest one can have is $t = \prod x_i^{a_i}$,
- and if one also allows base change, can have $t^k = \prod x_i$, or even $t = \prod x_i$.

Resolution of families

• Let's try to simplify singularities of a family $X \rightarrow B$.

Question

When are the singularities of a morphism simple?

- If dim B = 1 the simplest one can have is $t = \prod x_i^{a_i}$,
- and if one also allows base change, can have $t^k = \prod x_i$, or even $t = \prod x_i$.
- Either way, it is a log smooth morphism of log smooth schemes.
- After base change, it is an integral and saturated morphism: flat with reduced fibers.

Resolution of families: higher dimensional base

Question

When are the singularities of a morphism simple?

• If dim B > 1 Karu [1999] showed that $t = \prod x_i^{a_i}$ cannot be achieved.

Resolution of families: higher dimensional base

Question

When are the singularities of a morphism simple?

- If dim B > 1 Karu [1999] showed that $t = \prod x_i^{a_i}$ cannot be achieved.
- The best one can hope for, after base change, is a semistable morphism:

Definition (AK 2000)

A log smooth morphism, with B smooth, is semistable if locally

$$t_1 = x_1 \cdots x_{l_1}$$

$$\vdots \quad \vdots$$

$$t_m = x_{l_{m-1}+1} \cdots x_m$$

The semistable reduction problem

Conjecture

Let $X \to B$ be a dominant morphism of varieties.

- (i) There is an alteration $B_1 \to B$ and a modification $X_1 \to (X \times_B B_1)_{\text{main}}$ such that $X_1 \to B_1$ is semistable.
- (ii) If the geometric generic fiber $X_{\bar{\eta}}$ is smooth, such $X_1 \to B_1$ can be found with $X_{\bar{\eta}}$ unchanged.

The semistable reduction problem

Conjecture

Let $X \to B$ be a dominant morphism of varieties.

- (i) There is an alteration $B_1 \to B$ and a modification $X_1 \to (X \times_B B_1)_{\text{main}}$ such that $X_1 \to B_1$ is semistable.
- (ii) If the geometric generic fiber $X_{\bar{\eta}}$ is smooth, such $X_1 \to B_1$ can be found with $X_{\bar{\eta}}$ unchanged.

Known results:

- (ii) is known for families of curves in mixed characteristics [de Jong 1997]...
- (ii) is known for B a curve in characteristic 0 [KKMS 1973]

The semistable reduction problem

Conjecture

Let $X \to B$ be a dominant morphism of varieties.

- (i) There is an alteration $B_1 \to B$ and a modification $X_1 \to (X \times_B B_1)_{main}$ such that $X_1 \to B_1$ is semistable.
- (ii) If the geometric generic fiber $X_{\bar{\eta}}$ is smooth, such $X_1 \to B_1$ can be found with $X_{\bar{\eta}}$ unchanged.

Known results:

- (ii) is known for families of curves in mixed characteristics [de Jong 1997]...
- (ii) is known for B a curve in characteristic 0 [KKMS 1973]
- (i) is known for families of threefolds in characteristic 0 [Karu 2000]
- One wants (ii) in order to compactify smooth families.

< 回 ト < 三 ト < 三 ト

Toroidalization and weak semistable reduction Back to characteristic 0

Theorem (Toroidalization, ℵ-Karu 2000, ℵ-K-Denef 2013)

There is an modification $B_1 \rightarrow B$ and a modification $X_1 \rightarrow (X \times_B B_1)_{main}$ such that $X_1 \rightarrow B_1$ is log smooth and flat.

Theorem (Weak semistable reduction, ℵ-Karu 2000)

There is an alteration $B_1 \rightarrow B$ and a modification $X_1 \rightarrow (X \times_B B_1)_{main}$ such that $X_1 \rightarrow B_1$ is log smooth, flat, with reduced fibers.

Toroidalization and weak semistable reduction Back to characteristic 0

Theorem (Toroidalization, ℵ-Karu 2000, ℵ-K-Denef 2013)

There is an modification $B_1 \rightarrow B$ and a modification $X_1 \rightarrow (X \times_B B_1)_{main}$ such that $X_1 \rightarrow B_1$ is log smooth and flat.

Theorem (Weak semistable reduction, ℵ-Karu 2000)

There is an alteration $B_1 \rightarrow B$ and a modification $X_1 \rightarrow (X \times_B B_1)_{main}$ such that $X_1 \rightarrow B_1$ is log smooth, flat, with reduced fibers.

- The key is toroidalization.
- Passing from weak semistable reduction to semistable reduction is a purely combinatorial problem [ℵ-Karu 2000],
- proven by Karu for families of threefolds, and
- whose restriction to rank-1 valuation rings is proven in a preprint by [Adiprasito-Liu-Pak-Temkin].

- To reach (ii), Włodarczyk says we need to work functorially.
- We do this functorially for any log base change and for log-smooth morphisms (Temkin).

- To reach (ii), Włodarczyk says we need to work functorially.
- We do this functorially for any log base change and for log-smooth morphisms (Temkin).

Main result (ℵ-Temkin-Włodarczyk)

Let $X \to B$ be a dominant log morphism.

- There are log modifications $B_1 \to B$ and $X_1 \to (X \times_B B_1)_{main}$ such that $X_1 \to B_1$ is log smooth and flat;
- this is compatible with log base change $B' \rightarrow B$;
- this is compatible, up to base change, with log smooth $X'' \to X$.

- To reach (ii), Włodarczyk says we need to work functorially.
- We do this functorially for any log base change and for log-smooth morphisms (Temkin).

Main result (ℵ-Temkin-Włodarczyk)

Let $X \to B$ be a dominant log morphism.

- There are log modifications $B_1 \to B$ and $X_1 \to (X \times_B B_1)_{main}$ such that $X_1 \to B_1$ is log smooth and flat;
- this is compatible with log base change $B' \rightarrow B$;
- this is compatible, up to base change, with log smooth $X'' \to X$.
- The result would be of sufficient interest even for $X'' \to X$ smooth.
- Temkin observed that this stronger functoriality leads us to the result.

・ 同 ト ・ ヨ ト ・ ヨ ト

- To reach (ii), Włodarczyk says we need to work functorially.
- We do this functorially for any log base change and for log-smooth morphisms (Temkin).

Main result (ℵ-Temkin-Włodarczyk)

Let $X \to B$ be a dominant log morphism.

- There are log modifications $B_1 \to B$ and $X_1 \to (X \times_B B_1)_{main}$ such that $X_1 \to B_1$ is log smooth and flat;
- this is compatible with log base change $B' \rightarrow B$;
- this is compatible, up to base change, with log smooth $X'' \to X$.
- The result would be of sufficient interest even for $X'' \to X$ smooth.
- Temkin observed that this stronger functoriality leads us to the result.
- A surprise is awaiting.

- 4 同 6 4 日 6 4 日 6

• To resolve singularities, one embeds X in a log smooth Y...

- To resolve singularities, one embeds X in a log smooth Y...
- ... which can be done locally.
- Functoriality says choices do not matter.

- To resolve singularities, one embeds X in a log smooth Y...
- ... which can be done locally.
- Functoriality says choices do not matter.
- One reduces to principalization of \mathcal{I}_X .

Theorem (... ℵ-T-W)

Let \mathcal{I} be an ideal on a log smooth Y. There is a functorial logarithmic morphism $Y' \to Y$, with Y' logarithmically smooth, and $\mathcal{IO}_{Y'}$ an invertible monomial ideal.

- To resolve singularities, one embeds X in a log smooth Y...
- ... which can be done locally.
- Functoriality says choices do not matter.
- One reduces to principalization of \mathcal{I}_X .

Theorem (... ℵ-T-W)

Let \mathcal{I} be an ideal on a log smooth Y. There is a functorial logarithmic morphism $Y' \to Y$, with Y' logarithmically smooth, and $\mathcal{IO}_{Y'}$ an invertible monomial ideal.

- This is done by order reduction,
- achieved by blowing up admissible centers.

- Consider $Y_1 = \operatorname{Spec} \mathbb{C}[u, x]$ and $D = \{u = 0\}$.
- Let $I = (u^2, x^2)$.
- If one blows up (u, x) the ideal is principalized:
 - ▶ on the *u*-chart Spec $\mathbb{C}[u, x']$ with x = x'u we have $\mathcal{IO}_{Y'_1} = (u^2)$,
 - on the x-chart Spec $\mathbb{C}[u', x]$ with u' = xu' we have $\mathcal{IO}_{Y'} = (x^2)$,
 - which is exceptional hence monomial.
- This is in fact the only functorial admissible blowing up.

• Consider $Y_2 = \operatorname{Spec} \mathbb{C}[v, x]$ and $D = \{v = 0\}$. • Let $\mathcal{I} = (v, x^2)$.

- 4 ⊒ →

▲ @ > < ∃</p>

- Consider $Y_2 = \operatorname{Spec} \mathbb{C}[v, x]$ and $D = \{v = 0\}$.
- Let $\mathcal{I} = (v, x^2)$.
- Example 1 is the pullback of this via $v = u^2$.
- Functoriality says: we need to blow up an ideal whose pullback is (u, x).

- Consider $Y_2 = \operatorname{Spec} \mathbb{C}[v, x]$ and $D = \{v = 0\}$.
- Let $I = (v, x^2)$.
- Example 1 is the pullback of this via $v = u^2$.
- Functoriality says: we need to blow up an ideal whose pullback is (u, x).
- This means we need to blow up $(v^{1/2}, x)$.

- Consider $Y_2 = \operatorname{Spec} \mathbb{C}[v, x]$ and $D = \{v = 0\}$.
- Let $I = (v, x^2)$.
- Example 1 is the pullback of this via $v = u^2$.
- Functoriality says: we need to blow up an ideal whose pullback is (u, x).
- This means we need to blow up $(v^{1/2}, x)$.
- What is this? What is its blowup?

Definition

 A Kummer monomial is a monomial in the Kummer-étale topology of Y (like v^{1/2}).

Definition

- A Kummer monomial is a monomial in the Kummer-étale topology of Y (like v^{1/2}).
- A Kummer monomial ideal is a monomial ideal in the Kummer-étale topology of *Y*.

Definition

- A Kummer monomial is a monomial in the Kummer-étale topology of Y (like v^{1/2}).
- A Kummer monomial ideal is a monomial ideal in the Kummer-étale topology of *Y*.
- A Kummer center is the sum of a Kummer monomial ideal and the ideal of a log smooth subscheme.

• Locally
$$(x_1, \ldots, x_k, u_1^{1/d}, \ldots u_\ell^{1/d}).$$

Definition

- A Kummer monomial is a monomial in the Kummer-étale topology of Y (like v^{1/2}).
- A Kummer monomial ideal is a monomial ideal in the Kummer-étale topology of *Y*.
- A Kummer center is the sum of a Kummer monomial ideal and the ideal of a log smooth subscheme.
- Locally $(x_1, ..., x_k, u_1^{1/d}, ..., u_\ell^{1/d})$.

Apologies: we did not use the infinite root stack.

Proposition

Let \mathcal{J} be a Kummer center on a logarithmically smooth Y. There is a universal proper birational $Y' \to Y$ such that Y' is logarithmically smooth and $\mathcal{JO}_{Y'}$ is an invertible ideal.

Proposition

Let \mathcal{J} be a Kummer center on a logarithmically smooth Y. There is a universal proper birational $Y' \to Y$ such that Y' is logarithmically smooth and $\mathcal{JO}_{Y'}$ is an invertible ideal.

Example 0

 $Y = \operatorname{Spec} \mathbb{C}[v]$, with toroidal structure associated to $D = \{v = 0\}$, and $\mathcal{J} = (v^{1/2})$.

Proposition

Let \mathcal{J} be a Kummer center on a logarithmically smooth Y. There is a universal proper birational $Y' \to Y$ such that Y' is logarithmically smooth and $\mathcal{JO}_{Y'}$ is an invertible ideal.

Example 0

 $Y = \operatorname{Spec} \mathbb{C}[v]$, with toroidal structure associated to $D = \{v = 0\}$, and $\mathcal{J} = (v^{1/2})$.

• There is no log scheme Y' satisfying the proposition.

Proposition

Let \mathcal{J} be a Kummer center on a logarithmically smooth Y. There is a universal proper birational $Y' \to Y$ such that Y' is logarithmically smooth and $\mathcal{JO}_{Y'}$ is an invertible ideal.

Example 0

 $Y = \operatorname{Spec} \mathbb{C}[v]$, with toroidal structure associated to $D = \{v = 0\}$, and $\mathcal{J} = (v^{1/2})$.

- There is no log scheme Y' satisfying the proposition.
- There is a stack $Y' = Y(\sqrt{D})$, the Cadman–Vistoli root stack, satisfying the proposition!

通 ト イヨ ト イヨト

Example 2 concluded

- Consider $Y_2 = \operatorname{Spec} \mathbb{C}[v, x]$ and $D = \{v = 0\}$.
- Let $\mathcal{I} = (v, x^2)$ and $\mathcal{J} = (v^{1/2}, x)$.

Example 2 concluded

• Consider $Y_2 = \operatorname{Spec} \mathbb{C}[v, x]$ and $D = \{v = 0\}$.

• Let
$$\mathcal{I} = (v, x^2)$$
 and $\mathcal{J} = (v^{1/2}, x)$.

- associated blowing up $Y' \rightarrow Y_2$ with charts:
 - Y'_x := Spec ℂ[x, v, v']/(v'x² = v), where v' = v/x² (nonsingular scheme).
 - **★** Exceptional x = 0, now monomial.
 - * $\mathcal{I} = (x^2, v)$ transformed into (x^2) , invertible monomial ideal.
 - * Kummer ideal $(x, v^{1/2})$ transformed into monomial ideal (x).

Example 2 concluded

• Consider $Y_2 = \operatorname{Spec} \mathbb{C}[v, x]$ and $D = \{v = 0\}$.

• Let
$$\mathcal{I} = (v, x^2)$$
 and $\mathcal{J} = (v^{1/2}, x)$.

- associated blowing up $Y' \rightarrow Y_2$ with charts:
 - Y'_x := Spec ℂ[x, v, v']/(v'x² = v), where v' = v/x² (nonsingular scheme).
 - **★** Exceptional x = 0, now monomial.
 - * $\mathcal{I} = (x^2, v)$ transformed into (x^2) , invertible monomial ideal.
 - * Kummer ideal $(x, v^{1/2})$ transformed into monomial ideal (x).
 - ► The v^{1/2}-chart:
 - ★ stack quotient $X'_{v^{1/2}} := [\operatorname{Spec} \mathbb{C}[w, y]/\mu_2]$,
 - * where y = x/w and $\mu_2 = \{\pm 1\}$ acts via $(w, y) \mapsto (-w, -y)$.
 - ★ Exceptional w = 0 (monomial).
 - * (x^2, v) transformed into invertible monomial ideal $(v) = (w^2)$.
 - * $(x, v^{1/2})$ transformed into invertible monomial ideal (w).

医静脉 医原体 医原体 医尿道

Theorem (ℵ-T-W)

Let \mathcal{I} be an ideal on a logarithmically smooth Y. There is a functorial logarithmic morphism $Y' \to Y$, with Y' a logarithmically smooth stack, and $\mathcal{IO}_{Y'}$ an invertible monomial ideal.

Theorem (ℵ-T-W)

Let \mathcal{I} be an ideal on a logarithmically smooth Y. There is a functorial logarithmic morphism $Y' \to Y$, with Y' a logarithmically smooth stack, and $\mathcal{IO}_{Y'}$ an invertible monomial ideal.

• Working in Vistoli's workshop prepared me for this.

Theorem (ℵ-T-W)

Let \mathcal{I} be an ideal on a logarithmically smooth Y. There is a functorial logarithmic morphism $Y' \to Y$, with Y' a logarithmically smooth stack, and $\mathcal{IO}_{Y'}$ an invertible monomial ideal.

- Working in Vistoli's workshop prepared me for this.
- This is done by order reduction, using logarithmic derivatives.

Theorem (ℵ-T-W)

Let \mathcal{I} be an ideal on a logarithmically smooth Y. There is a functorial logarithmic morphism $Y' \to Y$, with Y' a logarithmically smooth stack, and $\mathcal{IO}_{Y'}$ an invertible monomial ideal.

- Working in Vistoli's workshop prepared me for this.
- This is done by order reduction, using logarithmic derivatives.

Definition

Write $\mathcal{D}^{\leq a}$ for the sheaf of logarithmic differential operators of order $\leq a$.

Theorem (ℵ-T-W)

Let \mathcal{I} be an ideal on a logarithmically smooth Y. There is a functorial logarithmic morphism $Y' \to Y$, with Y' a logarithmically smooth stack, and $\mathcal{IO}_{Y'}$ an invertible monomial ideal.

- Working in Vistoli's workshop prepared me for this.
- This is done by order reduction, using logarithmic derivatives.

Definition

Write $\mathcal{D}^{\leq a}$ for the sheaf of logarithmic differential operators of order $\leq a$. The logarithmic order of an ideal \mathcal{I} is the minimum *a* such that $\mathcal{D}^{\leq a}\mathcal{I} = (1)$. The monomial part of an ideal

Definition

 $\mathcal{M}(\mathcal{I})$ is the minimal monomial ideal containing $\mathcal{I}.$

The monomial part of an ideal

Definition

 $\mathcal{M}(\mathcal{I})$ is the minimal monomial ideal containing \mathcal{I} .

Proposition (Kollár, ℵ-T-W)

In cahracteristic 0, $\mathcal{M}(\mathcal{I}) = \mathcal{D}^{\infty}(\mathcal{I})$. In particular $\max_p \operatorname{logord}_p(\mathcal{I}) = \infty$ if and only if $\mathcal{M}(\mathcal{I}) \neq 1$.

The monomial part of an ideal

Definition

 $\mathcal{M}(\mathcal{I})$ is the minimal monomial ideal containing \mathcal{I} .

Proposition (Kollár, ℵ-T-W)

In cahracteristic 0, $\mathcal{M}(\mathcal{I}) = \mathcal{D}^{\infty}(\mathcal{I})$. In particular $\max_p \operatorname{logord}_p(\mathcal{I}) = \infty$ if and only if $\mathcal{M}(\mathcal{I}) \neq 1$.

Proposition (Kollár, ℵ-T-W)

Let $Y_0 \to Y$ be the normalized blowup of $\mathcal{M}(\mathcal{I})$. Then $\mathcal{M} := \mathcal{M}(\mathcal{I})\mathcal{O}_{Y_0} = \mathcal{M}(\mathcal{I}\mathcal{O}_{Y_0})$ is an invertible monomial ideal, and so $\mathcal{I}\mathcal{O}_{Y_0} = \mathcal{I}_0 \cdot \mathcal{M}$ with $\max_p \operatorname{logord}_p(\mathcal{I}_0) < \infty$.

▲□ ▶ ▲ 臣 ▶ ▲ 臣 ▶ □ 臣 □ の Q @

dim B = 0: sketch of argument

• In cahracteristic 0, if $\text{logord}_p(\mathcal{I}) = a < \infty$, then $\mathcal{D}^{\leq a-1}\mathcal{I}$ contains an element x with derivative 1.

dim B = 0: sketch of argument

- In cahracteristic 0, if $\text{logord}_p(\mathcal{I}) = a < \infty$, then $\mathcal{D}^{\leq a-1}\mathcal{I}$ contains an element x with derivative 1.
- Carefully applying induction on dimension to an ideal on {x = 0} gives order reduction:

Proposition (ℵ-T-W)

Let \mathcal{I} be an ideal on a logarithmically smooth Y with

 $\max_{p} \operatorname{logord}_{p}(\mathcal{I}) = a.$

There is a functorial logarithmic morphism $Y_1 \to Y$, with Y_1 logarithmically smooth, such that $\mathcal{IO}_{Y'} = \mathcal{MI}_1$ with \mathcal{M} an invertible monomial ideal and

$$\max_p \mathsf{logord}_p(\mathcal{I}_1) < a.$$

Arbitrary B

Main result (ℵ-T-W)

Let $Y \to B$ a logarithmically smooth morphism of logarithmically smooth schemes, $\mathcal{I} \subset \mathcal{O}_Y$ an ideal. There is a log morphism $B' \to B$ and functorial log morphism $Y' \to Y$, with $Y' \to B'$ logarithmically smooth, and $\mathcal{IO}_{Y'}$ an invertible monomial ideal.

• This is done by relative order reduction, using relative logarithmic derivatives.

Arbitrary B

Main result (ℵ-T-W)

Let $Y \to B$ a logarithmically smooth morphism of logarithmically smooth schemes, $\mathcal{I} \subset \mathcal{O}_Y$ an ideal. There is a log morphism $B' \to B$ and functorial log morphism $Y' \to Y$, with $Y' \to B'$ logarithmically smooth, and $\mathcal{IO}_{Y'}$ an invertible monomial ideal.

• This is done by relative order reduction, using relative logarithmic derivatives.

Definition

Write $\mathcal{D}_{Y/B}^{\leq a}$ for the sheaf of relative logarithmic differential operators of order $\leq a$. The relative logarithmic order of an ideal \mathcal{I} is the minimum a such that $\mathcal{D}_{Y/B}^{\leq a}\mathcal{I} = (1)$.

- 本間 ト 本 ヨ ト - オ ヨ ト - ヨ

The new step

- relord_p(\mathcal{I}) = ∞ if and only if $\mathcal{M} := \mathcal{D}^{\infty}_{Y/B}\mathcal{I}$ is a nonunit monomial ideal along the fibers.
- Equivalently $\mathcal{M} = \mathcal{D}_{Y/B}\mathcal{M}$ is not the unit ideal.

The new step

- relord_p(\mathcal{I}) = ∞ if and only if $\mathcal{M} := \mathcal{D}^{\infty}_{Y/B}\mathcal{I}$ is a nonunit monomial ideal along the fibers.
- Equivalently $\mathcal{M} = \mathcal{D}_{Y/B}\mathcal{M}$ is not the unit ideal.

א-T-₩

Let $Y \to B$ a logarithmically smooth morphism of logarithmically smooth schemes, $\mathcal{M} \subset \mathcal{O}_Y$ an ideal with $\mathcal{D}_{Y/B}\mathcal{M} = \mathcal{M}$. There is a log morphism $B' \to B$ with saturated pullback $Y' \to B'$, and $\mathcal{MO}_{Y'}$ a monomial ideal.