Singularities and the art of logarithmic stack maintenance
 Or:
 resolving singularities in Vistoli's workshop

Dan Abramovich
Joint work with Michael Temkin and Jarosław Włodarczyk

Brown University
University of Pisa
June 4, 2018

On machines

Machines are great,

On machines

Machines are great, if they have a purpose

On machines

Machines are great, if they have a purpose

Resolution of singularities

Definition

A resolution of singularities $X^{\prime} \rightarrow X$ is a proper birational map inducing an isomorphism over the smooth locus of X.

Theorem (Hironaka 1964)
A variety X over a field of characteristic 0 admits a resolution of singularities $X^{\prime} \rightarrow X$, so that the exceptional locus $E \subset X^{\prime}$ is a simple normal crossings divisor.

Resolution of singularities

Definition

A resolution of singularities $X^{\prime} \rightarrow X$ is a proper birational map inducing an isomorphism over the smooth locus of X.

Theorem (Hironaka 1964)
A variety X over a field of characteristic 0 admits a resolution of singularities $X^{\prime} \rightarrow X$, so that the exceptional locus $E \subset X^{\prime}$ is a simple normal crossings divisor.

Always characteristic $0 \ldots$

Resolution of singularities

A variety X over a field of characteristic 0 admits a resolution of singularities $X^{\prime} \rightarrow X$, so that the exceptional locus $E \subset X^{\prime}$ is a simple normal crossings divisor.

- In particular a smooth quasiprojective variety X^{0} has a smooth projective compactification X with $D=X \backslash X^{0}$ a SNCD.

Resolution of singularities

A variety X over a field of characteristic 0 admits a resolution of singularities $X^{\prime} \rightarrow X$, so that the exceptional locus $E \subset X^{\prime}$ is a simple normal crossings divisor.

- In particular a smooth quasiprojective variety X^{0} has a smooth projective compactification X with $D=X \backslash X^{0}$ a SNCD.
- The pair (X, D) is logarithmically smooth, so log geometry should fit naturally.
- Actually in the standard proofs the divisor is a bit of a headache.

Resolution of singularities

A variety X over a field of characteristic 0 admits a resolution of singularities $X^{\prime} \rightarrow X$, so that the exceptional locus $E \subset X^{\prime}$ is a simple normal crossings divisor.

- In particular a smooth quasiprojective variety X^{0} has a smooth projective compactification X with $D=X \backslash X^{0}$ a SNCD.
- The pair (X, D) is logarithmically smooth, so log geometry should fit naturally.
- Actually in the standard proofs the divisor is a bit of a headache.
- No stacks?!

Resolution does hold for stacks

Theorem (Temkin)
An excellent algebraic stack X over a field of characteristic 0 admits a resolution of singularities $X^{\prime} \rightarrow X$.

- This is a consequence of resolution for varieties and schemes, functorial for smooth (actually regular) morphisms.

Resolution does hold for stacks

Theorem (Temkin)

An excellent algebraic stack X over a field of characteristic 0 admits a resolution of singularities $X^{\prime} \rightarrow X$.

- This is a consequence of resolution for varieties and schemes, functorial for smooth (actually regular) morphisms.
- Włodarczyk showed that if one seriously looks for a resolution functor, one is led to a resolution.
- Still I want to show that stacks are part of the solution.

Log smooth schemes and log smooth morphisms

Log smooth schemes and log smooth morphisms

- A variety X with divisor D is toroidal or \log smooth if étale locally it looks like a toric variety X_{σ} with its toric divisor $X_{\sigma} \backslash T$.
- Étale locally it is defined by equations between monomials.
- One records the open $U=X \backslash D$ rather than the divisor.
- (To be honest, the log structure $\mathcal{M} \hookrightarrow \mathcal{O}_{X}$ associated to this open.)
- A morphism $X \rightarrow Y$ is toroidal or log smooth if étale locally it looks like a toric morphism.
- The inverse image of a monomial is a monomial.

Resolution of families

- Let's try to simplify singularities of a family $X \rightarrow B$.

Question

When are the singularities of a morphism simple?

Resolution of families

- Let's try to simplify singularities of a family $X \rightarrow B$.

Question

When are the singularities of a morphism simple?

- If $\operatorname{dim} B=1$ the simplest one can have is $t=\prod x_{i}^{a_{i}}$,
- and if one also allows base change, can have $t^{k}=\prod x_{i}$, or even $t=\prod x_{i}$.

Resolution of families

- Let's try to simplify singularities of a family $X \rightarrow B$.

Question

When are the singularities of a morphism simple?

- If $\operatorname{dim} B=1$ the simplest one can have is $t=\prod x_{i}^{a_{i}}$,
- and if one also allows base change, can have $t^{k}=\prod x_{i}$, or even $t=\prod x_{i}$.
- Either way, it is a log smooth morphism of log smooth schemes.
- After base change, it is an integral and saturated morphism: flat with reduced fibers.

Resolution of families: higher dimensional base

Question

When are the singularities of a morphism simple?

- If $\operatorname{dim} B>1$ Karu [1999] showed that $t=\prod x_{i}^{a_{i}}$ cannot be achieved.

Resolution of families: higher dimensional base

Question

When are the singularities of a morphism simple?

- If $\operatorname{dim} B>1$ Karu [1999] showed that $t=\prod x_{i}^{a_{i}}$ cannot be achieved.
- The best one can hope for, after base change, is a semistable morphism:

Definition (AK 2000)

A log smooth morphism, with B smooth, is semistable if locally

$$
\begin{aligned}
t_{1} & =x_{1} \cdots x_{l_{1}} \\
\vdots & \vdots \\
t_{m} & =x_{l_{m-1}+1} \cdots x_{m}
\end{aligned}
$$

The semistable reduction problem

Conjecture

Let $X \rightarrow B$ be a dominant morphism of varieties.
(i) There is an alteration $B_{1} \rightarrow B$ and a modification $X_{1} \rightarrow\left(X \times_{B} B_{1}\right)_{\text {main }}$ such that $X_{1} \rightarrow B_{1}$ is semistable.
(ii) If the geometric generic fiber $X_{\bar{\eta}}$ is smooth, such $X_{1} \rightarrow B_{1}$ can be found with $X_{\bar{\eta}}$ unchanged.

The semistable reduction problem

Conjecture

Let $X \rightarrow B$ be a dominant morphism of varieties.
(i) There is an alteration $B_{1} \rightarrow B$ and a modification $X_{1} \rightarrow\left(X \times_{B} B_{1}\right)_{\text {main }}$ such that $X_{1} \rightarrow B_{1}$ is semistable.
(ii) If the geometric generic fiber $X_{\bar{\eta}}$ is smooth, such $X_{1} \rightarrow B_{1}$ can be found with $X_{\bar{\eta}}$ unchanged.

Known results:

- (ii) is known for families of curves in mixed characteristics [de Jong 1997]. . .
- (ii) is known for B a curve in characteristic 0 [KKMS 1973]

The semistable reduction problem

Conjecture

Let $X \rightarrow B$ be a dominant morphism of varieties.
(i) There is an alteration $B_{1} \rightarrow B$ and a modification $X_{1} \rightarrow\left(X \times_{B} B_{1}\right)_{\text {main }}$ such that $X_{1} \rightarrow B_{1}$ is semistable.
(ii) If the geometric generic fiber $X_{\bar{\eta}}$ is smooth, such $X_{1} \rightarrow B_{1}$ can be found with $X_{\bar{\eta}}$ unchanged.

Known results:

- (ii) is known for families of curves in mixed characteristics [de Jong 1997]...
- (ii) is known for B a curve in characteristic 0 [KKMS 1973]
- (i) is known for families of threefolds in characteristic 0 [Karu 2000]
- One wants (ii) in order to compactify smooth families.

Toroidalization and weak semistable reduction

Back to characteristic 0
Theorem (Toroidalization, §-Karu 2000, §-K-Denef 2013)
There is an modification $B_{1} \rightarrow B$ and a modification $X_{1} \rightarrow\left(X \times_{B} B_{1}\right)_{\text {main }}$ such that $X_{1} \rightarrow B_{1}$ is log smooth and flat.

Theorem (Weak semistable reduction, $\aleph-K a r u ~ 2000) ~$
There is an alteration $B_{1} \rightarrow B$ and a modification $X_{1} \rightarrow\left(X \times_{B} B_{1}\right)_{\text {main }}$ such that $X_{1} \rightarrow B_{1}$ is log smooth, flat, with reduced fibers.

Toroidalization and weak semistable reduction

Back to characteristic 0
Theorem (Toroidalization, §-Karu 2000, §-K-Denef 2013)
There is an modification $B_{1} \rightarrow B$ and a modification $X_{1} \rightarrow\left(X \times_{B} B_{1}\right)_{\text {main }}$ such that $X_{1} \rightarrow B_{1}$ is log smooth and flat.

Theorem (Weak semistable reduction, ふ-Karu 2000)
There is an alteration $B_{1} \rightarrow B$ and a modification $X_{1} \rightarrow\left(X \times_{B} B_{1}\right)_{\text {main }}$ such that $X_{1} \rightarrow B_{1}$ is log smooth, flat, with reduced fibers.

- The key is toroidalization.
- Passing from weak semistable reduction to semistable reduction is a purely combinatorial problem [\aleph-Karu 2000],
- proven by Karu for families of threefolds, and
- whose restriction to rank-1 valuation rings is proven in a preprint by [Adiprasito-Liu-Pak-Temkin].

Functoriality

- To reach (ii), Włodarczyk says we need to work functorially.
- We do this functorially for any log base change and for log-smooth morphisms (Temkin).

Functoriality

- To reach (ii), Włodarczyk says we need to work functorially.
- We do this functorially for any log base change and for log-smooth morphisms (Temkin).

Main result (\aleph-Temkin-Włodarczyk)
Let $X \rightarrow B$ be a dominant log morphism.
There are log modifications $B_{1} \rightarrow B$ and $X_{1} \rightarrow\left(X \times_{B} B_{1}\right)_{\text {main }}$ such that $X_{1} \rightarrow B_{1}$ is log smooth and flat;
this is compatible with log base change $B^{\prime} \rightarrow B$;
this is compatible, up to base change, with \log smooth $X^{\prime \prime} \rightarrow X$.

Functoriality

- To reach (ii), Włodarczyk says we need to work functorially.
- We do this functorially for any log base change and for log-smooth morphisms (Temkin).

Main result (\aleph-Temkin-Włodarczyk)

Let $X \rightarrow B$ be a dominant log morphism.
There are log modifications $B_{1} \rightarrow B$ and $X_{1} \rightarrow\left(X \times_{B} B_{1}\right)_{\text {main }}$ such that $X_{1} \rightarrow B_{1}$ is log smooth and flat;
this is compatible with log base change $B^{\prime} \rightarrow B$; this is compatible, up to base change, with \log smooth $X^{\prime \prime} \rightarrow X$.

- The result would be of sufficient interest even for $X^{\prime \prime} \rightarrow X$ smooth.
- Temkin observed that this stronger functoriality leads us to the result.

Functoriality

- To reach (ii), Włodarczyk says we need to work functorially.
- We do this functorially for any log base change and for log-smooth morphisms (Temkin).

Main result (\aleph-Temkin-Włodarczyk)

Let $X \rightarrow B$ be a dominant log morphism.
There are log modifications $B_{1} \rightarrow B$ and $X_{1} \rightarrow\left(X \times_{B} B_{1}\right)_{\text {main }}$ such that $X_{1} \rightarrow B_{1}$ is log smooth and flat;
this is compatible with log base change $B^{\prime} \rightarrow B$;
this is compatible, up to base change, with \log smooth $X^{\prime \prime} \rightarrow X$.

- The result would be of sufficient interest even for $X^{\prime \prime} \rightarrow X$ smooth.
- Temkin observed that this stronger functoriality leads us to the result.
- A surprise is awaiting.

$\operatorname{dim} B=0: \log$ resolution via principalization

- To resolve singularities, one embeds X in a \log smooth $Y \ldots$

$\operatorname{dim} B=0: \log$ resolution via principalization

- To resolve singularities, one embeds X in a \log smooth $Y \ldots$
- ... which can be done locally.
- Functoriality says choices do not matter.

$\operatorname{dim} B=0: \log$ resolution via principalization

- To resolve singularities, one embeds X in a \log smooth $Y \ldots$
- ... which can be done locally.
- Functoriality says choices do not matter.
- One reduces to principalization of \mathcal{I}_{X}.

Theorem (... §-T-W)

Let \mathcal{I} be an ideal on a log smooth Y. There is a functorial logarithmic morphism $Y^{\prime} \rightarrow Y$, with Y^{\prime} logarithmically smooth, and $\mathcal{I} \mathcal{O}_{Y^{\prime}}$ an invertible monomial ideal.

$\operatorname{dim} B=0: \log$ resolution via principalization

- To resolve singularities, one embeds X in a \log smooth $Y \ldots$
- ... which can be done locally.
- Functoriality says choices do not matter.
- One reduces to principalization of \mathcal{I}_{X}.

Theorem (... §-T-W)
Let \mathcal{I} be an ideal on a log smooth Y. There is a functorial logarithmic morphism $Y^{\prime} \rightarrow Y$, with Y^{\prime} logarithmically smooth, and $\mathcal{I} \mathcal{O}_{Y^{\prime}}$ an invertible monomial ideal.

- This is done by order reduction,
- achieved by blowing up admissible centers.

Example 1

- Consider $Y_{1}=\operatorname{Spec} \mathbb{C}[u, x]$ and $D=\{u=0\}$.
- Let $\mathcal{I}=\left(u^{2}, x^{2}\right)$.
- If one blows up (u, x) the ideal is principalized:
- on the u-chart $\operatorname{Spec} \mathbb{C}\left[u, x^{\prime}\right]$ with $x=x^{\prime} u$ we have $\mathcal{I} \mathcal{O}_{Y_{1}^{\prime}}=\left(u^{2}\right)$,
- on the x-chart $\operatorname{Spec} \mathbb{C}\left[u^{\prime}, x\right]$ with $u^{\prime}=x u^{\prime}$ we have $\mathcal{I} \mathcal{O}_{Y^{\prime}}=\left(x^{2}\right)$,
- which is exceptional hence monomial.
- This is in fact the only functorial admissible blowing up.

Example 2

- Consider $Y_{2}=\operatorname{Spec} \mathbb{C}[v, x]$ and $D=\{v=0\}$. - Let $\mathcal{I}=\left(v, x^{2}\right)$.

Example 2

- Consider $Y_{2}=\operatorname{Spec} \mathbb{C}[v, x]$ and $D=\{v=0\}$.
- Let $\mathcal{I}=\left(v, x^{2}\right)$.
- Example 1 is the pullback of this via $v=u^{2}$.
- Functoriality says: we need to blow up an ideal whose pullback is (u, x).

Example 2

- Consider $Y_{2}=\operatorname{Spec} \mathbb{C}[v, x]$ and $D=\{v=0\}$.
- Let $\mathcal{I}=\left(v, x^{2}\right)$.
- Example 1 is the pullback of this via $v=u^{2}$.
- Functoriality says: we need to blow up an ideal whose pullback is (u, x).
- This means we need to blow up $\left(v^{1 / 2}, x\right)$.

Example 2

- Consider $Y_{2}=\operatorname{Spec} \mathbb{C}[v, x]$ and $D=\{v=0\}$.
- Let $\mathcal{I}=\left(v, x^{2}\right)$.
- Example 1 is the pullback of this via $v=u^{2}$.
- Functoriality says: we need to blow up an ideal whose pullback is (u, x).
- This means we need to blow up $\left(v^{1 / 2}, x\right)$.
- What is this? What is its blowup?

Kummer ideals

Definition

- A Kummer monomial is a monomial in the Kummer-étale topology of $Y\left(\right.$ like $\left.v^{1 / 2}\right)$.

Kummer ideals

Definition

- A Kummer monomial is a monomial in the Kummer-étale topology of $Y\left(\right.$ like $\left.v^{1 / 2}\right)$.
- A Kummer monomial ideal is a monomial ideal in the Kummer-étale topology of Y.

Kummer ideals

Definition

- A Kummer monomial is a monomial in the Kummer-étale topology of Y (like $v^{1 / 2}$).
- A Kummer monomial ideal is a monomial ideal in the Kummer-étale topology of Y.
- A Kummer center is the sum of a Kummer monomial ideal and the ideal of a log smooth subscheme.
- Locally $\left(x_{1}, \ldots, x_{k}, u_{1}^{1 / d}, \ldots u_{\ell}^{1 / d}\right)$.

Kummer ideals

Definition

- A Kummer monomial is a monomial in the Kummer-étale topology of Y (like $v^{1 / 2}$).
- A Kummer monomial ideal is a monomial ideal in the Kummer-étale topology of Y.
- A Kummer center is the sum of a Kummer monomial ideal and the ideal of a log smooth subscheme.
- Locally $\left(x_{1}, \ldots, x_{k}, u_{1}^{1 / d}, \ldots u_{\ell}^{1 / d}\right)$.

Apologies: we did not use the infinite root stack.

Blowing up Kummer centers

Proposition

Let \mathcal{J} be a Kummer center on a logarithmically smooth Y. There is a universal proper birational $Y^{\prime} \rightarrow Y$ such that Y^{\prime} is logarithmically smooth and $\mathcal{J O}_{Y^{\prime}}$ is an invertible ideal.

Blowing up Kummer centers

Proposition

Let \mathcal{J} be a Kummer center on a logarithmically smooth Y. There is a universal proper birational $Y^{\prime} \rightarrow Y$ such that Y^{\prime} is logarithmically smooth and $\mathcal{J O}_{Y^{\prime}}$ is an invertible ideal.

Example 0

$Y=\operatorname{Spec} \mathbb{C}[v]$, with toroidal structure associated to $D=\{v=0\}$, and $\mathcal{J}=\left(v^{1 / 2}\right)$.

Blowing up Kummer centers

Proposition

Let \mathcal{J} be a Kummer center on a logarithmically smooth Y. There is a universal proper birational $Y^{\prime} \rightarrow Y$ such that Y^{\prime} is logarithmically smooth and $\mathcal{J O}_{Y^{\prime}}$ is an invertible ideal.

Example 0

$Y=$ Spec $\mathbb{C}[v]$, with toroidal structure associated to $D=\{v=0\}$, and $\mathcal{J}=\left(v^{1 / 2}\right)$.

- There is no \log scheme Y^{\prime} satisfying the proposition.

Blowing up Kummer centers

Proposition

Let \mathcal{J} be a Kummer center on a logarithmically smooth Y. There is a universal proper birational $Y^{\prime} \rightarrow Y$ such that Y^{\prime} is logarithmically smooth and $\mathcal{J O}_{Y^{\prime}}$ is an invertible ideal.

Example 0

$Y=\operatorname{Spec} \mathbb{C}[v]$, with toroidal structure associated to $D=\{v=0\}$, and $\mathcal{J}=\left(v^{1 / 2}\right)$.

- There is no \log scheme Y^{\prime} satisfying the proposition.
- There is a stack $Y^{\prime}=Y(\sqrt{D})$, the Cadman-Vistoli root stack, satisfying the proposition!

Example 2 concluded

- Consider $Y_{2}=\operatorname{Spec} \mathbb{C}[v, x]$ and $D=\{v=0\}$.
- Let $\mathcal{I}=\left(v, x^{2}\right)$ and $\mathcal{J}=\left(v^{1 / 2}, x\right)$.

Example 2 concluded

- Consider $Y_{2}=\operatorname{Spec} \mathbb{C}[v, x]$ and $D=\{v=0\}$.
- Let $\mathcal{I}=\left(v, x^{2}\right)$ and $\mathcal{J}=\left(v^{1 / 2}, x\right)$.
- associated blowing up $Y^{\prime} \rightarrow Y_{2}$ with charts:
- $Y_{x}^{\prime}:=\operatorname{Spec} \mathbb{C}\left[x, v, v^{\prime}\right] /\left(v^{\prime} x^{2}=v\right)$, where $v^{\prime}=v / x^{2}$ (nonsingular scheme).
\star Exceptional $x=0$, now monomial.
$\star \mathcal{I}=\left(x^{2}, v\right)$ transformed into $\left(x^{2}\right)$, invertible monomial ideal.
\star Kummer ideal $\left(x, v^{1 / 2}\right)$ transformed into monomial ideal (x).

Example 2 concluded

- Consider $Y_{2}=\operatorname{Spec} \mathbb{C}[v, x]$ and $D=\{v=0\}$.
- Let $\mathcal{I}=\left(v, x^{2}\right)$ and $\mathcal{J}=\left(v^{1 / 2}, x\right)$.
- associated blowing up $Y^{\prime} \rightarrow Y_{2}$ with charts:
- $Y_{x}^{\prime}:=\operatorname{Spec} \mathbb{C}\left[x, v, v^{\prime}\right] /\left(v^{\prime} x^{2}=v\right)$, where $v^{\prime}=v / x^{2}$ (nonsingular scheme).
\star Exceptional $x=0$, now monomial.
$\star \mathcal{I}=\left(x^{2}, v\right)$ transformed into $\left(x^{2}\right)$, invertible monomial ideal.
\star Kummer ideal $\left(x, v^{1 / 2}\right)$ transformed into monomial ideal (x).
- The $v^{1 / 2}$-chart:
\star stack quotient $X_{v^{1 / 2}}^{\prime}:=\left[\operatorname{Spec} \mathbb{C}[w, y] / \mu_{2}\right]$,
\star where $y=x / w$ and $\mu_{2}=\{ \pm 1\}$ acts via $(w, y) \mapsto(-w,-y)$.
\star Exceptional $w=0$ (monomial).
$\star \quad\left(x^{2}, v\right)$ transformed into invertible monomial ideal $(v)=\left(w^{2}\right)$.
$\star\left(x, v^{1 / 2}\right)$ transformed into invertible monomial ideal (w).

$\operatorname{dim} B=0:$ restatement

Theorem (- -T-W)
Let \mathcal{I} be an ideal on a logarithmically smooth Y. There is a functorial logarithmic morphism $Y^{\prime} \rightarrow Y$, with Y^{\prime} a logarithmically smooth stack, and $\mathcal{I} \mathcal{O}_{Y^{\prime}}$ an invertible monomial ideal.

$\operatorname{dim} B=0:$ restatement

Theorem (※-T-W)

Let \mathcal{I} be an ideal on a logarithmically smooth Y. There is a functorial logarithmic morphism $Y^{\prime} \rightarrow Y$, with Y^{\prime} a logarithmically smooth stack, and $\mathcal{I} \mathcal{O}_{Y^{\prime}}$ an invertible monomial ideal.

- Working in Vistoli's workshop prepared me for this.

$\operatorname{dim} B=0:$ restatement

Theorem (\aleph-T-W)

Let \mathcal{I} be an ideal on a logarithmically smooth Y. There is a functorial logarithmic morphism $Y^{\prime} \rightarrow Y$, with Y^{\prime} a logarithmically smooth stack, and $\mathcal{I} \mathcal{O}_{Y^{\prime}}$ an invertible monomial ideal.

- Working in Vistoli's workshop prepared me for this.
- This is done by order reduction, using logarithmic derivatives.

$\operatorname{dim} B=0:$ restatement

Theorem (\aleph-T-W)

Let \mathcal{I} be an ideal on a logarithmically smooth Y. There is a functorial logarithmic morphism $Y^{\prime} \rightarrow Y$, with Y^{\prime} a logarithmically smooth stack, and $\mathcal{I} \mathcal{O}_{Y^{\prime}}$ an invertible monomial ideal.

- Working in Vistoli's workshop prepared me for this.
- This is done by order reduction, using logarithmic derivatives.

Definition

Write $\mathcal{D} \leq a$ for the sheaf of logarithmic differential operators of order $\leq a$.

$\operatorname{dim} B=0:$ restatement

Theorem (\aleph-T-W)

Let \mathcal{I} be an ideal on a logarithmically smooth Y. There is a functorial logarithmic morphism $Y^{\prime} \rightarrow Y$, with Y^{\prime} a logarithmically smooth stack, and $\mathcal{I} \mathcal{O}_{Y^{\prime}}$ an invertible monomial ideal.

- Working in Vistoli's workshop prepared me for this.
- This is done by order reduction, using logarithmic derivatives.

Definition

Write $\mathcal{D} \leq a$ for the sheaf of logarithmic differential operators of order $\leq a$. The logarithmic order of an ideal \mathcal{I} is the minimum a such that $\mathcal{D}^{\leq}{ }^{\mathrm{a}} \mathcal{I}=(1)$.

The monomial part of an ideal

Definition

$\mathcal{M}(\mathcal{I})$ is the minimal monomial ideal containing \mathcal{I}.

The monomial part of an ideal

Definition

$\mathcal{M}(\mathcal{I})$ is the minimal monomial ideal containing \mathcal{I}.
Proposition (Kollár, $\aleph-T-W$)
In cahracteristic $0, \mathcal{M}(\mathcal{I})=\mathcal{D}^{\infty}(\mathcal{I})$. In particular $\max _{p} \operatorname{logord}_{p}(\mathcal{I})=\infty$ if and only if $\mathcal{M}(\mathcal{I}) \neq 1$.

The monomial part of an ideal

Definition

$\mathcal{M}(\mathcal{I})$ is the minimal monomial ideal containing \mathcal{I}.

Proposition (Kollár, $\aleph-T-W)$

In cahracteristic $0, \mathcal{M}(\mathcal{I})=\mathcal{D}^{\infty}(\mathcal{I})$. In particular $\max _{p} \operatorname{logord}_{p}(\mathcal{I})=\infty$ if and only if $\mathcal{M}(\mathcal{I}) \neq 1$.

Proposition (Kollár, \aleph §-T-W)
Let $Y_{0} \rightarrow Y$ be the normalized blowup of $\mathcal{M}(\mathcal{I})$. Then $\mathcal{M}:=\mathcal{M}(\mathcal{I}) \mathcal{O}_{Y_{0}}=\mathcal{M}\left(\mathcal{I} \mathcal{O}_{Y_{0}}\right)$ is an invertible monomial ideal, and so $\mathcal{I O}_{Y_{0}}=\mathcal{I}_{0} \cdot \mathcal{M}$ with $\max _{p} \operatorname{logord}_{p}\left(\mathcal{I}_{0}\right)<\infty$.

$\operatorname{dim} B=0$: sketch of argument

- In cahracteristic 0 , if $\operatorname{logord}_{p}(\mathcal{I})=a<\infty$, then $\mathcal{D}^{\leq a-1} \mathcal{I}$ contains an element x with derivative 1 .

$\operatorname{dim} B=0$: sketch of argument

- In cahracteristic 0 , if $\operatorname{logord}_{p}(\mathcal{I})=a<\infty$, then $\mathcal{D}^{\leq a-1} \mathcal{I}$ contains an element x with derivative 1 .
- Carefully applying induction on dimension to an ideal on $\{x=0\}$ gives order reduction:

Proposition ($\aleph-\mathrm{T}-\mathrm{W}$)

Let \mathcal{I} be an ideal on a logarithmically smooth Y with

$$
\max _{p} \operatorname{logord}_{p}(\mathcal{I})=a .
$$

There is a functorial logarithmic morphism $Y_{1} \rightarrow Y$, with Y_{1} logarithmically smooth, such that $\mathcal{I} \mathcal{O}_{Y^{\prime}}=\mathcal{M} \mathcal{I}_{1}$ with \mathcal{M} an invertible monomial ideal and

$$
\max _{p} \operatorname{logord}_{p}\left(\mathcal{I}_{1}\right)<a .
$$

Arbitrary B

Main result ($\aleph-\mathrm{T}-\mathrm{W}$)

Let $Y \rightarrow B$ a logarithmically smooth morphism of logarithmically smooth schemes, $\mathcal{I} \subset \mathcal{O}_{Y}$ an ideal. There is a log morphism $B^{\prime} \rightarrow B$ and functorial \log morphism $Y^{\prime} \rightarrow Y$, with $Y^{\prime} \rightarrow B^{\prime}$ logarithmically smooth, and $\mathcal{I} \mathcal{O}_{Y^{\prime}}$ an invertible monomial ideal.

- This is done by relative order reduction, using relative logarithmic derivatives.

Arbitrary B

Main result (\aleph-T-W)

Let $Y \rightarrow B$ a logarithmically smooth morphism of logarithmically smooth schemes, $\mathcal{I} \subset \mathcal{O}_{Y}$ an ideal. There is a \log morphism $B^{\prime} \rightarrow B$ and functorial \log morphism $Y^{\prime} \rightarrow Y$, with $Y^{\prime} \rightarrow B^{\prime}$ logarithmically smooth, and $\mathcal{I} \mathcal{O}_{Y^{\prime}}$ an invertible monomial ideal.

- This is done by relative order reduction, using relative logarithmic derivatives.

Definition

Write $\mathcal{D}_{\bar{Y} / B}^{\leq a}$ for the sheaf of relative logarithmic differential operators of order $\leq a$. The relative logarithmic order of an ideal \mathcal{I} is the minimum a such that $\mathcal{D}_{Y}^{\leq a}{ }_{B} \mathcal{I}=(1)$.

The new step

- $\operatorname{relord}_{p}(\mathcal{I})=\infty$ if and only if $\mathcal{M}:=\mathcal{D}_{Y / B}^{\infty} \mathcal{I}$ is a nonunit monomial ideal along the fibers.
- Equivalently $\mathcal{M}=\mathcal{D}_{Y / B} \mathcal{M}$ is not the unit ideal.

The new step

- $\operatorname{relord}_{p}(\mathcal{I})=\infty$ if and only if $\mathcal{M}:=\mathcal{D}_{Y / B}^{\infty} \mathcal{I}$ is a nonunit monomial ideal along the fibers.
- Equivalently $\mathcal{M}=\mathcal{D}_{Y / B} \mathcal{M}$ is not the unit ideal.

$\aleph-\mathrm{T}-\mathrm{W}$

Let $Y \rightarrow B$ a logarithmically smooth morphism of logarithmically smooth schemes, $\mathcal{M} \subset \mathcal{O}_{Y}$ an ideal with $\mathcal{D}_{Y / B} \mathcal{M}=\mathcal{M}$. There is a log morphism $B^{\prime} \rightarrow B$ with saturated pullback $Y^{\prime} \rightarrow B^{\prime}$, and $\mathcal{M} \mathcal{O}_{Y^{\prime}}$ a monomial ideal.

